
CONTINUED FRACTIONS, PELL’S EQUATION, AND TRANSCENDENTAL

NUMBERS

JEREMY BOOHER

Continued fractions usually get short-changed at PROMYS, but they are interesting in their own
right and useful in other areas of number theory. For example, they given a way to write a prime
congruent to 1 modulo 4 as a sum of two squares. They can also be used to break RSA encryption
when the decryption key is too small. Our first goal will be to show that continued fractions are
“the best” approximations of real numbers in a way to be made precise later. Then we will look at
their connection to lines of irrational slope in the plane, Pell’s Equation, and their further role in
number theory.

1. Basic Properties

First, let’s establish notation. For β ∈ R, let β0 := β and define

ai := [βi] and βi+1 :=
1

βi − ai
.

The nth convergent to β is the fraction

[a0, a1, . . . , an] := a0 +
1

a1 + 1
...+ 1

an

.

The numerator and denominator, when this fraction is written in lowest terms, are denoted by pn
and qn.

By a simple induction, we have that

β = a0 +
1

a1 + 1
...+ 1

an−1+
1
βn

= [a0, a1, . . . , an−1, βn].

If at any point the remainder βi is an integer, this process stops. In this case we know that β is a
rational number. Likewise, it is clear that if β is rational then this process terminates. From now
on, we will usually assume that β is irrational so that this process does not terminate.

Our first observation is about which [a0, a1, . . . , an] are less than β.

Proposition 1. If n is even, [a0, a1, . . . , an] is less than β, otherwise it is greater.

Proof. The proof uses the following simple lemma.

Lemma 2. For any ai of length n, if an < a′n and if n is even then

[a0, a1, . . . , an] < [a0, a1, . . . , a
′
n].

If n is odd then the reverse inequality holds.

Proof. We use induction on n. For n = 0, a0 < a′0 is the desired conclusion. Otherwise, write

[a0, a1, . . . , an] = a0 +
1

[a1, . . . , an]
.
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Suppose n is even. By the inductive hypothesis, the denominator is less than [a1, . . . , a
′
n]. Thus

[a0, a1, . . . , an] < a0 +
1

[a1, . . . , a′n]
= [a0, a1, . . . , a

′
n].

If n is odd, the denominator is greater and the reverse inequality follows. �

We can now prove the Proposition. Note that

β = [a0, a1, . . . , βn]

and that βn > an (we can’t have equality since β is irrational by assumption). By the lemma, if n
is even [a0, a1, . . . , βn] > [a0, a1, . . . , an] and if n is odd [a0, a1, . . . , βn] < [a0, a1, . . . , an]. �

The next order of business is to derive the recursive formula for pn and qn. The following method
is not the most direct but will be useful later.

Definition 3. Define {a0} := a0 and {a0, a1} := a1a0 + 1. Then inductively define

{a0, a1, . . . , an} := {a0, a1, . . . , an−1}an + {a0, a1, . . . , an−2}.

The ai do not a priori need to arise from a continued fraction.

Proposition 4 (Euler). Let Sk be the set of all increasing sequences of length n+ 1− 2k obtained
by deleting m and m + 1 from {0, 1, . . . , n} k times in succession. With the convention that the
empty product is 1, define

lk(a0, a1, . . . , an) :=
∑

(b0,...,bn−2k)∈Sk

ab0ab1 . . . abn−2k
.

Then {a0, a1, . . . , an} =
∑

0≤k≤n+1 lk(a0, a1, . . . , an).

Proof. The proof proceeds by induction on n. For n = 0, {a0} = a0 and l0(a0) = a0. For n = 1,
{a0, a1} = a0a1 + 1. We know that l0(a0, a1) = a0a1 and l1(a0, a1) = 1, the empty product

In general, assume the assertion holds up to length n. Then {a0, a1, . . . , an} has length n + 1,
but by definition it is

{a0, a1, . . . , an−1}an + {a0, a1, . . . , an−2}.
By the inductive hypothesis, this equals

an

 ∑
0≤k≤n

lk(a0, . . . , an−1)

+

 ∑
0≤j≤n−1

lj(a0, . . . , an−2)

 .

The terms in the second sum are all products of ai (0 ≤ i ≤ n) where the last two terms (and
possibly more) are left out, while the terms in the first sum are all products of the ai with consecutive
pairs left out that including an. Every product of the ai’s arising by deleting multiple consecutive
terms arises through exactly one of these two ways. Thus we conclude

{a0, a1, . . . , an} =
∑

0≤k≤n+1

lk(a0, . . . , an) �

Example 5. Although this seems complicated, all of the hardness is in the notation. For the case
of n = 3, all this is asserting is that

{a0, a1, a2, a3} = a0a1a2a3 + a0a1 + a0a3 + a2a3 + 1

Every term in this sum is obtained by deleting zero, one, or two pairs of consecutive ai. If we look
at {a0, a1, a2, a3, a4}, when we remove pairs of consecutive terms we either remove a3 and a4 or
we don’t. If we do, then all the terms we are adding up are just terms in the sum for {a0, a1, a2}.
If we don’t, then a4 is in each of the terms and we can remove zero or more pairs of consecutive
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terms from a0, . . . , a3 and add the products up. By induction, this is a4{a0, a1, a2, a3}. Explicitly,
we have

{a0, a1, a2, a3, a4} = a4(a0a1a2a3 + a0a1 + a0a3 + a2a3 + 1) + a0a1a2 + a0 + a2.

