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1. Introduction

Let A be an abelian variety over a number field K. The Birch and Swinnerton-Dyer conjecture
states that L(A/K, s) has a pole of order rank(A) at s = 1, and that

(1.1) lim
s→1

L(A/K, s)

(s− 1)rank(A)
=

#XARAΩA

#A(K)tors#Â(K)tors

Implicit in this are the assertions that L(A/K, s) has an analytic continuation and that the Tate-
Shafarevich group XA is finite.

Suppose f : A → B is an isogeny of abelian varieties over K. As a sanity check for the BSD
conjecture, the right side of (1.1) should be the same for A and for B. We have seen examples where
the individual pieces of this expression change under an isogeny (see [L5]). It requires a delicate
analysis to show that the entire expression is invariant under isogeny. In Section 2 we analyze the
effect of an isogeny on the terms in the conjecture. In Section 3 we review important results in
Galois cohomology and illustrate them, and in Section 4 we use them to deduce an isogeny has no
overall effect on the constant:

Theorem 1.1 (Tate). If the Birch and Swinnerton-Dyer conjecture is true for A, it is true for all
K-isogenous abelian varieties.

Proof. Combine Lemma 2.1, the calculations (2.2), (2.3), and (2.4), and Proposition 4.1. �

Remark 1.2. The arguments we give come from [Mil06, §I.7] (itself modeled on Tate’s Bourbaki
talk on BSD), with minor adaptations to fit in with the rest of the learning seminar.

Remark 1.3. Everything we do can be easily adapted to case of a global function field K when
char(K) does not divide the degree of the isogeny. One has to use flat cohomology and infinitesimal
group schemes to push through a generalization of the technique to prove Theorem 1.1 without
restriction on the degree of the isogeny.

Notational Conventions. Let S denote a finite set of places of K that contains the archimedean
places, and define KS to be the maximal extension of K unramified outside of S. Let GS =
Gal(KS/K) and OK,S be the ring of S-integers of K. When we talk about cohomology groups, we
always use continuous cohomology.

If g : X → Y is a homomorphism of abelian groups with finite kernel and cokernel, we define

h(g) =
# ker(g)

#coker(g)
;

this is a measure of how g effects the size of the groups: if X and Y are finite, h(g) = #X/#Y .
If f : A→ B is a K-homomorphism of abelian varieties over K, denote the induced maps on K

points and Kv points by f(K) and f(Kv) respectively.
We also need to consider several types of duality.
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• For a locally compact Hausdorff topological abelian group X, we define the dual X∗ =
Homcont(M,S1). (If M is torsion and discrete then this is the same as Hom(M,Q/Z).
• For a finite flat (locally free) commutative group scheme G over a base T , the Cartier dual
GD represents the functor on T -schemes given by T ′  HomT ′(GT ′ ,Gm,T ′).

• If M is a finite discrete Gk-module for some field k, we define MD = HomAb(M,k×s ) (with
its evident structure of finite discrete Gk-module).

2. The Effect of Isogenies

Let f : A→ B be a degree-n isogeny of abelian varieties over K. Let S be a finite set of places
of K containing: the archimedean places, the places where A (and B) have bad reduction, and the
places dividing n. (Later we will add a few more places into S.)

The significance of such a choice of S is that f extends to a map of abelian schemes f̃ : A → B
over OK,S (namely, the Néron models over OK,S are abelian schemes). The kernel of this map is
finite étale by using properness, fibral flatness, and degree considerations, so passing to OKS

-points
gives an exact sequence (exercise!) and hence by properness this is an exact sequence

(2.1) 0→ ker(f)(KS)→ A(KS)→ B(KS)→ 0;

for details on this see [Mil06, Lemma I.6.1].
Before analyzing the effect of an isogeny on the terms in the BSD conjecture, we first check some

basic compatibilities:

Lemma 2.1. We have:

(1) The L-functions L(A/K, s) and L(B/K, s) are equal.
(2) The ranks of A and B are the same.
(3) XA is finite if and only if XB is finite.

Proof. The key is that since ker f is killed by [n]A, there exists a K-isogeny

g : B = A/ ker(f)→ A/A[n] = A

such that f ◦ g = [n]B and g ◦ f = [n]A. In particular, V`(g) is an inverse to V`(f) up to in-
vertible n-multiplication on the rationalized `-adic Tate module. Since the L-function was defined
solely in terms of the rationalized Tate module V`(A) (see [L1, §1.3]), we get the equality of L-
functions. Likewise, the induced map A(K)Q → B(K)Q via f is an isomorphism, or more concretely
A(K)/A(K)tors → B(K)/B(K)tors is injective since ker f is finite, giving that rank(A) ≤ rank(B),
and g provides the reverse inequality.

The third assertion follows from (2.1): taking the long exact sequence of GS-cohomology gives
an exact sequence

. . .→ H1(GS , ker(f))→ H1(GS , A)→ H1(GS , B)→ . . .

Finiteness results for Galois cohomology (see Fact 3.11 below) gives that H1(GS , ker(f)) is finite.
Thus,

ker(XA →XB) ⊂ ker(H1(GS , A)→ H1(GS , B)) = Im(H1(GS , ker(f))→ H1(GS , A))

is finite. Hence, if XB is finite, we deduce that XA is finite. For the converse, apply the same
argument with g in place of f . �

The main work is analyze the effect of an isogeny on each of the pieces of (1.1), and then to
assemble them all together to show that the product of the discrepancies is equal to 1; this product
calculation will use essentially all of Tate’s global duality theorems.
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2.1. The Tate-Shafarevich Group. Recall we defined the Tate-Shafarevich group as

XA = ker(H1(K,A)→
∏
v

H1(K,B))

in [L3, §5]. As A is K-isogenous to B, Â, and B̂, Lemma 2.1 shows that if XA is finite then so are
XB, X

Â
, and X

B̂
.

