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Abstract. For a representation over a finite field of characteristic p of the absolute Galois group
of the rationals, we study the existence of a lift to characteristic zero that is geometric in the sense
of the Fontaine-Mazur conjecture. For two-dimensional representations, Ramakrishna proved that
under technical assumptions odd representations admit geometric lifts. We generalize this to higher
dimensional orthogonal and symplectic representations. The key innovation is the definition and
study of a deformation condition at primes where the representation is ramified generalizing the
minimally ramified deformation introduced for GLn by Clozel, Harris, and Taylor. This requires
an understanding of nilpotent orbits and centralizers of nilpotent elements in the relative situation,
not just over fields.
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1. Introduction

Before the proof by Khare and Winterberger [KW09a] [KW09b] that irreducible odd represen-
tations

ρ : Gal(Q/Q)→ GL2(Fp)

are modular, the lifting result of [Ram02] together with the Fontaine-Mazur conjecture provided
evidence for Serre’s conjecture. Ramakrishna’s result shows that under technical hypotheses all
odd residual representations admit lifts to characteristic zero that are geometric in the sense of
the Fontaine-Mazur conjecture. Assuming that conjecture, the resulting lifts would be modular as
predicted by Serre’s conjecture. Generalizations of Serre’s conjecture to groups other than GL2

have been proposed, most recently by Gee, Herzig, and Savitt [GHS15], which naturally leads to
the problem of producing geometric lifts of Galois representations for groups other than GL2.

Let K be a finite extension of Q with absolute Galois group ΓK . Suppose k is a finite field of
characteristic p, O the ring of integers in a p-adic field with residue field k, and G is a reductive
group defined over O. For a continuous representation ρ : ΓK → G(k), in light of these conjectures
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it is important to study when there exists a continuous representation ρ : ΓK → G(O) lifting ρ
that is geometric (using G ↪→ GLn).

When G = GSpm or G = GOm, we produce geometric lifts in favorable conditions. The exact
hypotheses needed are somewhat complicated. We will state a simple version now, and defer a
more detailed statement to Theorem 3.12. It is essential that ρ is odd (as discussed in Remark 1.2,
forcing K to be totally real) and that ρ restricted to the decomposition group at p “looks like
the reduction of a crystalline representation with distinct Hodge-Tate weights”. More precisely,
we assume p is unramified in K and that at places v above p, the representation ρ|ΓKv is torsion

crystalline with Hodge-Tate weights in an interval of length p−2
2 , so it is Fontaine-Laffaille. It is

crucial that for each Zp-embedding of OKv in OKv , the Fontaine-Laffaille weights for ρ|ΓKv with

respect to that embedding are pairwise distinct (these notions will be reviewed in §8).
For Ramakrishna’s method to apply, it is also essential that the image of ρ is “large”: here we use

that G′(k) ⊂ ρ(ΓK) where G′ is the derived group. Ramakrishna’s method requires certain technical
conditions which follow from this assumption on the image provided that p > max(17, 2(m − 1))
(this restriction on p is not optimized: see Remark 3.9.) Let µ : G → Gm be the similitude
character, and define ν = µ ◦ ρ : ΓK → k×. Suppose there is a lift ν : ΓK → W (k)× that is
Fontaine-Laffaille at all places above p.

Theorem 1.1. Let G = GSpm or G = GOm and ρ : ΓK → G(k) be an odd representation
(which forces K to be totally real and that m 6≡ 2 (mod 4) when G = GOm). Suppose that p is
unramified in K and that at places v above p, the representation ρ|ΓKv is Fontaine-Laffaille with
pairwise distinct weights with respect to each Zp-embedding of OKv in OKv . Furthermore, suppose

that G′(k) ⊂ ρ(ΓK) and that p > max(17, 2(m − 1)). Fix a lift ν : ΓK → W (k)× of ν that is
Fontaine-Laffaille at all places above p. Then there exists a geometric lift ρ : ΓK → G(O) of ρ
where O is the ring of integers in a finite extension of Qp with residue field containing k such that
µ ◦ ρ = ν. More precisely, ρ is ramified at finitely many places of K, and for every place v of K
above p the representation ρ|ΓKv is Fontaine-Laffaille and hence crystalline.