This also has a combinatorial interpretation. {a0, a1, . . . , an} is the number of ways to tile a 1 by
n+ 1 strip with two kinds of tiles: 1 by 2 rectangles and 1 by 1 squares, where rectangles may not
overlap anything but squares may stack, with up to ai of them on the ith place on the strip.

Corollary 6. We have that {a0, a1, a2, . . . , an} = {an, an−1, . . . , a0}.
Proof. Note that the description in the Proposition depends only on which ai are consecutive, not
the actual ordering. Therefore the two expressions are equal. �

The next proposition will later be interpreted as a fact about determinants and about the dif-
ference between two fractions.

Proposition 7. For a0, . . . , an, we have

{a0, a1, . . . , an−1, an}{a1, . . . , an−1} − {a1, . . . , an−1, an}{a0, a1, . . . , an−1} = (−1)n+1.

Proof. The n = 0 and n = 1 cases are trivial. By induction, suppose it holds for n− 1. Then using
the definition of {a0, . . . , ai},

{a0, a1, . . . , an−1, an}{a1, . . . , an−1} − {a1, . . . , an−1, an}{a0, a1, . . . , an−1}
= (an{a0, a1, . . . , an−1}+ {a0, a1, . . . , an−2}) {a1, . . . , an−1}
− ({a1, . . . , an−1}an + {a1, . . . , an−2}) {a0, a1, . . . , an−1}

= {a0, a1, . . . , an−2}{a1, . . . , an−1} − {a1, . . . , an−2}{a0, a1, . . . , an−1}
= −(−1)n = (−1)n+1

by the inductive hypothesis. �

We can now prove the standard recursive formulas for pn and qn.

Proposition 8. Let β = [a0, a1, a2, . . .] be a continued fraction. The numerator and denomina-
tors of the nth convergent are {a0, a1, . . . , an} and {a1, a2, . . . , an}. Thus they can be calculated
recursively by the formulas

pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2.

Proof. As usual, the proof proceeds by induction. For n = 0 or n = 1, the convergents are a0 and
a0 + 1

a1
, the numerators are a0 and {a0, a1} = a0a1 + 1, and the denominators are 1 and a1. Now

assume this holds for the n−1th convergent of any continued fraction. In particular, we know that

[a1, a2, . . . , an] =
{a1, a2, . . . , an}
{a2, . . . , an}

since it is of length n while
pn
qn

= a0 +
1

[a1, a2, . . . , an]
by definition. Thus combining the fractions

gives

pn
qn

=
a0{a1, . . . , an}+ {a2, . . . , an}

{a1, . . . , an}

=
a0{an, an−1, . . . , a1}+ {an, an−1, . . . , a2}

{a1, . . . , an}
(Corollary 6)

=
{an, an−1, . . . , a0}
{a1, . . . , an}

(Definition)

=
{a0, a1, . . . , an}
{a1, . . . , an}

. (Corollary 6)
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To show these are in fact pn and qn, we need to know they are relatively prime. This follows from
Proposition 7. �

Finally, there is one more formula similar to Proposition 7 we will need.

Proposition 9. For any continued fraction,

pnqn−2 − qnpn−2 = (−1)n−1an.

Proof. This will follow from Proposition 7. For n ≥ 2, we calculate

pnqn−2 − qnpn−2 = (anpn−1 + pn−2)qn−2 − (anqn−1 + qn−2)pn−2

= an(pn−1qn−2 − pn−2qn−1)
= (−1)nan. �

2. Continued Fractions as Best Approximations

The previous algebraic work gives us plenty of information about the convergence of continued
fractions.

Theorem 10. The convergents pn
qn

to β actually converge to β. More precisely, we know∣∣∣∣β − pn
qn

∣∣∣∣ < 1

qnqn+1
.

Furthermore, the even convergents are less than β and the odd convergents are greater than β.

Proof. Rewriting Propositions 7 and 9 in terms of fractions, we have

pn
qn
− pn−1
qn−1

=
(−1)n−1

qnqn−1
and

pn
qn
− pn−2
qn−2

=
(−1)n−1an
qn−2qn

.

In particular, the second shows that the sequence p1
q1
, p3q3 ,

p5
q5
, . . . is a monotonic increasing sequence.

Likewise, p0q0 ,
p2
q2
, p4q4 , . . . is a monotonic decreasing sequence. This implies that the sequences converge

or diverge to ±∞ However, the first equation shows that the even and odd convergents become
arbitrarily close, hence the two series converge to the same thing. We know that the odd convergents
are greater than β and the even ones less because of Proposition 1, so the convergents converge to
β. Since consecutive convergents are on opposite sides of β,∣∣∣∣pnqn − β

∣∣∣∣ < ∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ =
1

qnqn+1
. �

Corollary 11. With the previous notation,∣∣∣∣pnqn − β
∣∣∣∣ < 1

q2n
.

Proof. By definition, qn+1 = anqn + qn−1 ≥ 1 · qn + qn−1 ≥ qn. �

Remark 12. Because qn+1 = anqn + qn−1 ≥ qn + qn−1, the denominators grow at least as fast as
the Fibonacci numbers, so qn is exponential in n. Calculating just a few convergents can provide
very good approximations of irrational numbers.

We can say something stronger about one of every two convergents.