The Cassels-Tate pairing will be defined and analyzed in an upcoming lecture. We need the
following result, which is also proven in [Mil06, Theorem I.6.13a].

Fact 2.2. Assuming XA is finite, the Cassels-Tate pairing XA ×X
Â
→ Q/Z is non-degenerate.

Furthermore, it is functorial in the sense that

XA

X(f)

��

× X
Â

// Q/Z

XB × X
B̂

X(f̂)

OO

// Q/Z

is commutative.

We now assume finiteness of XA, hence the Tate–Shafarevich groups of Â, B, and B̂ are all
finite. The perfectness of the Cassels–Tate pairing and its functoriality give that #coker(X(f)) =

# ker(X(f̂)).
Now let us consider the effect of an isogeny on #XA. Looking at the tautological exact sequence

0→ kerX(f)→XA
X(f)→ XB → coker(X(f))→ 0,

we see that

(2.2)
#XA

#XB
=

# ker(X(f))

#coker(X(f))
=

# ker(X(f))

# ker(X(f̂))
.

Put this in the fridge; we’ll take it out later.

2.2. Regulators. We start by reviewing the setup in [L2, §3]. The canonical height pairing is a
bi-additive function

A(K)× Â(K)→ R

defined for a ∈ A(K ′) and L ∈ Â(K ′) via

〈a,L〉 =
1

[K ′ : K]
ĥK′,L(a);

note that L is not ample (and moreover it is anti-symmetric), this is not a height on projective
space and it required a more complicated definition.

For a K-isogeny f : A → B, the pairing is functorial in the sense that the following diagram
commutes:

A(K)

f
��

× Â(K) // R

B(K) × B̂(K)

f̂

OO

// R

Let {ai} and {Lj} be bases for the Mordell-Weil lattices A(K)/A(K)tors and Â(K)/Â(K)tors.
The regulator is defined as

RA = | det(〈ai,Lj〉)|.
It is non-zero as we know that after tensoring with R on the source, the canonical height pairing
is non-degenerate on K-points (ultimately by arguments with the geometry of numbers).
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To examine the effect of an isogeny on the regulator, pick bases {bi} and {L′j} for B(K)/B(K)tors

and B̂(K)/B̂(K)tors. The collection {f(ai)} is linearly independent in B(K)/B(K)tors respectively.
We wish to understand the index, or equivalently h(ffree) where ffree is the induced (injective) map
between these Mordell–Weil lattices.

Applying the snake lemma to the diagram

0 //

��

A(K)tors
//

ftors

��

A(K) //

f(K)
��

A(K)/A(K)tors
//

� _

ffree

��

0

��

0 // B(K)tors
// B(K) // B(K)/B(K)tors

// 0

gives a six term exact sequence with finite terms. The Euler characteristic is therefore 1, so
h(f(K)) = h(ftors) · h(ffree). Looking at the regulator, we see that

RB = | det(〈bi,L′j〉)| = |det(〈f(ai),L′j〉)|h(ffree) = | det(〈f(ai),L′j〉)|h(f(K))
#B(K)tors

#A(K)tors

using the multi-linearity of the determinant for the second equality.

Applying the same argument to f̂ , we see that

RA = | det(〈ai, f∗(L′j)〉)|h(f̂(K))
#Â(K)tors

#B̂(K)tors

The functoriality of the pairing shows that the determinant terms on the right sides of these formulas
for RA and RB are the same for each ij-entry in the matrices, and hence the determinants coincide.
Thus, upon dividing RA by RB these mystery determinants cancel out and we get:

(2.3)
RA

#A(K)tors ·#Â(K)tors

=
h(f(K))

h(f̂(K))

RB

#B(K)tors ·#B̂(K)tors

.

Put this in the fridge too. Note how the mysterious torsion terms in the BSD coefficients pleasantly
appear here alongside the regulator terms! Hence, we will not need to grapple directly with torsion
(whose behavior under an isogeny is unpredictable).

2.3. The Volume Term. We now analyze how ΩA and ΩB are related. First we recall the
definition from [L3, §6], say for A. Pick a nonzero ω ∈ Ωtop

A/K(A) and a Haar measure µ on AK .

Representing µ as a restricted tensor product
∏′ µv, for each v we get a Haar measure on A(Kv)

defined by

mA,v = λv|ω|vµdim(A)
v

where λv is a “covergence factor” defined to be 1 for archimedean v and Lv(1/qv)
−1 for non-

archimedean v. Provided that v 6∈ S and ω extends to a v-integral generator of the line of top-
degree global differential forms on the Néron model at v (as is the case for all but finitely many v,
by considering the relative cotangent space of the Néron model over OK,S as a finitely generated
OK,S-module), we saw in [L3] that this measure assigns volume 1 to A(Kv). Thus, it makes sense
to form the product measure

mA,µ =
∏

mA,v

as a measure on A(AK); as such it independent of the choice of ω due to the product formula.
We also have the quotient measure mµ on AK/K induced by µ on AK and counting measure

on its discrete closed subgroup K. The Tamagawa measure

mA = mµ(AK/K)− dim(A)mA,µ

is independent of the choice of µ as well. Finally, we can define

ΩA = mA(A(AK))
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which is independent of the choice of µ and ω.
Because we defined the Tamagawa measure independent of choices, it is easy to see the effect

of the isogeny, as follows. First, note that the convergence factors λv are isogeny invariant since
they’re defined in terms of the local L-function at each non-archimedean place. We claim that for
every place v (including real and complex places),

mA,v(A(Kv)) = # ker(f(Kv))mB,v(f(A(Kv))).