This provides evidence for generalizations of Serre’s conjecture. In contrast, when G = GLn with
n > 2, the representation ρ cannot be odd, and the method does not apply. In such cases, there is
no expectation that such lifts exist.

To produce lifts, we use a generalization of Ramakrishna’s method also used in [Pat15]. It works
by establishing a local-to-global result for lifting Galois representations subject to local constraints
(Proposition 2.10). Let ρ be a lift of ρ to O/mn where m is the maximal ideal of O. Provided a
cohomological obstruction vanishes, it is possible to lift ρ to O/mn+1 subject to local constraints if
(and only if) it possible to lift ρ|Γv to O/mn+1 for all v in a fixed set of places of K containing the
places above p and the places where ρ is ramified. Allowing controlled ramification at additional
primes kills this obstruction for odd representations.

It remains to pick local deformation conditions above p and at places where ρ is ramified which
are liftable and have large enough tangent space. At p, we define a Fontaine-Laffaille deformation
condition in §9 by using deformations arising from Fontaine-Laffaille modules that carry extra data
corresponding to a symmetric or alternating pairing.

At a prime ` 6= p where ρ is ramified, we generalize the minimally ramified deformation con-
dition defined for GLn in [CHT08, §2.4.4]. In simple cases, this deformation condition controls
the ramification of ρ by controlling deformations of a unipotent element g of GLn(k). There is a
natural parabolic k-subgroup containing g, and the deformation condition is analyzed by deform-
ing this parabolic subgroup and then lifting g inside this subgroup. This idea does not work for
other algebraic groups. In Example 1.5 and §6.4, we discuss an explicit example in GSp4 where
the analogous deformation based on parabolics is provably not liftable. In §6 and §7, we define a
minimally ramified deformation condition by instead requiring that g deform so that “it lies in the
same unipotent orbit as g,” and explain that the problems with the deformation condition based
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on parabolics are a general phenomenon. The discovery and study of this deformation condition at
ramified places ` 6= p is the main contribution of this work. For GLn, our notion agrees with mini-
mally ramified deformation condition of [CHT08], but for other groups it is a genuinely different,
liftable deformation condition.

In the remainder of the introduction, we discuss some additional background and give a more
detailed overview of the proof.

1.1. Serre’s Conjecture and Geometric Lifts. We are interested in generalizations of Ramakr-
ishna’s lifting result to split reductive groups beyond GL2, in particular symplectic and orthogonal
groups. Generalizations of Serre’s conjecture have been proposed in this setting, and most of the
effort has been to find the correct generalization of the oddness condition and the weight (see for
example the discussion in [GHS15], especially §2.1). The general flavor of these generalizations is
that an odd irreducible Galois representation will be automorphic in the sense that it appears in
the cohomology of an Fp-local system on a Shimura variety. For a general split reductive group,
there is no expectation that such representations will lift geometrically to characteristic zero. For
example, as discussed in [CHT08, §1] the classical Taylor-Wiles method would work only if

(1.1) [K : Q] (dimG− dimB) =
∑
v|∞

dimH0(Gal(Kv/Kv), ad0(ρ))

where B is a Borel subgroup of G and ad0(ρ) is the adjoint representation of ΓK on the Lie algebra
of the derived group of G. Only under such a “numerical coincidence” do we expect to obtain
automorphy lifting theorems, and hence expect geometric lifts. This coincidence cannot hold for
GLn when n > 2, but can hold for G = GSp2n and G = GOm when m 6≡ 2 (mod 4), and for the
group Gn related to GLn considered in [CHT08]. This coincidence is also essential to generalizing
Ramakrishna’s method.