Proposition 13. At least one of every pair of consecutive convergents satisfies∣∣∣∣pnqn − β
∣∣∣∣ < 1

2q2n
.
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Proof. Suppose neither of pnqn and pn+1

qn+1
satisfy this. Then because β lies between them we have that∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ =

∣∣∣∣pnqn − β
∣∣∣∣+

∣∣∣∣pn+1

qn+1
− β

∣∣∣∣ > 2

√∣∣∣∣(pnqn − β)(
pn+1

qn+1
− β)

∣∣∣∣
by the arithmetic-geometric mean inequality. This is a strict inequality because pn

qn
−β and pn+1

qn+1
−β

cannot be equal as β is irrational. By our assumption we have∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ = 2

√∣∣∣∣(pnqn − β)(
pn+1

qn+1
− β)

∣∣∣∣ ≥ 2

√
1

2q2n

1

2q2n+1

=
1

qnqn+1
.

This is a contradiction with Proposition 7, which says∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ =
1

qnqn+1
. �

Infinitely many convergents also exist for which we can replace the 2 with a
√

5. The
√

5 is

optimal, as can be seen by looking at −1+
√
5

2 . But excluding this number, 2
√

2 works. For more
details, see Hardy and Wright.

It is also possibly so put a limit on how good an approximation a convergent can be. As always,
remember that this is for irrational numbers only.

Proposition 14. For any convergent pn
qn

to β, one has that∣∣∣∣pnqn − β
∣∣∣∣ > 1

qn(qn+1 + qn)

Proof. Since the odd and even convergents form monotonic sequences, pn+2

qn+2
is closer to β than pn

qn
is. Thus ∣∣∣∣pnqn − β

∣∣∣∣ > ∣∣∣∣pnqn − pn+2

qn+2

∣∣∣∣ =
an+2

qnqn+2
.

But qn+2 = an+2qn+1 + qn, so

an+2

qn+2
>

1

qn+1 + qn/an+2
>

1

qn+1 + qn

so we conclude ∣∣∣∣pnqn − β
∣∣∣∣ > 1

qn(qn+1 + qn)
. �

The next step is to investigate in what sense continued fractions are the best approximations to
irrational numbers. There are several different ways to measure this. The first is simply to look at
p

q
− β versus 1

q2
, as suggested by the previous propositions.

Theorem 15. Suppose |p
q
− β| < 1

2q2
. Then p

q is a convergent to β.

The proof of this will rely on a different notion of closeness that is motivated by viewing irrational
numbers as slopes of lines and continued fractions as lattice points close to the line. This will be
discussed in the next section. For now, we will show the following:

Proposition 16. Suppose |p− qβ| ≤ |pn − qnβ| and 0 < q < qn+1. Then q = qn and p = pn.

Proof. The key fact is that the matrix (
pn pn+1

qn qn+1

)
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has determinant ±1 (Proposition 7), so there are integer solutions (u, v) to the system of equations
p = upn + vpn+1 and q = uqn + vqn+1. Note that uv ≤ 0: if u and v were of the same sign and
nonzero, then |q| > |qn+1| which contradicts our hypothesis. Now write

|p− qβ| = |u(pn − βqn) + v(pn+1 − βqn+1)| .
Since consecutive convergents lie on opposite sides of β and uv ≤ 0, u(pn−βqn) and v(pn+1−βqn+1)
have the same sign, or one is zero. This means

|p− qβ| = |u(pn − βqn)|+ |v(pn+1 − βqn+1)| .
For this to be less than |pn − qnβ|, we must have either |u| = 1 and v = 0 or have that u = 0. In
the latter case, q is a multiple of qn+1, a contradiction. If the former, then since q is positive u
must be as well, so q = uqn + vqn+1 = qn and p = upn + vpn+1 = pn and we are done. �

With this, we can prove Theorem 15.

Proof. Suppose |p
q
− β| < 1

2q2
. If p and q are not relatively prime, say p = dp′ and q = dq′ then∣∣∣∣p′q′ − β

∣∣∣∣ < 1

2d2(q′)2
≤ 1

2(q′)2

so we may assume p and q are relatively prime. We may also assume that q is positive by possibly
changing signs. If p

q is not a convergent, we can pick n so that qn < q < qn+1. In the case that

|p− qβ| ≤ |pn − qnβ|
then by the previous proposition p = pn and q = qn. Thus we may assume that

|p− qβ| ≥ |pn − qnβ| and so |pn − qnβ| <
1

2q
.

Now we can calculate∣∣∣∣pq − pn
qn

∣∣∣∣ ≤ ∣∣∣∣pq − β
∣∣∣∣+

∣∣∣∣pnqn − β
∣∣∣∣ < 1

2qnq
+

1

2q2
≤ 1

2qnq
+

1

2qqn
=

1

qqn
.

However, ∣∣∣∣pq − pn
qn

∣∣∣∣ =
|pqn − qpn|

qqn
and since the numerator is either 0 or a positive integer it must be zero which implies that p

q is a

convergent to β. �

This justifies the informal contention that convergents are the best approximation to irrational
numbers. However, there can be other fractions which nevertheless are very good approximations
as well if the meaning of “very good” is changed slightly. For example, there may be other fractions
that satisfy ∣∣∣∣pq − β

∣∣∣∣ < 1

2q2n
and qn < q < qn+1.

For example, 8
3 and 37

14 are consecutive convergents to
√

7. However, 13
5 satisfies∣∣∣∣13

5
−
√

7

∣∣∣∣ < 1

2 · 32
.