The key point is that since f : A → B is an étale K-isogeny, the Zariski-local structure of étale
morphisms and the Kv-analytic inverse function theorem imply that f(Kv) : A(Kv)→ B(Kv) has
open image onto which it is a local analytic isomorphism. Being a homomorphism of Kv-analytic
groups, it is a ker(f(Kv))-torsor onto its compact open image.

Fix a choice of ωB for constructing the Tamagawa measure for B (along with a fixed adelic
measure µ =

∏′ µv), and then use ωA := f∗(ωB) and µ to build the Tamagawa measure for A. By
working over a small open subset ∆v ⊂ f(A(Kv)) ⊂ B(Kv) over which the preimage in A(Kv) is a
disjoint union of # ker(f(Kv)) open subsets which each map analytically isomorphically onto ∆v,
it follows from the Kv-analytic Change of Variables formula that the pushforward Haar measure
f(Kv)∗(mA,v) on f(A(Kv)) is equal to # ker(f(Kv)) ·mB,v|f(A(Kv)) (as we can compare these Haar
measures by evaluating each on ∆v). Now evaluating the volume of the entire image f(A(Kv)), we
get

mA,v(A(Kv)) = # ker(f(Kv))mB,v(f(A(Kv))).

Since the index of the compact open subgroup f(A(Kv)) in B(Kv) is #coker(f(Kv)), we finally
obtain:

µA,v(A(Kv)) = µB,v(B(Kv))h(f(Kv)).

Both of the volume terms here are equal to 1 provided v 6∈ S and ωA and ωB generate the top-degree
v-integral differential forms, so for such v we have h(f(Kv)) = 1 as well. Enlarge S to include all
the places where this does not happen, so now for v 6∈ S we have h(f(Kv)) = 1. The Tamagawa
measure is the product of the local measures up to dividing by an overall adelic volume factor that
is the same for A and B (depending on each only through their common dimension), so we conclude
that

(2.4) ΩA = ΩB

∏
v∈S

h(f(Kv)).

This completes our analysis of the change of factors of the BSD coefficient under the K-isogeny f .

3. Results on Galois Cohomology

In this section we collect important facts about local and global duality in Galois cohomology,
illustrate them with examples, and discuss Tate local duality for abelian varieties.

3.1. Local Duality. We recall a few facts about Galois cohomology of local fields; all may be
found in [Mil06, §I.2] or [NSW08, Chapter VII]. Let L be a finite extension of Qp with absolute
Galois group GL, and let M be a finite discrete GL-module.

Fact 3.1 (Finiteness). The cohomology groups H i(GL,M) are finite.

Fact 3.2 (Local Tate Duality). The cup product pairing combined with evaluation M ×MD → L
×

gives a perfect pairing

H i(L,M)×H2−i(L,MD)→ Br(L) ' Q/Z

for 0 ≤ i ≤ 2.

Remark 3.3. There is also a version of this for archimedean places using modified Tate cohomology
groups: see [Mil06, Theorem I.2.13].
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Let IL ⊂ GL be the inertia group. We define the unramified Galois cohomology group

H1
un(L,M) := H1(GL/IL,M

IL) ⊂ H1(L,M).

Fact 3.4. H1
un(L,M) and H1

un(L,MD) are exact annihilators of each other under this pairing.

Let M have order m, and define the Euler characteristic

χ(M) =
#H0(L,M)#H2(L,M)

#H1(L,M)
.

Fact 3.5 (Local Euler Characteristic). We have χ(M) = ||m||L where || · ||L is the normalized

valuation on L (i.e., χ(M) = (#OL/mOL)−1 = p−[L:Qp]vp(m)).

Example 3.6. Consider the case M = µm, so

H i(L, µm) =


µm(L), i = 0

L×/(L×)m i = 1

Z/mZ, i = 2

0, i > 2

On the other hand, MD = HomGL
(µn, L

×) = Z/nZ, so

H i(L,Z/nZ) =


Z/mZ, i = 0

Hom(GL,Z/mZ), i = 1

µm(L), i = 2

0, i > 2

In particular, for i = 1 we have a duality between Hom(GL,Z/mZ) and L×/(L×)m. After iden-
tifying Hom(GL,Z/mZ) with Hom(L×,Z/mZ) using local class field theory, one can check the
cup-product duality becomes evaluation (up to an inversion, depending on conventions for the local
Artin map).

This also illustrates the local Euler characteristic formula (and in fact is the essential explicit
calculation in the proof of that formula). For example, if p - m then the group 1 + mL is m-
divisible, so #L×/(L×)m = #µm(L) ·m since for the finite residue field kL the cokernel and kernel
of tm : k×L → k×L have the same size. Thus, the Euler characteristic in this case is

#µ(L) ·m
#µm(L) ·m

= p0 = 1 = ||m||L

as desired.

3.2. Tate Local Duality for Abelian Varieties. Next we present a duality between the Galois
cohomology of an abelian variety and its dual.

Fact 3.7. Let L be a local field of characteristic zero and A be an abelian variety over L. There is
a canonical pairing

Â(L)×H1(L,A)→ Q/Z

that identifies each as the Pontryagin dual of the other (vieweing Â(L) with its natural compact
topology and H1(L,A) with the discrete topology).

This is a combination of results in algebraic geometry and number theory. We will not give a

complete proof, but will explain how to define the pairing and how to relate Â(L) to Ext1
L(A,Gm).

