MAC 2311 - Period:	
Quiz 2 - Form A	
September 8, 2015	

Name:	K	<u>-</u> ۱	Y	
Please write your na	me and	form	on you	paper.
Show your	work	to ea	rn full	credit.

- 1. Show that $f(x) = \frac{x-11}{2x+4}$ is invertible, find its inverse, then find the domain of $f^{-1}(x)$. (2 points)
- 2. Rewrite $\sin(2\tan^{-1}(x))$ as an algebraic expression of x then state the domain on which the equivalence is valid. (2 points)
- 3. Solve the following equation for x: $\log_2(5-5x) \log_2(1+x^2) = \log_2 2$. (2 points)

MAC 2311 - Period: ____ Quiz 2 - Form B September 8, 2015

Write your name and form on both sheets of paper.

Show your work to earn full credit.

- 1. Show that $f(x) = \frac{x+11}{2x-4}$ is invertible, find its inverse, then find the domain of $f^{-1}(x)$. (2 points)
- 2. Rewrite $\sin(2\cot^{-1}(x))$ as an algebraic expression of x then state the domain on which the equivalence is valid. (2 points)
- 3. Solve the following equation for x: $\log_6(2-x) \log_6(7-x) = 2$. (2 points)

MAC 2311 - Period: ____ Quiz 2 - Form C September 8, 2015

Write your name and form on both sheets of paper.

Show your work to earn full credit.

- 1. Show that $f(x) = \frac{x-5}{3x+9}$ is invertible, find its inverse, then find the domain of $f^{-1}(x)$. (2 points)
- 2. Rewrite $\cos(2\tan^{-1}(x))$ as an algebraic expression of x then state the domain on which the equivalence is valid. (2 points)
- 3. Solve the following equation for x: $2\log_7(x) = \log_7(2) + \log_7(x+40)$. (2 points)

MAC 2311 - Period: ____ Quiz 2 - Form D September 8, 2015 Name:

Write your name and form on both sheets of paper.

Show your work to earn full credit.

- 1. Show that $f(x) = \frac{x+5}{3x-9}$ is invertible, find its inverse, then find the domain of $f^{-1}(x)$. (2 points)
- 2. Rewrite $\cos(2\cot^{-1}(x))$ as an algebraic expression of x then state the domain on which the equivalence is valid. (2 points)
- 3. Solve the following equation for x: $\ln(5-5x) \ln(1+x^2) = \ln e$. (2 points)

Problem References:

- 1. Section 1.5 #4 and Webassign HW 2 #3.
- 2. Section 1.5 #39,40 and Webassign HW 2 #9.
- 3. Section 1.6 #28,33,34 and Webassign HW 2 #17,18.

MAC 2311 - Period:
Quiz 2 - Form A
September 8, 2015

Please write your name and form on your paper.

Show your work to earn full credit.

- 1. Show that $f(x) = \frac{x-11}{2x+4}$ is invertible, find its inverse, then find the domain of $f^{-1}(x)$. (2 points)
- 2. Rewrite $\sin(2\tan^{-1}(x))$ as an algebraic expression of x then state the domain on which the equivalence is valid. (2 points)
- 3. Solve the following equation for x: $\log_2(5-5x) \log_2(1+x^2) = \log_2 2$. (2 points)

1. Let
$$x = \frac{y-11}{2y+4}$$
 (V2) for work

 $x = \frac{y - 11}{2y + 4} \iff 2xy + 4x = y - 11 \iff 4x + 11 = y - 2xy$ = f-(x)= y= 4x+1/2

X

- (E) Domain of f (x): Solve 1-2x=0 = x=1. Domain (-00, 1)(1,00).
- (2) Invertible: Use graph or let fcal= f(b) then show a=b.

2. Let
$$\theta = \tan^{-1} x$$
. So $\tan \theta = x$. We have Original expression is $\sin 2\theta = \frac{1}{2} \sin \theta \cos \theta$

 $(\frac{1}{2})$ Holds for \times on $(-\infty,\infty)$.

3. Condense the expression:
$$(\frac{5}{1}\log_2(\frac{5-5x}{1+x^2}) = \log_2 2$$

Using one-to-one property of logs: (1) 5-5x = 2.

MAC 2311 - Period:
Quiz 2 - Form B
September 8, 2015

Write your name and form on both sheets of paper.