It turns out that 13
5 arises as the term between two previous convergents 8

3 and 5
2 in a Farey

sequence. It is their mediant and because it is a good approximation is called a semi-convergent.
Note it is not as good an approximation as a convergent relative to the size of its denominator since∣∣∣∣13

5
−
√

7

∣∣∣∣ > 1

2 · 52
.
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3. Continued Fractions, Lines of Irrational Slope, and Lattice Points

A geometric way to make sense of continued fractions is to view β as the line y = βx passing
through the origin and represent rational numbers p

q as the lattice point (q, p). The distance between

a point (x0, y0) and the line ax+ by + c = 0 is

|ax0 + by0 + c|√
a2 + b2

.

Thus the distance between (q, p) and y = βx is |βq−p|√
β2+1

. Up to a scaling factor, this is the definition

of distance that appeared in Proposition 16. Reinterpreting it in the language of lines and lattice
points, we see:

Theorem 17. Let y = βx be a line with irrational slope and pn
qn

be the nth convergent to β. If

(q, p) is closer to the line than (qn, pn) and q < qn+1, then q = qn and p = pn.

The key step in the proof, writing p = upn + vpn+1 and q = uqn + vqn+1, is just expressing the
vector (p, q) as a linear combination of the two nearest convergents (pn, qn) and (pn+1, qn+1) which
are generators for the standard lattice.

Interpreting other algebraic facts in this context, we see that the convergents are alternatingly
above and below the line. Furthermore, the estimates on how close convergents are to β give
estimates on how well the line px− qy = 0 approximates the slope of y − βx = 0.

It is possible to prove all of the algebraic statements in the first section geometrically using this
picture. See for example “An Introduction to Number Theory” by Harold Stark.

4. Pell’s Equation

Continued fractions provide a way to analyze solutions to Pell’s equation and its relatives x2 −
dy2 = r when r is small compared to d. All integral solutions come from convergents to

√
d.

Theorem 18. Let d be a positive square free integer and r ∈ Z satisfy r2 + |r| ≤ d. Suppose x and

y are positive integers that satisfy x2 − dy2 = r. Then x
y is a convergent to

√
d.

Proof. First, a bit of algebra. Since y ≥ 1, we have that r
y2

+ d is minimized when r is negative

and y = 1. Thus we have
√
d

|r|
+

√
r
y2

+ d

|r|
≥
√
d+

√
d− |r|
|r|

.

By hypothesis,
√
d > |r| and d− |r| ≥ |r|2. Thus we have

√
d

|r|
+

√
r
y2

+ d

|r|
> 2.

Now since (x−
√
dy)(x+

√
dy) = r we know that∣∣∣∣xy −√d
∣∣∣∣ =

|r|
|y(x+

√
dy)|

=
|r|

y2(
√
d+

√
r/y2 + d)

<
1

2y2

by the previous algebraic computation. By Theorem 15, x
y is a convergent to

√
d. �

Since all small values of x2 − dy2 arise from convergents, if x2 − dy2 = 1 is to have a solution it
must arise from a convergent to

√
d.

Theorem 19. Pell’s equation x2−dy2 = 1 has a non-trivial solution for any square-free integer d.
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Proof. Any convergent p
q to

√
d satisfies∣∣∣∣pq +

√
d

∣∣∣∣ < 1 + 2
√
d

since p
q can be at most one away from

√
d. Combining this with Proposition 11, we see that

∣∣p2 − dq2∣∣ < 1 + 2
√
d

q2
· q2 = 1 + 2

√
d

There are an infinite number of convergents since
√
d is irrational, and only a finite number of choices

for p2 − dq2, so there must be an r with an infinite number of convergents satisfying p2 − dq2 = r.
There are only a finite number of choices for (p, q) to reduce to modulo r, and an infinite number
of convergents satisfying the equation, so there two distinct convergents (p0, q0) and (p1, q1) with

p0 ≡ p1 mod r and q0 ≡ q1 mod r and p20 − dq20 = p21 − dq21 = r.

Then looking at the ratio

u =
p0 + q0

√
d

p1 + q1
√
d

=
(p0 + q0

√
d)(p1 − q1

√
d)

r

=
p0p1 − dq0q1 +

√
d(p1q0 − q1p0)

r
.

Since p0p1 − dq0q1 ≡ p20 − dq20 ≡ 0 mod r and p1q0 − q1p0 ≡ 0 mod r, the ratio u is of the form

p+ q
√
d with p, q ∈ Z. Since the norm from Q(

√
d) to Z is multiplicative, u has norm 1. Therefore

Pell’s equation has a non-trivial solution.1 �

Now that we have one non-trivial solution, we can determine all solutions to the equations
x2 − dy2 = 1. This is easiest to understand in terms of the arithmetic of Q(

√
d). The key fact is

that the norm of x+y
√
d is x2−dy2 and is a multiplicative function Q(

√
d)→ Q. The units in the

ring of integers are elements with norm ±1, so we will first investigate solutions to x2 − dy2 = ±1.
We first define a fundamental solution.

Definition 20. A solution (x, y) to Pell’s equation x2 − dy2 = ±1 is a fundamental solution if x
and y are positive, x > 1, and there is no solution (x′, y′) with x′ and y′ positive and x > x′ > 1.

A fundamental solution always exists since given any non-trivial solution we can negate x and y
and obtain a solution with x and y positive; there are a finite number of smaller positive values of
x, so there is a smallest.

Theorem 21. Let d be a square free integer. Let (x, y) be a fundamental solution to x2−dy2 = ±1.
For solution (a, b) to this equation there is an n ∈ Z and ε = ±1 such that

a+ b
√
d = ε(x+ y

√
d)n.

Corollary 22. Let d ≡ 2, 3 mod 4 be square-free and positive, and let K = Q(
√
d). The group of

units in OK is isomorphic Z/2Z× Z.