The first part is algebraic geometry, as follows. Let A be an abelian scheme over a base S, and Â
be the dual abelian scheme (which always exists by a deep theorem of Raynaud and Deligne whose
proof involves a detour through algebraic spaces, or assume projectivity as over fields so that the



ISOGENY INVARIANCE OF THE BSD CONJECTURE OVER NUMBER FIELDS 7

dual is provided by Grothendieck’s work with Picard schemes). For an S-scheme T we claim that
as groups

Â(T ) = Ext1(AT ,Gm)

naturally in T . The group Ext1(AT ,Gm) can be interpreted either as classifying extensions of
T -group schemes (exactness for the fppf topology) or in terms of homological algebra as classifying
extensions in the category of abelian sheaves on the fppf site: the two notions coincide because
Gm-torsor sheaves for the fppf topology over a scheme are always representable (ultimately by
effectivity of fpqc descent for affine morphisms).

Remark 3.8. Let us describe how this “relative Weil Barsotti formula” is proved; we only need it
in the classical setting where T is the spectrum of a field, but the relative case is very important in
one of the conceptual approaches to the definition of the Cassels–Tate pairing that we will study
in a later lecture. Given an extension of AT by Gm as T -group schemes, we get a line bundle on
AT by forgetting the group structure, and it is trivialized over the identity section of AT via the

identification of the kernel with Gm; as such this lies in Â(T ). The hard part to show that every

element of Â(T ) arises in this way from such a group extension that is moreover unique up to
isormorphism. The full proof is discussed in [Oor66, §18]. Oort uses the result over an algebraically
closed field as input, which is addressed in [Ser88, VII.16, Theorem 6]. With a bit of care, it is not
necessary to use the classical case; see the Appendix for how this is done.

Given this, working in the derived category of abelian sheaves on the fppf site of S we have

Â(S) = Ext1(A,Gm) = Hom(A,Gm[1]) and H1(S,A) = Ext1(ZS , A) = Hom(ZS , A[1]).

Then by composing, we obtain a “Yoneda Ext-pairing”

H1(S,A)× Â(S) = Hom(ZS , A[1])×Hom(A,Gm[1])→ Hom(ZS ,Gm[2]) = H2(S,Gm) =: Br(S).

That is the algebraic geometry, and the number-theoretic input is that for S = Spec(L) with L a
non-archimedean local field, local class field theory identities Br(L) with Q/Z, thereby defining the
desired pairing.

If we make Â(L) into a compact Hausdorff group using the topology on L, and view H1(L,A) as
a discrete group, Fact 3.7 is the assertion that this pairing is a Pontryagin duality. The statement
is [Mil06, Corollary I.3.4], and the proof occupies [Mil06, Ch. I, §3].

Remark 3.9. There is one important detail omitted in the proof in [Mil06, Ch. I, §3]: in the
proof of [Mil06, Ch. I, Thm. 3.2] it is asserted that a certain diagram commutes, and this is both
non-obvious and underlie the entire mechanism by which the proof of the duality theorem in
characteristic 0 can be reduced to Tate local duality for finite Galois modules. More specifically, by
using [Mil06, Ch. I, Lemma 3.1] to rewrite Ext’s in terms of group cohomology, the commutativity
of the right square in the proof with r = 2 asserts the commutativity of

H1(K, Â[n]) //

��

H1(K, Â)[n]

��

H1(K,A[n])∗ // (H0(K,A)∗)[n]

in which the rows come from the sequence 0 → A[n] → A
n→ A → 0 and its Â-analogue, the left

side is Tate local dualuty via the identification of A[n] as Cartier dual to Â[n], and the right map
expresses the local duality pairing for A over L. The fact that this commutes is subtle, and a proof
using derived categories is given in [MO].
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Remark 3.10. The abstract definition of the pairing makes it easy to see the functoriality of local
duality for abelian varieties, which is to say the commutativity of:

B̂(L)

f̂
��

× H1(L,B) // Q/Z

Â(L) × H1(L,A)

f

OO

// Q/Z

3.3. Global Duality. Now we recall some results about global Galois cohomology: standard ref-
erences are [Mil06, §I.4] and [NSW08, Chapter VIII], while [L4] deduces them from a modification
of étale cohomology. Let K be a number field and S a finite set of places of K containing the
archimedean places. Let M be a finite discrete GS-module such that #M is an S-unit.

Fact 3.11 (Finiteness). The cohomology groups H i(GS ,M) are finite.

For a place v of K, choosing an inclusion GKv → GK we can study H i(Kv,M) := H i(GKv ,M).

If v is non-archimedean, we set H̃ i(Kv,M) = H i(Kv,M). If v is archimedean, we set H̃ i(Kv,M) =
H i
T (Kv,M) (Tate cohomology). Define the finite product

P iS(K,M) =
∏
v∈S

H̃ i(Kv,M),

so there is a map H i(GS ,M)→ P iS(K,M) given by restriction.

Using local duality, there is an identification P iS(K,M) ' P 2−i
S (K,MD)∗. This also gives maps

P iS(K,MD)→ H2−i(GS ,M)∗.
We also define

Xi
S(K,M) = ker(H i(GS ,M)→ P iS(K,M)).

Fact 3.12. The groups X1
S(K,M) and X2

S(K,MD) are finite and there is a canonical non-
degenerate pairing

X1
S(K,M)×X2

S(K,MD)→ Q/Z.

Furthermore, there is an exact sequence

0 // H0(GS ,M) // P 0
S(K,M) // H2(GS ,M

D)∗

��

H1(GS ,M
D)∗

��

P 1
S(K,M)oo H1(GS ,M)oo

H2(GS ,M) // P 2
S(K,M) // H0(GS ,M

D)∗ // 0

The exact sequence can be viewed as an local cohomology sequence in étale cohomology: see [L4].
This also gives a nice description of the pairing.