Remark 1.2. Following [Gro], we say that ρ : ΓK → G(k) is odd if for each archimedean place
v and complex conjugation cv ∈ Γv (well-defined up to conjugacy), ad(ρ(cv)) is a split Cartan
involution for g′ := LieGad. Recall that for any involution τ of g′,

dim
(
g′
)τ ≥ dimG− dimB

A split Cartan involution is an involution for which this is an equality. If K is totally real and ρ is
odd, (1.1) holds. There are odd representations for symplectic and orthogonal groups, but no odd
representations for GLn when n > 2 (for more details, see [Pat15, §4.5]). These are cases in which
we expect geometric lifts, and where Ramakrishna’s method generalizes.

There is a less restrictive notion of oddness introduced in [BV13, §6], and the automorphy lifting
theorems in [CG17] apply beyond the regime where (1.1) holds.

Ramakrishna developed his lifting technique when K = Q and G = GL2 in [Ram99] and [Ram02],
and produced geometric lifts. There have been various reformulations and generalizations that our
results build on. In particular, the formalism developed in [Tay03] (still in the case of GL2)
suggested that it should be possible to generalize the technique to algebraic groups beyonds GL2.
Attempts were made in [Ham08] and [Man09] to generalize the technique to GLn, but ran into
the obstruction that there were no odd representations for n > 2. The results in [Ham08] simply
assume the existence of liftable local deformation conditions which probably do not exist, but do
provide a nice model for generalizing Ramakrishna’s method. In contrast, [Man09] constructs local
deformation conditions but does not aim to produce geometric lifts.

For groups beyond GLn, [CHT08] gave a lifting result for a group Gn related to GLn which
admits odd representations. Studying the local deformation conditions for Gn reduced to studying
representations valued in GLn. At primes above p, [CHT08] studied a deformation condition based
on Fontaine-Laffaille theory which is generalized in §9. The idea of doing so goes back to [Ram93].
(They also discussed a deformation condition based on the notion of ordinary representations which
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is not used in their lifting result). At primes not above p but where ρ is ramified, they defined a
minimally ramified deformation condition, which we generalize in §6 and §7; this generalization is
non-obvious and is our main innovation.

Building on this, Patrikis’ unpublished undergraduate thesis [Pat06] explored Ramakrishna’s
method for symplectic groups. In particular, it generalized Ramakrishna’s method to the group
GSpn, and generalized the Fontaine-Laffaille deformation condition at p. It did not generalize
the minimally ramified deformation condition, so can only be applied to residual representations
ΓQ → GSpn(k) which are unramified away from p, a stringent condition. Our results at p in §9 are
a generalization of Patrikis’ study of the Fontaine-Laffaille deformation condition.

More recently, Patrikis used Ramakrishna’s method to produce geometric representations with
exceptional monodromy [Pat15]. This involves generalizing Ramakrishna’s method to any con-
nected reductive group G and then modifying the technique to deform a representation valued in
the principal SL2 ⊂ G (coming from a modular form) to produce a geometric lift with Zariski-dense
image. The generalization of Ramakrishna’s method to apply to reductive groups is independently
carried out in the author’s thesis with only minor technical differences, so in §3 we refer the reader
to [Pat15] for proofs. Our extensive study of local deformations conditions is not needed in [Pat15]:
as the goal there is just to produce examples of geometric representations with exceptional mon-
odromy, he could avoid generalizing the minimally ramified deformation condition.

Remark 1.3. There is also a completely different technique to produce lifts based on automorphy
lifting theorems. For example, Khare and Winterberger use it in their proof of Serre’s conjecture:
see [KW09b, §4] especially the proof of Corollary 4.7. The key ingredients are the computations of
the dimension of components of local deformation rings and the fact that a suitable global defor-
mation ring is a finite O-algebra. The finiteness of the global deformation ring can be established
by relating the Galois deformation ring to a Hecke algebra using a suitable automorphy lifting
theorem or potential automorphy theorem. Then given the dimension of the local deformation
rings (or their generic fibers), for an odd representation one can deduce that the dimension of the
global deformation ring is at least one. This implies the existence of geometric lifts. This approach
avoids a detailed analysis of the local deformation rings, and also allows more control of the local
properties of the lift. In particular, it is not necessary to allow the lift to ramify at places beyond
the places where ρ is ramified.