This is Dirichlet’s unit theorem for a real quadratic field.

Corollary 23. Let d be a square free integer. Let (x, y) be a fundamental solution to x2−dy2 = 1.
For solution (a, b) to this equation there is an n ∈ Z and ε = ±1 such that

a+ b
√
d = ε(x+ y

√
d)n.

1An alternate proof will be given using Proposition 33 which is computationally helpful.
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This follows from the main theorem since if the fundamental unit has norm −1, its square has
norm 1 and generates all other solutions with norms 1.

Proof. To prove the theorem, suppose a + b
√
d is not of the form ±(x + y

√
d)m. Then pick the

appropriate sign ε and integer m so that

(x+ y
√
d)m < ε(a+ b

√
d) < (x+ y

√
d)m+1.

But then since

1 < ε(a+ b
√
d)(x− y

√
d)m < (x+ y

√
d)

we can obtain a contradiction to (x, y) being a fundamental solution. Letting x′ + y′
√
d := ε(a +

b
√
d)(x− y

√
d)m, since the norm is multiplicative it follows that (x′)2− d(y′)2 = ±1. Choose signs

so that x′ and y′ are positive. Then since y2 = x2±1
d , we have

1 < x′ + y′
√
d = x′ +

√
x′2 ± 1 < x+

√
x2 ± 1.

Since x′ and x are positive integers and f(x) = x+
√
x2 ± 1 is an increasing function of x on this

range, x′ < x. This contradicts the assumption that (x, y) was a fundamental solution. �

5. Periodic Continued Fractions, Quadratic Irrationals, and the Super Magic Box

By a quadratic irrational, I mean a real solution α to a quadratic equation ax2+bx+c = 0 where
a, b, c ∈ Z: an element of Q(

√
d). From experience, we know that all quadratic irrationals seems

to have periodic continued fractions in the sense that there exist N and k such that an = an+k for
n > N . Conversely, all periodic continued fractions seem to arise from quadratic irrationals.

By analogy with repeating decimals, a bar indicates repeating values of ai.

Theorem 24 (Euler). Let β = [a0, a1, . . . , an−1, an, . . . , an+k−1] be a periodic continued fraction.
Then β is a quadratic irrational.

Proof. First, let βn = [an, . . . , an+k−1], so

β = [a0, a1, . . . , an−1, βn] =
βnpn−1 + pn−2
βnqn−1 + qn−1

.

Since Q(
√
d) is a field, it is clear that β is a quadratic irrational if βn is. But βn has a purely

periodic continued fraction, so

βn = [an, an+1, . . . , an+k−1] = [an, an+1, . . . , an+k−1, βn] =
{an, . . . , an+k−1}βn + {an, . . . , an+k−2}
{an+1, . . . , an+k−1}βn + {an+1, . . . , an+k−2}

.

In particular, we see that βn satisfies

{an+1, . . . , an+k−1}β2n + ({an+1, . . . , an+k−2} − {an, . . . , an+k−1})βn − {an, . . . , an+k−2} = 0

which shows βn and hence β are quadratic irrationals. �

Our next goal is to prove the converse.

Theorem 25 (Lagrange). If β > 1 is a quadratic irrational, then β has a periodic continued
fraction.

To do this, the first step is to introduce the notion of the discriminant of a quadratic irrational,
and show that all of the remainders βn have the same discriminant as β. Next we define what
it means for a quadratic irrational to be reduced, and show there are a finite number of reduced
quadratic irrationals with a specified discriminant. The last step is to show that there is an N such
that the remainders βn are reduced for n > N .
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Definition 26. Let β be a quadratic irrational which satisfies

Aβ2 +Bβ + C = 0

where A,B,C are integers with no common factors and A > 0. The discriminant is defined to be
B2 − 4AC.

Definition 27. For a quadratic irrational β = b+
√
D

a , define the conjugate to be β′ := b−
√
D

a . A

quadratic irrational β is reduced if β > 1 and −1β′ > 1.

Proposition 28. Let β be a quadratic irrational with discriminant D. Then the remainders βn
also have discriminant D.

Proof. It suffices to prove that β1 has discriminant D and then use induction. Let β = a0 + 1
β1

and

let β satisfy

Aβ2 +Bβ + C = 0

with A,B,C relatively prime integers. Then substituting and clearing the denominator shows

A(a0β1 + 1)2 +B(a0β
2
1 + β1) + Cβ21 = 0.

Expanding gives

(Aa20 +Ba0 + C)β21 + (B + 2a0A)β1 +A = 0.

Note that A, B + 2a0A, and c + Ba0 + Aa20 are relatively prime since A, B, and C are. We may
multiply by −1 without changing the discriminant, so we may as well assume the coefficient of β21
is positive. But the discriminant of β1 is just

(B + 2a0A)2 − 4A(Aa20 +Ba0 +C) = B2 + 4a0AB + 4a20A
2 − 4a20A

2 − 4a0AB − 4AC = B2 − 4AC

which is D by definition. �

Proposition 29. There are only finitely many reduced quadratic irrationals of discriminant D.

Proof. Let β have discriminant D and satisfy the polynomial Ax2 + Bx + C = 0 with A > 0 and
A,B,C relatively prime integers. In other words,

β =
−B +

√
D

2A
and β′ =

−B −
√
D

2A
.