Remark 3.13. The vertical arrows are defined using the perfect duality between X1
S and X2

S :
dualzing the exact sequence

P 0
S(K,M)

γ→ H2(GS ,M
D)∗ → coker(γ)→ 0

gives that coker(γ)∗ = X2
S(K,MD)∗, and this has a natural map to X1

S(K,M) ⊂ H1(GS ,M).
The other vertical map is defined similarly.
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Example 3.14. The Xi
S(K,M) are interesting to study. For example, for S a finite set of primes

and M = Z/mZ with m invertible in OK,S ,

X1
S(K,Z/mZ) ' Hom(ClS(K),Z/mZ).

Here ClS(K) is the S-class group. By class field theory, it is isomorphic to the Galois group of the
maximal abelian extension of K inside KS at which all primes of S split completely. Therefore
Hom(ClS(K),Z/mZ) parametrizes cyclic extensions of K unramified outside S with degree dividing
m in which the primes of S split completely.

Example 3.15. Another example is the Grunwald–Wang theorem. In this case one actually wants
to take S to be the set of all places of K (so strictly speaking we need to define P iS(K,M) as an
infinite restricted product with respect to H i

un(Kv,M)’s for all but finitely many v and need to
revisit how the 9-term exact sequence is defined) and we consider whether there is a local-to-global
principle for being an mth-power in K. In other words, is α ∈ K× is an mth power if α ∈ K×v is
an mth power for all places v?

This is not always true (e.g., 16 is a local 8th power at all places of Q(
√

7)), and the obstruc-
tion is measured by X1

S(K,µm). Indeed, the Kummer exact sequence and Hilbert 90 show that
H1(GK , µm) = K×/(K×)m, so

X1
S(K,µm) = ker

(
K×/(K×)m →

∏
v∈S

K×v /(K
×
v )m

)
.

The theorem of Grunwald–Wang is that this group is usually trivial, except in specific special cases
with 8|m (depending on how K interacts with 2-power cyclotomic fields and on certain properties
of the 2-adic places in S) for which it has order 2.

For global cohomology groups, there is also a global Euler–Poincaré characteristic formula.

Fact 3.16 (Global Euler–Poincaré Characteristic). We have

#H0(GS ,M) ·#H2(GS ,M)

#H1(GS ,M)
=
∏
v arch

#H0(Gv,M)

|#M |v
=
∏
v arch

#H0
T (Gv,M

D)

#H0(Gv,MD)

where | · |v is the normalized absolute value on Kv (the square of the usual absolute value when v is
complex).

Remark 3.17. This is not actually an Euler characteristic in general, as higher cohomology groups
might be non-zero when K is a real place and #M is even.

Example 3.18. Let p 6= 2 be prime. Let us consider the case M = µp with S = Sp∪S∞ consisting
of the primes above p and the archimedean places. Furthermore, suppose K does not contain
non-trivial pth roots unity. From the Kummer exact sequence, we obtain short exact sequences

1→ O×K,S/(O
×
K,S)p → H1(GS , µp)→ ClS(K)[p]→ 1

1→ ClS(K)/pClS(K)→ H2(GS , µp)→ Br(OK,S)[p]→ 1

Let us check the global Euler–Poincaré characteristic formula in this case.
There are no pth roots of unity O×K,S , and the rank is #S − 1. Thus #O×K,S/(O

×
K,S)p = p#S−1.

By Grothendieck’s work on Brauer groups for regular schemes (applied to OK,S), Br(OK,S) is the
part of the Brauer group of K unramified outside of S. Finallly, we have the exact sequence from
class field theory

0→ Br(K)→
⊕
v

Br(Kv)→ Q/Z→ 0.
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We see that

Br(OK,S)[p] = ker

(⊕
v∈S

Br(Kv)→ Q/Z

)
[p] = ker

⊕
v∈Sp

Z/pZ→ Z/pZ


This has size p#Sp−1.

As # Cl(OK,S)[p] = # Cl(OK,S)/pCl(OK,S), we obtain

#H0(GS , µp)#H
2(GS , µp)

#H1(GS , µp)
= p#Sp−1−(#S−1) = p−#S∞

On the other hand, for each real place v complex conjugation acts non-trivially on µp, so
#H0(Gv, µp) = 1, while |#µp|v = p. For a complex place, #H0(Gv, µp) = p and |#µp|v = p2.
Thus, ∏

v

#H0(Gv, µp)

|#µp|v
= p−#S∞ .

This verifies the formula for µp.

Remark 3.19. A similar calculation is the foundation of the proof of the global Euler–Poincaré
characteristic formula.

4. A Calculation Using Galois Cohomology

Let f : A→ B be a K-isogeny of abelian varieties over K, and let S be a finite set of places of K
as in Section 2. Thus S contains all archimedean places, all primes dividing deg(f), and all primes
of bad reduction for A (same as for B). Our previous work shows that the isogeny invariance of
the Birch and Swinnerton-Dyer conjecture is equivalent to the following:

Proposition 4.1. We have ∏
v∈S

h(f(Kv)) =
# kerX(f̂)

# kerX(f)

h(f(K))

h(f̂(K)
.

Let M = ker(f)(KS). We use H1(GS , A)[f ] to denote the kernel of the map on cohomology
induced by f . The following commutative diagram is the key to the proof.