1.2. Generalizing Ramakrishna’s Method. We now outline the generalization of Ramakr-
ishna’s method. This part of the argument, with only minor technical variation, has also been
carried out in [Pat15], and provides a framework for producing lifts if we can construct appropriate
local deformation conditions. Fix a prime p and finite field k of characteristic p. Let S be a finite
set of places of a number field containing the places above p and the archimedean places, and
define ΓS to be the Galois group of the maximal extension of K unramified outside of S. Consider
a continuous representation ρ : ΓS → G(k) where G is a smooth affine group scheme over the ring
of integers O in a p-adic field such that the identity components of the fibers are reductive. We
are mainly interested in the case that G = GSpm or G = GOm; the latter may have disconnected
fibers. (In the relative setting, by definition reductive groups have connected fibers, so we must
work in slightly greater generality as discussed as the start of §2.1.)

We assume that p is very good for G (Definition 2.2), so the Lie algebra of the derived group of
G◦ is a direct summand of the Lie algebra of G: we denote this summand with adjoint action of
ΓK by ad0(ρ). The cohomology of this Galois module controls the deformation theory of ρ. The
hope would be to use deformation theory to produce ρn : ΓS → G(O/mn) such that ρ1 = ρ, ρn lifts
ρn−1 for n ≥ 2, and such that ρn satisfies a deformation condition at places above p for which the
inverse limit

ρ = lim←− ρn : ΓS → G(O)
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restricted to the decomposition group Γv would be a lattice in a de Rham (or crystalline) represen-
tation for places v of K above p. This inverse limit would then be the desired geometric lift of ρ.
Only after a careful choice of local deformation conditions and enlarging the set S will this work.
Furthermore, defining these deformation conditions may require making an extension of k, which
is harmless for our applications and is why we only require that the residue field of O contains k.

Proposition 2.10 shows that a lifts exist subject to a global deformation condition DS provided
the dual Selmer group H1

D⊥S
(ΓS , ad0(ρ)∗) vanishes. This Galois cohomology group is defined in

(2.1), and encodes information about all of the local deformation conditions imposed. When it
vanishes, there exists a lift of ρn to ρn+1 satisfying local deformation conditions for v ∈ S provided
there exist lifts of (ρn)|Γv satisfying the deformation condition for all v ∈ S. This can be expressed
as a local-to-global principle for lifting Galois representations with an obstruction lying in the
cohomology group H1

D⊥S
(ΓS , ad0(ρ)∗).

Proposition 3.7 gives a way to enlarge S and DS , allowing ramification subject to Ramakrishna’s
deformation condition at the new places that forces H1

D⊥S
(ΓS , ad0(ρ)∗) to be zero. We review

Ramakrishna’s deformation condition in §3.1. The places of K at which we define this condition
are found using the Chebotarev density theorem: each additional place where we allow ramification
subject to Ramakrishna’s deformation condition decreases the dimension of the dual Selmer group.
For such places to exist, we need non-zero classes in certain cohomology groups, whose existence
relies on the local deformation conditions satisfying the inequality∑

v∈S
dimLv ≥

∑
v∈S

dimH0(Γv, ad0(ρ)),

where Lv is the tangent space of the local deformation condition at v. Furthermore, ρ needs to a
“big” representation in the sense of Definition 3.4 in order to define Ramakrishna’s deformation
condition. Being a big representation is a more precise set of technical conditions that are implied
for large enough p by the condition G′(k) ⊂ ρ(ΓK) appearing in Theorem 3.12.