Since it is reduced, β > 1 and −1
β′ > 1, so we know that 0 > β′ > −1. In particular, this means

β + β′ = −B
C > 0, so B must be negative. Since β′ < 0, and A > 0,

−B −
√
D

A
< 0 =⇒ B > −

√
D

which implies there only a finite number of choices for B. Furthermore,

β =
−B +

√
D

2A
> 1 =⇒ 2A <

√
D +

√
D

so there is an upper bound on A. But the condition

β′ =
−B −

√
D

2A
> −1 =⇒ −2A < −

√
D

give a lower bound on A. Thus there are finite number of choices for A as well. Since D, A, and B
determine C, there are a finite number of reduced quadratic irrationals with discriminant D. �

Proposition 30. For each β > 1, there exists an N such that βn is reduced when n > N .
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Proof. All of the remainders βn are greater than 1, since βn = 1
βn−1−[βn−1]

. The hard part is getting

an expression for −1
β′n+1

involving convergents.

Starting with the fact that

β = [a0, . . . , an, βn+1] =
pnβn+1 + pn−1
qnβn+1 + qn−1

=

(
pn pn−1
qn qn−1

)
·
(
βn+1

1

)
and conjugating gives that

β′ =
pnβ

′
n+1 + pn−1

qnβ′n+1 + qn−1
=

(
pn pn−1
qn qn−1

)
·
(
β′n+1

1

)
.

Inverting the matrix gives that

β′n+1 =
qn−1β

′ − pn−1
−qnβ′ + pn

and hence that
−1

β′n+1

=
(pn − qnβ′)qn−1

(pn−1 − β′qn−1)qn−1
.

The numerator can be rewritten as

(pn − qnβ′)qn−1 = qn(pn−1 − qn−1β′) + (pnqn−1 − qnpn−1) = qn(pn−1 − qn−1β′) + (−1)n

using Proposition 7. Then

(1)
−1

β′n+1

− 1 =
1

qn−1

(
qn − qn−1 +

(−1)n

(pn−1

qn−1
− β′)qn−1

)
.

As n goes to infinity in (1), qn − qn−1 is always a positive integer. Since pn−1

qn−1
approaches β and

β 6= β′, the denominator (pn−1

qn−1
− β′)qn−1 goes to infinity. Thus for large n, the fraction is less than

1 so the right side of (1) is positive. This implies for large n

− 1

β′n+1

− 1 > 0

and hence that β′n+1 is reduced for large n. �

Theorem 25 is now easy to prove.

Proof. If β > 1 has discriminant D, then there are only a finite number of reduced quadratic
irrationals of discriminant D. All of the remainders βn have that discriminant, and there is an N
such that for n > N βn is reduced. There are a finite number of choices for βn, so there are k and
n such that βn = βn+k. But then

β = [a0, a1, . . . , an−1, an, . . . , an+k−1]

which shows that β has a periodic continued fraction. �

We can also say something about when continued fractions begin to be periodic.

Theorem 31 (Galois). Let β be a quadratic irrational. β is a purely periodic continued fraction if
and only if β is reduced.

Proof. Suppose β is reduced. This implies that βn is reduced for all n. By induction, it suffices to
show it for β1 = 1

β−[β] . Since 1 > β − [β] > 0, β1 > 1. Since β′1 = 1
β′−[β] and 0 > β′ > −1, 0 > β′1.

Since [β] ≥ 1, β′1 > −1. Therefore all of the βn are reduced.
Now, suppose βn+k = βn. I will show that βn+k−1 = βn−1 using the fact that all of the remainders

are reduced. By definition,

βn =
1

βn−1 − an−1
and βn+k =

1

βn+k−1 − an+k−1
.
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Conjugating this and rearranging gives that

− 1

β′n
= an−1 − β′n−1 and − 1

β′n+k
= an+k−1 − β′n+k−1.

Since β′n−1 and β′n+k−1 are between −1 and 0, an−1 = [− 1
β′n

] = [− 1
β′n+k

] = an+k−1. Thus by

induction we must have that β0 = βn so β is purely periodic.
Conversely, suppose a continued fraction is purely periodic. Then since the remainders are

reduced for sufficiently large n, β = βk = β2k = . . . is reduced. �

An 0 3 1 2 1 3
Cn 1 4 3 3 4 1
an 3 1 1 1 1 6
pn 0 1 3 4 7 11 18 119
qn 1 0 1 1 2 3 5 33

p2n − 13q2n -4 3 -3 4 -1 4

Table 1. Super Magic Box for
√

13

5.1. Super Magic Box for
√
d. The super magic box is an efficient computational device for

computing the continued fraction of
√
d for a square-free integer d. It is no more and no less than

the standard continued fraction method with the algebra required to clear denominators replaced
by simpler computational rules. Here is the standard computation to find

√
13’s continued fraction

to compare with the super magic box. Note that βi = Ai+
√
D

Ci
.

√
3 = 3 + (

√
13− 3)

β1 =
3 +
√

13

4
= 1 +

√
13− 1

4

β2 =
1 +
√

13

3
= 1 +

√
13− 2

3

β3 =
2 +
√

13

3
= 1 +

√
13− 1

3

β4 =
1 +
√

13

4
= 1 +

√
13− 3

4

β5 =
3 +
√

13

1
= 6 +

√
13− 1

4
√

13 = [3, 1, 1, 1, 1, 6]

There are many patterns visible in the super magic box. Here are few of them.

Proposition 32. Let
√
d have continued fraction [a0, a1, . . . , an]. Then an = 2a0.