0 // H0(GS ,M) // P 0
S(K,M)

��

H2(GS ,M
D)∗

��

0 // coker(f(K)) //

ϕ′

��

H1(GS ,M) //

ϕ

��

H1(GS , A)[f ] //

ϕ′′

��

0

0 //
⊕
v∈S

coker(f(Kv))

ψ′

��

// P 1
S(K,M) //

ψ

����

⊕
v∈S

H1(Kv, A)[f ] //

ψ′′

��

0

0 // H1(GS , B̂)[f̂ ]∗ // H1(GS ,M
D)∗ //

(
cokerf̂(K)

)∗
// 0



ISOGENY INVARIANCE OF THE BSD CONJECTURE OVER NUMBER FIELDS 11

We will see that this is commutative, that the rows and middle column are exact, and that the left
and right columns are complexes. The diagram is a combination of multiple exact sequences which
include pieces of Proposition 4.1. In particular:

• the first column gives information about
∏
v∈S #cokerf(Kv), #cokerf(K), and # kerX(f̂)

(as we’ll see that X(f̂) is dual to coker(ψ′), so they have the same size);
• the second column gives information about

∏
v∈S # ker f(Kv) and # ker f(K);

• applying the snake lemma to the first and second rows gives information about # kerX(f)
(as we’ll see that kerϕ′′ = kerX(f));

• the third row gives information about #cokerf̂(K).

However, # ker f̂(K) appears nowhere in the diagram, so we must look for it elsewhere!
Now we turn to defining the diagram.

• The first and second full rows are truncations of the long exact cohomology sequences for
the short exact sequences

0→M → A(KS)
f→ B(KS)→ 0 and 0→M → A(Kv)

f→ B(Kv)→ 0.

• For the third row, recall that there is a canonical isomorphism between ker(f̂) and the

Cartier dual of ker(f). Thus MD = Hom(M,K×S ) is naturally isomorphic to ker(f̂)(KS).
Then dualize a truncation of the long exact sequence for

0→MD → B̂(KS)
f̂→ Â(KS)→ 0.

• The middle column comes from Fact 3.12.
• By Fact 3.7, there is a duality B(Kv)

∗ ' H1(Kv, B̂). Under this isomorphism, the subgroup

coker(f(Kv))
∗ is identified with H1(Kv, B̂)[f ] using Remark 3.10. We take ψ′ to be the

dual of the composite map

H1(GS , B̂)[f̂ ]→
⊕
v∈S

H1(Kv, B̂)[f̂ ] '
⊕
v∈S

coker(f(Kv))
∗.

• Likewise, the map ψ′′ is the dual of the composite

coker(f̂(K))→
⊕
v∈S

coker(f̂(Kv)) '
⊕
v∈S

H1(Kv, A)[f ]
∗
.

These definitions make it clear that the middle column and rows are exact, and that the right and
left columns are complexes because the middle column is exact.

It is mostly elementary to check that this diagram commutes, except for checking the lower
squares commute, so we now address that point. We split up the square as⊕

v∈S
coker(f(Kv))

��

//
⊕
v∈S

H̃1(Kv,M)

��⊕
v∈S

H1(Kv, B̂)[f̂ ]∗

��

//
⊕
v∈S

H̃1(Kv,M
D)∗

��

H1(GS , B̂)[f̂ ]∗ // H1(GS ,M
D)∗

The bottom obviously commutes, as the vertical maps are just restriction. The fact that the top
commutes is the non-obvious compatibility of the duality pairing for abelian varieties with Tate
local duality (Remark 3.9!).
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For a finite complex of finite abelian groups, the Euler characteristic of the complex equals the
Euler characteristic of the cohomology. In particular, for an exact sequence of finite abelian groups
the Euler characteristic is 1. We apply this observation to various parts of the diagram:

• First and Second Row. We need to know that ker(ϕ′′) = ker(X(f)). This is proven
in [Mil06, Proposition I.6.5], and the content is to show that the natural map

H1(GS , A)→ H1(Gal(Kun
v /Kv), A)

for v 6∈ S is the zero map. More specifically, an element of H1(GS , A) corresponds to an
A-torsor X over Kun

v , so we must show X(Kv) 6= ∅; in other words, we claim that an
unramified torsor for an abelian variety over Kv with good reduction is necessarily trivial.
An argument using Néron models relying on the good reduction of A and Lang’s theorem
shows this; see [Mil06, Proposition I.3.8]. This argument is also implicit in [L3, §5].

We now apply the snake lemma to the first and second rows: after truncating, we obtain
an exact sequence

0→ ker(ϕ′)→ ker(ϕ)→ ker(ϕ′′)→ ker(ψ′)/ Im(ϕ′)→ 0.

All of the groups in this diagram are finite, so

# ker(ϕ′) ·# kerX(f)

# ker(ϕ) ·#(ker(ψ′)/ Im(ϕ′))
= 1

• First Column. A similar argument shows that kerX(f̂) = coker(ψ′)∗. Then using the dual-

ity between ker(X(f̂)) and coker(X(f)) (Fact 2.2), we see that coker(ψ′) = (ker(X(f̂))∗.
Computing the Euler characteristic of the complex and its cohomology gives that

#coker(f(K)) ·#H1(GS , B̂)[f̂ ]∏
v∈S #coker(f(Kv))

=
# ker(ϕ′)# ker(X(f̂))

# ker(ψ′)/ Im(ϕ′)
.

• Third Row. The row is exact, so #H1(GS ,M
D) = #coker(f̂(K)) ·#H1(GS , B̂)[f̂ ].

• Middle Column. By definition H0(GS ,M) = ker f(K), so if we truncate the middle column
at ker(ϕ) we obtain

1 =
# ker(f(K))∏

v∈S
# ker(f(Kv))

·

( ∏
v arch

#H0(Kv,M)

#H0
T (Kv,M)

)
· #H2(GS ,M

D)

# ker(ϕ)
.

The extra terms at archimedean places is due to using the Tate cohomology groupH0
T (Kv,M)

in the definition of P 0
S(K,M) whereas # ker f(Kv) = H0(Kv,M).