For the tangent space inequality to hold, it is crucial that ρ be an odd representation. The
minimally ramified deformation conditions we will use at places v where ρ is ramified satisfy
dimH0(Γv, ad0(ρ)) = dimLv. Using the Fontaine-Laffaille deformation condition at places above
p, the tangent space inequality becomes

[K : Q](dimG− dimB) ≥
∑
v|∞

h0(Γv, ad0(ρ))

where B is a Borel subgroup of G; this can only be satisfied if K is totally real and ρ is odd.
In conclusion, to use the local-to-global principle, the residual representation must be odd and

the deformation conditions we use at places above p and places where ρ ramifies must be liftable.

1.3. Minimally Ramified Deformation Condition. Let ` 6= p be primes, L be a finite extension
of Q`, and k a finite field of characteristic p. For a residual representation ρ : ΓL → G(k),
Ramakrishna’s method requires a “nice” deformation condition for ρ. If ρ were unramified, the
unramified deformation condition would work. The interesting case is when ρ is ramified: we
would like to define a deformation condition of lifts which are “ramified no worse that ρ,” such that
the resulting deformation condition is liftable despite the fact that the unrestricted deformation
condition for ρ may not be liftable. To be precise, we require a deformation condition that is liftable
and whose tangent space has dimension (at least) dimkH

0(ΓL, ad0(ρ)).
In the case that G = GLn, the minimally ramified deformation condition defined in [CHT08,

§2.4.4] works. We will generalize this to a minimally ramified deformation condition for symplectic
and orthogonal groups when p > n. Attempting to generalize the argument of [CHT08, §2.4.4]
to groups besides GLn leads to a deformation condition based on parabolics which is not liftable.
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Instead, inspired by the arguments of [Tay08, §3] we define a deformation condition for symplectic
and orthogonal groups based on deformations of a nilpotent element of gk = LieGk.

Let us first review the minimally ramified deformation condition introduced for GLn in [CHT08,
§2.4.4]. The first step is to reduce to studying certain tamely ramified representations. Recall
that Γt

L, the Galois group of the maximal tamely ramified extension of L, is isomorphic to the
semi-direct product

Ẑ n
∏
p′ 6=`

Zp′

where Ẑ is generated by a Frobenius φ for L and the conjugation action by φ on each Zp′ is given by
the p′-adic cyclotomic character. We consider tamely ramified representations which factor through

the quotient ẐnZp (recall p 6= `). Picking a topological generator τ for Zp, the action is explicitly
given by

φτφ−1 = qτ

where q is the size of the residue field of L. Note q is a power of `, so it is relatively prime to
p. Arguments in [CHT08] reduce the lifting problem to studying representations of the group

Tq := ẐnZp. This reduction generalizes without surprises to symplectic and orthogonal groups in
§7 (but the argument is genuinely restricted to orthogonal and symplectic groups as it relies heavily
on the pairing).

The second step is to specify when a lift of ρ : Tq → GLn(k) is “ramified no worse than ρ”. For
a coefficient ring R, a deformation ρ : Tq → GLn(R) is minimally ramified according to [CHT08]
when the natural k-linear map

ker
(
(ρ(τ)− 1n)i

)
⊗R k → ker

(
(ρ(τ)− 1n)i

)
(1.2)

is an isomorphism for all i. The deformation condition is analyzed as follows:

• defining Vi = ker
(
(ρ(τ)− 1n)i

)
gives a flag

0 ⊂ Vr ⊂ Vr−1 ⊂ . . . ⊂ V1 ⊂ kn.
This flag determines a parabolic k-subgroup P ⊂ GLn (points which preserve the flag) such
that ρ(τ) ∈ (RuP )(k) and ρ(φ) ∈ P (k);
• lift P to a parabolic subgroup P of GLn. The deformation functor of such lifts is formally

smooth, and for any minimally ramified deformation ρ over R there is a choice of such
P for which ρ(τ) ∈ (RuP )(R) and ρ(φ) ∈ P (R). Conversely, any ρ with this property is
minimally ramified;
• Finally, for the standard block-upper-triangular choice of P , one shows the deformation

functor

{(T,Φ) : T ∈ RuP,Φ ∈ P,ΦTΦ−1 = T q, T = ρ(τ),Φ = ρ(φ)}
is formally smooth by building the universal lift over a power series ring: this uses explicit
calculations with block-upper-triangular matrices.