Proof. Since 1√
d−[
√
d]

is a reduced continued fraction, it is purely periodic, so
√
d is in fact of the form

[a0, a1, . . . , an]. Similarly,
√
d + a0 has continued fraction [2a0, a1, . . . , an]. However,

√
d + a0 > 1

and −1 < a0 −
√
d < 0 so a0 +

√
d is a reduced continued fraction and hence is purely periodic by

Theorem 31. Thus an = 2a0. �

Proposition 33. With the notation as in the super magic box,

p2n − dq2n = (−1)n+1Cn+1 and pnpn−1 − qnqn−1d = (−1)nAn+1.
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Proof. This is proven by induction on n for both equalities simultaneously. For n = 0, they can be
checked directly. In general, first calculate

pnpn+1 − qnqn+1d = an+1p
2
n + pn−1pn − dan+1q

2
n − dqn−1qn

= (−1)n+1an+1Cn+1 + (−1)nAn+1

using the inductive hypothesis. But An+2 is calculated in the super magic box by the formula
An+2 = an+1Cn+1 −An+1. Thus the above is just (−1)n+1An+2. Next calculate

p2n+1 − dq2n+1 = (an+1pn + pn−1)
2 − d(an+1qn + qn−1)

2

= a2n+1(p
2
n − dq2n) + (p2n−1 − dq2n−1) + 2an+1(pnpn−1 − dqnqn−1)

= (−1)n+1a2n+1Cn+1 + (−1)nCn + 2an+1(−1)nAn+1

using the inductive hypotheses. However, by definition of Cn+2, Cn+1 and An+2,

Cn+2 =
d−A2

n+2

Cn+1
=
d−A2

n+1 + 2an+1Cn+1An+1 − a2n+1C
2
n+1

Cn+1

=
Cn+1Cn
Cn+1

+ 2an+1An+1 − a2n+1Cn+1

= Cn + 2an+1An+1 − a2n+1Cn+1.

Substituting we get the desired result

p2n+1 − dq2n+1 = (−1)nCn+2. �

This explains why two rows of the super magic box agree up to some signs. It also provides an al-
ternate way to analyze Pell’s equation. Suppose the continued fraction for β =

√
d = [a0, a1, . . . , an].

Since βn − an = β0 − a0, using the notation of the super magic box we have that

An − anCn +
√
d

Cn
=
√
d− a0.

Since 1 and
√
d are linearly independent over the rationals, we have that Cn = 1. Then Proposi-

tion 33 implies that p2n−1−dq2n−1 = (−1)n. Furthermore, whenever a convergent p2k−dq2k = ±1, we

must have that Ck = 1. But then Ak+
√
d

Ck
− ak =

√
d− [
√
d] = 1

β1
, which shows that k is a multiple

of the period of
√
d. Thus the super magic box shows that there are solutions to Pell’s equation

for any d. The sign of the fundamental solution is determined by the parity of the length of the
period for

√
d. Furthermore, by looking at the p2i − dq2i over the first period (if the length is even)

or the first two periods (if the length is odd) and using Theorem 18 will let us find all r that satisfy
r2 + |r| ≤ d for which x2 − dy2 = r has a non-trivial integral solution.

6. Other Applications of Continued Fractions

Continued fractions crop up in many areas of number theory besides the standard application
to Pell’s equation. They can be used to break RSA encryption if the decryption key is too small
and to prove the two squares theorem.

6.1. RSA Encryption. In RSA encryption, Bob picks two large primes p and q that satisfy
p < q < 2p, and let n = pq. This should be the case when doing cryptography, since there are
specialized factoring algorithms that can exploit when n is a product or primes of significantly
different magnitude. Bob picks encryption and decryption keys e and d that satisfy e = d−1

mod φ(n) using his factorization of n. Bob publishes n and e, but keeps d, p, and q secret. To
encrypt a message M , Alice encodes it as a number modulo n and gives Bob C = M e mod n. Bob
calculates Cd = M ed = M mod n (Euler’s theorem) to decrypt the message. There is no known
way to recover the message in general without factoring n, and no known way to factor n efficiently.
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However, if by chance 3d < n
1
4 , an adversary using knowledge of e and n can find d. Let k = ed−1

φ(n) .

Since e < φ(n), k < d. Since q <
√
pq and p <

√
2pq by hypothesis, p+ q < 3

√
n. Thus∣∣∣∣ en − k

d

∣∣∣∣ ≤ |kφ(n) + 1− nk|
nd

=
k(p+ q − 1) + 1

nd
≤ 3k

d
√
n
<

1

3d2
.

This inequality implies that k
d is a convergent to e

n by Theorem 15. Using the publicly available e
and n, an adversary can use the Euclidean algorithm to find all the convergents with denominator
less than n in time poly-logarithmic in n. For each convergent, use its numerator and denominator
as a guess for k and d, and calculate what φ(n) should be. Since p and q satisfy the quadratic
x2 − (n− φ(n) + 1)x+ n, the correct guess of φ(n) will give the factorization of n.

6.2. Sums of Two Squares. Another classical question in number theory is which positive primes
are sums of two squares. It is easy to see by reducing modulo 4 that if p ≡ 3 mod 4 it cannot be
the sum of two squares. Using continued fractions, we can show that p ≡ 1 mod 4 then p can be
written as a sum of two squares.