Multiply these four equalities with the obvious equality # ker f̂(K) = #H0(GS ,M
D) to get

∏
v∈S

h(f(Kv)) =
# kerX(f̂)

# kerX(f)
· h(f(K))

h(f̂(K))
· χ(GS ,M

D) ·
∏
v arch

#H0(Kv,M)

#H0
T (Kv,M)

.(4.1)

Voila, the last two terms cancel by the global Euler–Poincaré characteristic formula (Fact 3.16), so
this completes the proof of Proposition 4.1! �

Remark 4.2. The term # ker f̂(K) does not appear in the large diagram, but appears twice in

(4.1): once in χ(GS ,M
D) and once in h(f̂(K)).
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Appendix A. Relative Weil–Barsotti Formula and Applications

We want to show that for any scheme S and abelian A-scheme (A, e), there is a natural iso-
morphism between the group Ext1(A,Gm) of isomorphism classes of commutative extensions of
S-groups

(A.1) 1→ Gm → E → A→ 1

and the group Â(S) of isomorphism classes of pairs (L, i) consisting of a Gm-torsor L over A
(equivalently, a line bundle over A) equipped with a trivialization i of e∗(L) such that fiberwise
Ls ∈ Pic(As) is algebraically equivalent to zero (i.e., lies in the identity component of PicAs/k(s)).
By the Theorem of the Square, the latter is equivalent to saying that

m∗(Ls) = (p1)∗(Ls) + (p2)∗(Ls)

as Gm-torsors (equivalently as line bundles, then using ⊗ in place of the “diagonal pushout”
construction “+” for torsors) over As ×As; such an isomorphism is ambiguous up to a global unit
over As, which is to say an element of k(s)×, so it is unique upon demanding that it respect the
evident trivializations on both sides arising from is on e∗s(Ls).

To be precise, given (A.1) we can view E as a Gm-torsor over A, and the group law E ×E → E
over m : A×A→ A defines a map of Gm-torsors

E × E = (p1)∗(E) + (p2)∗(E)→ m∗(A)

over A×A, so an isomorphism (as for any map between torsors for any group). Moreover, e∗(E) =
ker(E → A) = Gm has an evident trivialization via the global section 1 over S, so the underlying

Gm-torsor E really is in Â(S). That defines a map

(A.2) Ext1(A,Gm)→ Â(S).

By construction this is clearly natural in A and compatible with base change morphisms in S.

Theorem A.1. The map (A.2) is an isomorphism of groups.

Proof. The description of the group law on Ext1 in terms of pushout/pullback makes it easy to

check that (A.2) is a homomorphism (e.g., consider the C̆ech 1-cocycle description of line bundles,

and use the injection Â(S)→ Pic(A)).
To prove injectivity, suppose we are given (A.1) and that E → A has a section t over S, so the

element t ◦ e ∈ E(S) lies over e, which is to say it belong to Gm(S). Applying to t the action by
the inverse element of Gm(S) brings us to a new t with the property that t : A → E is an S-map
carrying e to the identity 1 of E (same as the the identity of its S-subgroup Gm!). We claim that
now t is a homomorphism, so (A.1) is split as an exact sequence of S-groups (and hence is the
vanishing class in Ext1), as desired.

By the relative rigidity lemma [GIT, Prop. 6.1], since A is an abelian S-scheme it suffices to
check the homomorphism property on geometric fibers. But over an algebraically closed field it is
meaningful (e.g., by arguments as in Borel’s book on algebraic groups given in the affine case) to
form the “smooth closed algebraic subgroup generated” by a closed subvariety through the identity
in a given smooth group variety. The image of t(A) is proper, so the algebraic group it generates
inside E is proper and connected, hence an abelian variety, so the homomorphism property comes
down to classical rigidity considerations. This completes the proof that the homomorphism (A.2)
is injective. Note that this final step did really use a technique specific to working over fields; it
replaces the step where the proof in [Oor66, §18] appeals to the Weil–Barsotti theorem over fields.

There remains the most interesting part (as in the classical case), namely surjectivity: for (L, i) ∈
Â(S) (so i identifies e∗(L) with Gm), we must show that L admits an S-group structure making
the projection

q : L→ A
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an S-homomorphism and we must identify its kernel e∗(L) with Gm as S-groups recovering the given
trivialization i. For this we will proceed similarly to the classical case over fields. The “Mumford

morphism” φL : A→ Â between abelian S-schemes vanishes by rigidity since it vanishes on fibers
by the classical theorem (i.e., Theorem of the Square as noted above), so we have an isomorphism
(equivalently, a morphism!) of Gm-torsors

(p1)∗(L) + (p2)∗(L)→ m∗(L)

over A×A, and it is ambiguous by an element of Gm(A) = Gm(S), so we can uniquely choose this
isomorphism to respect the evident trivializations on both sides arising from i. But this is exactly
the data of an S-morphism

µ : L× L→ L

over m : A×A→ A. The uniqueness controlled by i-compatibility ensures that if we write down the
“associativity” diagram then it commutes! Hence, µ is an associative composition law. Likewise,
uniqueness controlled by i-compatibility ensures that the global section of e∗(L) defined by i is a
2-sided identity for this composition law (exercise!), and one sees that µ is commutative.

Finally, the equality φ[−1]∗(L) = φL which we check by rigidity and the classical theory on
geometric fibers gives an isomorphism of Gm-torsors

L−1 → [−1]∗(L)

which moreover is unique upon demanding i-compatibility. But L−1 is the pushout of the Gm-torsor
L → A along the inversion automorphism of Gm, which is to say that there is an isomorphism
of A-schemes L → L−1 compatible with Gm-actions intertwined through inversion on Gm. This
latter isomorphism is uniquely determined upon demanding i-compatibility, so composing gives an
A-isomorphism L→ [−1]∗(L), which is to say an isomorphism

inv : L→ L

over inversion on A, and by design it is i-compatible. Thus, the same kind of uniqueness consider-
ations resting on i-compatibility as above ensure that inv is a 2-sided inverse for µ relative to the
2-sided identity in e∗(L) arising from i.