To generalize beyond GLn, we need to replace (1.2) with a more group-theoretic criterion. The
naive generalization is to associate a parabolic P to ρ and then use the following definition.

Definition 1.4. For a coefficient ring R, say a lift ρ : Tq → G(R) is ramified with respect to P

provided that there exists a parabolic R-subgroup P ⊂ GR lifting P such that ρ(τ) ∈ (RuP )(R)
and ρ(φ) ∈ P (R).

This idea does not work. Let us focus on the symplectic case to illustrate what goes wrong.
The first problem is to associate a parabolic subgroup to ρ. Recall that parabolic subgroups of

a symplectic group correspond to isotropic flags 0 ⊂ V1 ⊂ . . . ⊂ Vr ⊂ V ⊥r ⊂ . . . ⊂ V ⊥1 ⊂ k2n. There
is no reason that the flag determined by (1.2) is isotropic, so we would need some other method of
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producing a parabolic P such that ρ(τ) ∈ (RuP )(k). In [BT71], Borel and Tits give a natural way
to associate to the unipotent ρ(τ) a smooth connected unipotent k-subgroup of G. The normalizer
of this subgroup is always parabolic and so gives a candidate for P . However, working out examples
in GLn for small n shows that this produces a different parabolic than the one determined by (1.2).
This raises the natural question of how sensitive the smoothness of the deformation condition is to
the choice of parabolic.

This leads to the second, larger problem: there are examples such that for every parabolic P
satisfying ρ(τ) ∈ (RuP )(k), not all deformations ramified with respect to P are liftable.

Example 1.5. Take L = Q29 and k = F7. Consider the representation ρ : T29 ' Ẑ n Z7 →
GSp4(F7) defined by

ρ(τ) =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 and ρ(φ) =


1 −1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 .

The deformation condition of lifts ramified relative to a parabolic P of GSp4 whose unipotent
radical contains ρ(τ) is not liftable for any choice of P : there are lifts to the dual numbers that do
not lift to F7[ε]/(ε3). This is easy to check with a computer algebra system such as [Dev15], since
the existence of lifts can be reduced to a problem in linear algebra.

This latter problem is a general phenomenon, which we will explain conceptually in terms of
Richardson orbits in §6.4.

The correct approach is to define a lift ρ : Tq → G(R) to be minimally ramified if ρ(τ) has “the
same unipotent structure” as ρ(τ). It is more convenient to work with nilpotent elements, using
the exponential and logarithm maps (defined for nilpotent and unipotent elements since p > n).
We wish to study lifts of the nilpotent N = log(ρ(τ)) to N ∈ g that “remain nilpotent of the same
nilpotent type as N”.

In §6.1, we make this notion of “same nilpotent type” rigorous. There are combinatorial
parametrization of nilpotent orbits of algebraic groups over an algebraically closed field, for ex-
ample in terms of partitions or root data, which make precise the notion that the values of N ∈ gO
in the special and generic fiber lie in nilpotent orbits with the same combinatorial data. For each
nilpotent orbit σ, we use the results of §4 to choose particular elements Nσ ∈ gO with this prop-
erty lifting N ∈ gk. For a coefficient ring R, we define the “pure nilpotents” lifting N to be the

Ĝ(R)-conjugates of Nσ.

Example 1.6. For example, let G = GL3 and

N =

0 1 0
0 0 0
0 0 0


Consider the lifts

N1 =

0 1 0
0 0 0
0 0 0

 ∈ g and N2 =

0 1 0
0 0 p
0 0 0

 ∈ g.