The idea is to look at fractions of the form p
q where 2 ≤ q ≤ p−1

2 . There are two ways to write

the continued fraction for a rational number: [a0, . . . , an] and [a0, . . . , an−1, an − 1, 1]. Always use
the one with an 6= 1, which is the one that comes from the Euclidean algorithm. Let the continued
fraction of p

q be [a0, a1, . . . , an]. Note that a0 ≥ 2 since p
q ≥ 2, and by our convention an ≥ 2. Now

consider the continued fraction [an, an−1, . . . , a0]. It has numerator p since {an, an−1, . . . , a0} =
{a0, a1, . . . , an} = p. Its denominator is an integer q′ = {an−1, . . . , a0}. Note that because an ≥ 2,
p
q′ ≥ 2 so q′ < p−1

2 . Also, q 6= 1 since a0 6= 1. Thus [an, . . . , a0] = p
q′ is another fraction of the same

form as p
q . Obviously if we reverse the continued fraction of p

q′ we end up back at p
q .

Since p ≡ 1 mod 4, there are p−1
2 −1 such fractions, an odd number. Since they are paired up by

reversing the fraction, there must be a q such that p
q = [a0, a1, . . . , an−1, an] = [an, an−1, . . . , a1, a0]

so ai = an−i for all 0 ≤ i ≤ n. Now by Proposition 7,

p · {a1, . . . , an−1}+ {a1, . . . , an}{a0, a1, . . . , an−1} = (−1)n =⇒ p | {a0, a1, . . . , an−1}2 + (−1)n−1

and thus n is odd because x2 + (−1)n−1 = 1 mod 4 if and only if (−1)n−1 = 1.
Next, note that for 0 ≤ m < n we know

{a0, . . . , , an} = {a0, a1, . . . , am}{am+1, . . . , an}+ {a0, . . . , am−1}{am+2, . . . , an}

by Proposition 4 (the first term is the terms of the sum that don’t remove the pair am, am+1, the
second are those terms that do). In our case, since n is odd we can take m = n−1

2 and exploit the
symmetry, getting

p = {a0, . . . , , an} = {a0, . . . , a(n−1)/2}2 + {a0, . . . , a(n−3)/2}2.

Thus if p ≡ 1 mod 4, p is a sum of two squares.
Although this seems to give an explicit formula for the squares, it is not computationally very

nice. To use it, we would first need to search through the continued fractions of all fractions of the
form p

q with 2 ≤ q ≤ p−1
2 until we found a symmetric one, which without further information would

be computationally expensive. However, note that the denominator q = {a0, a1, . . . , an−1} satisfies
{a0, a1, . . . , an−1}2 ≡ −1 mod p. If we could efficiently calculate a square root of −1 modulo
p, we could find the two possible values for q and then use the Euclidean algorithm to compute
the appropriate convergents. There are general ways to do this (for example the Tonelli-Shanks
algorithm), but for −1 it is very easy. Given a quadratic non-residue a, chosen by checking random

integers using quadratic reciprocity, Euler’s criteria says that a
p−1
2 ≡ −1 mod p so a

p−1
4 is a square

root of −1. Calculating ±a
p−1
4 mod p by repeated squaring gives the two possible values of q.
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6.3. Another Approach to the Sum of 2 Squares. There is another approach to proving that
primes congruent to one modulo four are a sum of two square using the fact that continued fractions
are good approximations. Here is the key lemma, which is a slight restatement of Theorem 10.

Lemma 34. For any β, not necessarily irrational, and any positive integer n, there exists a fraction
a
b in lowest terms so 0 < b ≤ n and ∣∣∣β − a

b

∣∣∣ < 1

b(n+ 1)
.

Proof. If β is irrational, there are infinitely many convergents so we may pick m so that the
convergent pm

qm
satisfies qm ≤ n < qm+1. Then by Theorem 10∣∣∣∣β − pm

qm

∣∣∣∣ < 1

qmqm+1
≤ 1

qm(n+ 1)
.

If β is rational, the above will work unless n is greater than all of the qm. In that case, let a
b = β. �

Now, it p is a prime congruent to one modulo four, then there is an integer y such that y2 = −1
mod p. Let n = [

√
p]. Pick a fraction a

b with b ≤ [
√
p] so that∣∣∣∣−yp − a

b

∣∣∣∣ < 1

([
√
p] + 1)b

<
1
√
pb
.

But we also have that ∣∣∣∣yp +
a

b

∣∣∣∣ =

∣∣∣∣yb+ ap

bp

∣∣∣∣ =
1
√
pb

|yb+ ap|
√
p

<
1
√
pb

which implies that c := yb+ ap satisfies |c| < √p. But then

0 < b2 + c2 < 2p and b2 + c2 ≡ b2 + y2b2 ≡ 0 mod p

which implies b2 + c2 = p. Thus p is a sum of two squares.

6.4. Recognizing Rational Numbers. Continued fractions also give a way to recognize decimal
approximations of rational numbers. Since a rational number has a finite continued fraction, to
check whether a given decimal approximation probably comes from a rational number, run the
continued fraction algorithm on the decimal approximation. If the decimal is approximating a
rational, when the continued fraction algorithm should have terminated after the nth step, there
will instead be a very tiny error between [a0, a1, . . . , an] and the decimal approximation. This will
result in a huge value for the an+1. Looking for huge ai provides a way to find possible rational
numbers that the decimal would be approximating.

For example, a simple calculation shows that
1003

957
= [1, 20, 1, 4, 9]. Approximating the fraction

to 100 binary digits gives
1.0480668756530825496342737722

Changing the last digit to a 3 and running the continued fraction algorithm (with a computer, of
course) gives [1, 20, 1, 4, 9, 10789993838034437479169], so we can identify it as the fraction 1003

957 . It
is amusing that the fraction is identified although the decimal expansion has not started repeating.