We have now built a commutative S-group law on L over the S-group law on A, and its kernel
e∗(L) is identified with a commutative S-group law on Gm having identity section 1 (due to how
the identity of µ was built!). It is easy to check by hand that the only S-group law on the pointed
scheme (Gm, 1) over any ring is the usual one (a “rigidity” analogous to that of abelian schemes,
which is sufficient to prove over an artin local base since Gm is affine of finite presentation over
S; all is clear over the residue field, and then deduced over the artin local ring via deformation
theory of tori over rings such as in SGA3, and surely can also be done by bare hands via length
induction in the present circumstances). This gives the desired identification of the kernel with
Gm in such a way that the resulting translation-action of the kernel on L recovers the original
Gm-torsor structure on L (otherwise the class we just built in Ext1 wouldnt be hitting what we

expect in Â(S)!). �

An immediate consequence of Theorem A.1 is that the fppf sheaf E xt1(A,Gm) on the category

of S-schemes is represented by Â. Now focusing on sheaves on Sét, consider the local-to-global
spectral sequence for Ext:

Ei,j2 = Hi(S,E xtj(A,Gm))⇒ Exti+j(A,Gm).

The terms with j = 0 (i.e., the terms along the bottom edge) vanish since the functor H om(A,Gm)
on S-schemes given by T  Hom(AT ,Gm,T ) vanishes (i.e., there is no nonzero homomorphism from
an abelian scheme to a smooth relatively affine group scheme over any base scheme). Thus, we get
a natural homomorphism

Hi(S, Â) = Hi(S,E xt1(A,Gm))→ Exti+1(A,Gm).
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In particular, setting i = 1, we get a natural homomorphism

(A.3) H1(S, Â)→ Ext2(A,Gm) = HomD(Sét)(A,Gm[2])

where D(Sét) is the derived category of abelian sheaves on Sét.
We now apply this in the study of an abelian variety A over a number field K, to give one of the

constructions of the Cassels–Tate pairing

X(A)×X(Â)→ Q/Z.

The construction we describe will be rather abstract, but it is cohomologically rather clean (and
doesn’t involve any messing around with cocycles). The price to pay for cohomological elegance is
that many desirable properties of the pairing (such as its interaction with double duality and skew-
symmetric relative to polarizations) will not be apparent for this formulation of the constriction.

Let X := Spec(OK), and let U ⊂ X be any dense open whose complement contains the points
of bad reduction, so A extends to an abelian scheme A over U . Using the cohomological work
in [L4] (especially if K has real places), let X be the “compactification” of X via real places. Let
j : Uét → X ét be the natural map of étale sites; recall that by definition Hi

c(U,F ) := Hi(X, j!(F ))
for any abelian sheaf F on Uét, and class field theory gives canonical isomorphisms

H3
c(U,Gm) ' H3(X,Gm) = Q/Z.

In [L3, §5] there were several descriptions given for X(A), or rather for the slightly larger group
X(A)′ ⊂ H1(K,A) in which local triviality at the archimedean places is not imposed (so really

just the real places are ignored). The description of X(Â)′ provided by [L3, Prop. 5.4] yields the
description

(A.4) X(Â) = ker(H1(U, (A )∧)→
∏

x∈X−U

H1(Kx, Â))

in terms of the dual abelian scheme (A )∧ over U .
We will now give an alternative description, for X(A), in terms of H1

c(U,A ). It was explained
near the end of [L4, §5] that for any x ∈ X and i ≥ 1, Hi

x(X, j!(G )) is equal to Hi−1(KDx ,GK)
for any i ≥ 1. (If x is a finite point then KDx is the fraction field of the henselization of OX,x,

whereas if x is a real point then KDx is a copy of the field of real algebraic numbers.) Thus, the
local cohomology sequence on X for F := j!(A ) gives an exact sequence∏

x∈X−U

A(KDx)
δ→ H1

c(U,A )→ H1(U,A )→
∏

x∈X−U

H1(KDx , A)

(and the final map is identified with the natural restrictions). The natural map H1(KDx , A) →
H1(Kx, A) to cohomology over the local field Kx is injective: this says that A-torsors over KDx with
a Kx-point necessarily having a KDx-point, and that property follows from the real Nullstellensatz
for real x and from considerations with Néron models for unramified torsors when x is finite. Using
the A-analogue of (A.4) then yields an analogue of [L3, (5.5)] incorporating real places: a quotient
presentation ∏

x∈X−U

A(KDx)→ H1
c(U,A )→X(A)→ 0.

By (A.3), we have a natural pairing

H1
c(U,A )×H1(U, (A )∧)→ H1

c(U,A )×HomD(Uét)(A ,Gm[2])→ H3
c(U,Gm) = Q/Z,

where the finally arrow is defined via functoriality of H•c(U, ·) on the derived category. Restricting

to the subgroup X(Â) in the second variable, the resulting pairing composes back to the pairing
against A(KDx) in the first variable induced by the Q/Z-valued Tate local duality pairing for A

over Kx ⊃ KDx . Thus, the local triviality of classes in X(Â) thereby yields a bilinear pairing
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between X(A) and X(Â) valued in Q/Z; this is seen to be compatible with shrinking U by just
unraveling some definitions. The agreement of this construction with others is not at all obvious,

and the asymmetric manner in which it treats A and Â makes it unclear how this pairing interacts
with double duality for abelian varieties.
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