Both are nilpotent under the embedding of O into its fraction field K. The images of N1 in gK and
gk both lie in the nilpotent orbit corresponding to the partition 2+1, so N1 is an example of the type
of nilpotent lift we want to consider. On the other hand, the image of N2 in gK lies in the nilpotent
orbit corresponding to the partition 3, while the image on gk lies in the orbit corresponding to

2 + 1, so we do not want to use it. The pure nilpotents lifting N are Ĝ(R)-conjugates of N1.
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We then define a lift ρ : Tq → G(R) to be minimally ramified provided ρ(τ) is the exponential

of a pure nilpotent lifting log ρ(τ) = N . Proposition 6.13 shows that this deformation condition is
liftable. The main technical fact needed to analyze this deformation condition is that the scheme-
theoretic centralizer ZG(Nσ) is smooth over O for Nσ as above. The smoothness of such centralizers
over algebraically closed fields is well-understood, and in §5 we study ZG(Nσ) and show that ZG(Nσ)
is flat over O and hence smooth. Lemma 5.4 gives a criterion for flatness that is easy to verify
for classical groups which suffices for our applications. We can reduce checking O-flatness to
the problem of finding elements g ∈ ZG(Nσ)(O) such that gk lies in any specified component of
ZGk(N)/ZGk(N)◦. There are difficulties beyond the classical case due to the varied structure of

π0(ZG(N)k) in general.

Remark 1.7. It is a fortuitous coincidence (for [CHT08]) that for GLn the lifts minimally ramified
in the preceding sense are exactly the lifts ramified with respect to a parabolic subgroup of G. This
rests on the fact that all nilpotent orbits of GLn are Richardson orbits (see §6.4 for details).

1.4. Fontaine-Laffaille Deformation Condition. Let K be a finite unramified extension of
Qp, and let O be the ring of integers of a p-adic field L with residue field k such that L splits K
over Qp. (The latter is always possible after extending k.) To produce geometric deformations,
Ramakrishna’s method requires a deformation condition Dρ for the residual representation ρ :
ΓK → G(k) such that:

• Dρ is liftable;
• Dρ is large enough, in the precise sense that its tangent space has dimension

[K : Qp](dimG− dimB) + dimkH
0(ΓK , ad0(ρ))

where B is a Borel subgroup of G;
• Dρ(O) consists of certain lattices in crystalline representations.

We construct such a condition using Fontaine-Laffaille theory.
Fontaine-Laffaille theory, introduced in [FL82], provides a way to describe torsion-crystalline

representations with Hodge-Tate weights in an interval of length p − 2 in terms of semi-linear
algebra when p is unramified in K. In particular, it provides an exact, fully faithful functor
Tcris from the category of filtered Dieudonné modules to the category of O[ΓK ]-modules with
continuous action, and describes the image (Fact 8.10). In [CHT08, §2.4.1], it is used to define a
deformation condition for GLn, where the allowable deformations of ρ are exactly the deformations
of the corresponding Fontaine-Laffaille module. This requires the technical assumption that the
representation ρ is torsion-crystalline with Hodge-Tate weights in an interval of length p − 2, and
the important assumption that the Fontaine-Laffaille weights of ρ under each embedding of K into
L are distinct (see Remark 8.16).

We will adapt these ideas to symplectic and orthogonal groups under the assumption that the
Fontaine-Laffaille weights lie in an interval of length p−2

2 . For symplectic groups and K = Qp, this
was addressed in Patrikis’s undergraduate thesis [Pat06]: we generalize this, and record proofs as
the thesis is not readily available. The key idea is to introduce a symmetric or alternating pairing
into the semi-linear algebra data. To do so, it is necessary to use (at least implicitly via statements
about duality) the fact that the functor Tcris is compatible with tensor products. This requires

the stronger assumption that the Fontaine-Laffaille weights lie in an interval of length p−2
2 , which

guarantees that the Fontaine-Laffaille weights of the tensor product lie in an interval of length
p− 2. Furthermore, it is crucial to use the covariant version of the Fontaine-Laffaille functor used
in [BK90] instead of the contravariant version studied in [FL82] in order for the compatibility with
tensor products to hold. For more details, see §8.2. Given this, it is then reasonably straightforward
to check that Tcris is compatible with duality and hence to translate the (perfect) alternating or
symmetric pairing of Galois representations into a (perfect) symmetric or alternating pairing of
Fontaine-Laffaille modules.
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For a coefficient ring R, define DFL
ρ (R) to be all representations ρ : ΓK → G(R) lifting ρ and