Show your work to earn full credit.

- 1. Show that $f(x) = \frac{x+11}{2x-4}$ is invertible, find its inverse, then find the domain of $f^{-1}(x)$. (2 points)
- 2. Rewrite $\sin(2\cot^{-1}(x))$ as an algebraic expression of x then state the domain on which the equivalence is valid. (2 points)
- 3. Solve the following equation for x: $\log_6(2-x) \log_6(7-x) = 2$. (2 points)

1. Let
$$x = \frac{y+11}{2y-4} \iff$$

 $2xy - 4x = y + 11 \iff 2xy - y = 4x + 11$ $\iff y(2x - 1) = 4x + 11$ $\iff f'(x) = y = \frac{4x + 11}{2}$

Domain of $f^{-1}(x)$: Solve $2x-1=0 \rightarrow x=\frac{1}{2}$. Domain: $(-\infty,\frac{1}{2})\cup(\frac{1}{2},\infty)$.

1 Invertible: Use graph or let $f(\alpha)=f(\alpha)$ then show $\alpha=b$.

2. Let $\theta = \cot^{-1} x$. Then $\cot \theta = x$. We have

Original expression 1's $51h20 = 2 \sin \theta \cos \theta$ $= 2 \left(\frac{1}{11+\chi^2} \right) \left(\frac{\chi}{\sqrt{11+\chi^2}} \right) = \frac{2\chi^2}{1+\chi^2}$

(B) Holds for x on (-00,00).

3. Condense L.H.S. of expression. 1 log6 $\left(\frac{2-\chi}{7-\chi}\right) = 2$

Rewrite in exponential form: $1 \frac{2-\kappa}{7-\kappa} = 6^2 = 36$.

Form C

$$y(1-3x) = 9x+5$$

 $f(x)=y=\frac{9x+5}{1-320}$

3xy+9x=y-5

2. Let
$$0 = \tan^{-1}x \rightarrow \tan 0 = x$$
. So

Now the original expression
is equivalent to

cos 20 =
$$\frac{1}{2}$$
 = $\frac{1}{1+\chi^2}$ = $\frac{1}{1+\chi^2}$ = $\frac{1}{1+\chi^2}$.

Domain: Holds for all χ in $(-\infty,\infty)$

3. Condense R.H.S.
$$\bigcirc$$
 bg $_{7}(\chi^{2}) = \log_{7}(2\times +80)$

Using one-to-one : 1)
$$\chi^2 = 2x + 80$$
.

property of logs

MAC 2311 - Period:
Quiz 2 - Form D
September 8, 2015

Name: Write your name and form on both sheets of paper. Show your work to earn full credit.

- 1. Show that $f(x) = \frac{x+5}{3x-9}$ is invertible, find its inverse, then find the domain of $f^{-1}(x)$. (2 points)
- 2. Rewrite $\cos(2\cot^{-1}(x))$ as an algebraic expression of x then state the domain on which the equivalence is valid. (2 points)
- 3. Solve the following equation for x: $\ln(5-5x) \ln(1+x^2) = \ln e$. (2 points)

1. Let
$$x = \frac{y+5}{3y-9} \iff 3xy-9x=y+5 \iff 3xy-y=9x+5$$

2 for work

 $f'(x)=y=\frac{9x+5}{2}$

 $\frac{1}{2}$ Domain of $f^{-1}(x)$: Solve $3x-1=0 \rightarrow x=\frac{1}{3}$. Domain: $(-\infty,\frac{1}{3})\cup(\frac{1}{3},\infty)$.

= Invertible: Use graph or let fal=16(6) then show a=6.

Q= cot-1x. So cot0=x. This gives VI+72

The original expression is now cos 20 = cos 20 - sin 20

$$\cos 2\theta = \cos^{2}\theta - \sin^{2}\theta$$

$$= \left(\frac{x}{\sqrt{1+x^{2}}}\right)^{2} - \left(\frac{1}{\sqrt{1+x^{2}}}\right)^{2} = \frac{x^{2}-1}{x^{2}+1}.$$

$$\left(\frac{1}{2}\right)$$
 This holds for x on $(-\infty,\infty)$.

3. Condense L.H.S.: (1)
$$ln\left(\frac{5-5x}{1+x^2}\right) = lne$$