Why should we care about Greenland watersheds? Reactions, runoff, and rising sea level

Jon Martin Ellen Martin Cecilia Scribner Kelly Deuerling Daniel Collazo Adam Marshall

Greenland Watersheds

Proglacial

Subglacial

Subglacial

Water system under the ice Proglacial

Melt water discharged from the ice sheet

Deglacial

Water from annual precipitation and permafrost melt

≥Silicate

Modified from Anderson, 2007, Ann. Rev. Earth Planet Sci

Deglacia

Significance: Watershed Variations

Now Mostly deglacial Much weathered material Last Glacial Maximum All sub- & pro-glacial Much fresh material

Implication 1: Sea level rise

- Spectacular events:
 - (MWP1A) 14.5 14.0 ka
 BP ≥ 40 mm/yr
 - Reflect rapid collapse of continental ice sheets
- Change in the material fluxes:
 - To ocean: isotopes & nutrients (?)
 - With atmosphere: CO₂

Lambeck et al., 2014, PNAS

Implication 2: Runoff (and fluxes)

H2 B-A Sea leve WPIA -70° MVVRIE LGIN 21.0 15 20 Time (ka) 10 20.5 **Orphan knoll** 20.0 Laurentian 19.5 [№] Fan **Blake Ridge** 19.0 18.5 28 20 24 16 Time (ka BP)

3000

- Systematic shifts in Pb isotopes in North Atlantic sediments:
 - Rapid increase during rapid SL rise
 - Gradual drift down following SL rise
- Reflect changes in runoff composition (reactions)

Lambeck et al., 2014, PNAS; Gutjahr et al., 2009, EPSL; Kurzweil et al., 2010, EPSL; Crocket et al., 2012

Implications 3: Reactions

- Offset between whole rock and leached material
 - Represent weathering products
- Offset increases with younger material
- Causes:
 - Change in minerals being weathered (Sr)
 - Availability of radiogenic isotopes in damaged crystal lattices (Pb)

Upper: Harlavan et al., 1998, GCA; Lower: Blum and Erel, 1997, GCA

Hypotheses

Hypothesis 1:

Field Areas for Tests

~125 km transect coast to GrIS

- Similar lithologies (Nagssugtoqidian)
- Gradient in exposure age of moraines
- Gradient in precipitation vs. evaporation

Two types deglacial watersheds

Coastal, wet, older moraines; More congruent weathering? (cool colors upcoming figures) Inland, dry, younger moraines; Less congruent weathering? (warm colors upcoming figures)

One proglacial watershed

- Watson River (Akuliarusiarsuup Kuua)
 - Does hyporheic exchange affect weathering?
- Sampled 4 times over 2 years
 - Including pore waters

Melt season: Watson River to Kangerlussuaq fjord

Melt season: Watson River vs Tractor

Discharge: Proglacial vs Deglacial

- Watersheds of western Greenland
- Similar amounts of discharge from deglacial and Greenland ice sheet
- Is composition different within deglacial watersheds?

Mernild et al., 2010, The Cryosphere

Na vs. Cl

Excess Na in coastal watersheds Likely source- plagioclase (NaAlSi₃O₈) weathering

Major Cations and Anions

Waters vs. Bedload

Weathered Minerals

- Inland deglacial carbonate, little silicate
- Coast deglacial & Proglacial increased silicate
- Coastal sulfide
- Proglacial increased biotite over subglacial

 Δ^{87} Sr/⁸⁶Sr

- Small Δ^{87} Sr/⁸⁶Sr ratio reflects more congruent weathering
- Large Δ^{87} Sr/⁸⁶Sr ratio reflects less congruent weathering
- Surprise that 7 ky old moraines have incongruent weathering reflects little precipitation
 Scribner et al., 2015, GCA

Quick summary - deglacial

- Weathering extent increases toward coast
 - More silica and sulfide, less carbonate
 - Less biotite weathering
 - More congruent Sr isotope ratios
- Causes:
 - Longer exposure times but not that different (3ky)
 - Precipitation greater likely largest cause

- Large glacial outwash plains
- Hyporheic exchange & weathering?

• Watson River – Time lapse photography; 9 pm to 9 am

Thanks to Mike Davlantes

Head and chemistry measurements

- Sample pore water
 - "vapor probe"
- What reactions occur?
- What is exchange?
 - Piezometer measure K

- Transect of piezometers
- Instrumented with CTDs
 Deuerling et al., in prep.

Head Gradients and Flow Direction

K = 10⁻⁴ TO 10⁻⁵ m/sec

- Distal Site:
 - Gradients oriented toward bank
- Proximal site:
 - Diel alterations
- Sampling time:
 - Increasing melt
 - Increasing stream stage

Deuerling et al., in prep.

Pore water composition

- Decrease pH:
 - Sulfide
 - oxidation
 - Atmospheric
 CO₂

- Correlation reflects gypsum reaction
 - Cryogenic concentration
 - Subsequent dissolution

- Early and late melt season
- Discharge from banks

- Peak melt season
 - Diurnal variations
- Recharge to banks
- Dissolution of primary and secondary minerals

Deuerling et al., in prep.

Conclusions

- Distinctly different weathering process
 - Between subglacial, proglacial, and deglacial watersheds
 - Across deglacial watersheds
 - Exchange in sandurs important weathering sites in proglacial systems
 - Muskox pizzas are actually quite tasty

Implications

- Retreat of ice sheets:
 - Increase deglacial fluxes
 - Area of intense weathering expands
 - Will alter/has altered elemental, nutrient(?), CO₂(?) and isotopic fluxes
 - Use proxies for interpreting past changes
 - Predict future changes

Non-edible wildlife annoying, but not so dangerous

Future Directions

- Expand field sites
 - Narsarsuaq > 2000 mm precipitation
 - 1.6 ky moraines
- Evaluate fluxes
- Expand mineral reactions
 - Nutrients (P, Fe, C)
 - OC lability changes

Continental ice sheets and sea level

Measured sea level records

- Longer term records Salt marshes, tide gauges, altimetry
- Tide gauge increase very likely
 1.7 mm/yr 1901 2001

- Satellite-based altimetry

 compilation 5 groups
- Increase very likely 3.2 mm/yr 1993-2012

IPCC, 2013 5th AR

Sea level projections

- Compilation of models
- Projection of global mean sea level for two extreme scenarios (RCP2.6 and RCP8.5 – process based)
- Thermal expansion greatest contributor (30-55%)
- Glacial melting (not Antarctica) second largest contributor (15 – 55%)
- Likely that rate of sea level rise will increase in 21st century
 - e.g., >3.2 mm/yr

IPCC, 2013 5th AR

Greenland – a modern ice sheet

- Model of surface mass balance for 21st century
 - Red mass loss; blue mass gain
 - Equilibrium lines
 - Purple now, Green 2100
 - Insets: contribution to SL rise from outlet glaciers & ice sheet
- Question:
 - How might weathering change as ice sheet retreats?
 - Study transect in W Greenland

IPCC, 2013 5th AR

Saturation states of watershed waters

- Feldspar minerals undersaturated
- Clays and oxides supersaturated

Scribner et al., submitted, GCA

- Temporary piezometers ("vapor probe")
- Sample pore waters for chemical compositions

Specific Conductivity vs depth

- Both locations show nearly order of magnitude increase in river over pore water
- Two possible causes
 - Cryogenic concentration
 - Weathering
- Variations in elemental compositions indicate weathering important