lying in the essential image of Tcris. To study this Fontaine-Laffaille deformation condition, it suf-
fices to study Fontaine-Laffaille modules. In particular, to show that the deformation condition is
liftable (i.e. that it is always possible to lift a deformation satisfying the condition through a square-
zero extension), it suffices to show that a Fontaine-Laffaille module with distinct Fontaine-Laffaille
weights together with a perfect symmetric or skew-symmetric pairing can always be lifted through
a square zero extension. This is a complicated but tractable problem in semi-linear algebra: Propo-
sition 9.8 shows this is always possible. It is relatively simple to lift the underlying filtered module
and the pairing, and requires more care to lift the semi-linear maps ϕiM : M i → M . Likewise, to
understand the tangent space of the deformation condition it suffices to study deformations of the
Fontaine-Laffaille module corresponding to ρ to the dual numbers. Again, the most involved step
is understanding possible lifts of the semi-linear maps after choosing a lift of the filtration and the
pairing.

Remark 1.8. The proof that DFL
ρ is liftable and the computation of the dimension of its tangent

space both use in an essential way the hypothesis that for each embedding of K into L the Fontaine-
Laffaille weights are pairwise distinct.

Remark 1.9. An alternative deformation condition to use at primes above p is a deformation
condition based on the concept of an ordinary representation. This is studied for any connected
reductive group in [Pat15, §4.1]. It is suitable for use in Ramakrishna’s method, and can give lifting
results for a different class of torsion-crystalline representations.

1.5. Acknowledgements. I am extremely grateful for the generosity and support of my advisor
Brian Conrad, and for his extensive and helpful comments on drafts of my thesis. I thank Brandon
Levin for bringing [Pat06] to my attention, and Stefan Patrikis for his encouragement and conver-
sations. I also thank Bryden Cais, Daniel Litt, John Pardon, Niccolo’ Ronchetti, Jesse Silliman,
Jay Taylor, Akshay Venkatesh, and Zhiwei Yun for helpful conversations.

2. Deformations of Galois Representations

2.1. Algebraic Groups and Very Good Primes. Let O be a discrete valuation ring with
residue field k of characteristic p. Let G be smooth separated group scheme over O such that the
identity components of the fibers are reductive.1 Then G◦ is a reductive O-subgroup scheme of G
and G/G◦ is a separated étale O-group scheme of finite presentation [Con14, Proposition 3.1.3 and
Theorem 5.3.5]. Furthermore, by a result of Raynaud G is affine as it is a flat, separated, and of
finite type with affine generic fiber over the discrete valuation ring O [PY06, Proposition 3.1]. Call
such G almost-reductive group schemes over O. We say G is split if G◦ is split.

Remark 2.1. A reductive group scheme has connected fibers by definition: see [Con14, Definition
3.1.1], going back to [sga70, XIX, 2.7]). Connectedness is important as in general the component
group may jump across fibers. We wish to be able to work with GOm which may have two connected
components, so we work in this generality.

Let Φ a reduced and irreducible root system, and P the weight lattice for Φ. We recall the notion
of a very good prime.

Definition 2.2. The prime p is good for Φ provided that ZΦ/ZΦ′ is p-torsion free for all subsets
Φ′ ⊂ Φ. A good prime is very good provided that P/ZΦ′ is p-torsion free for all subsets Φ′ ⊂ Φ. A
prime is bad if it is not good.

1For results about reductive group schemes, we refer to [Con14] which gives a self-contained development, using
more recent methods, of results from [sga70].
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Likewise, we say a prime p is good (or very good) for a general reduced root system if it is good
(or very good) for each irreducible component. A prime p is good (or very good) for G provided
it is good (or very good) for the root system of G◦

k
. For example, if G = GSp2n or G = GOm

every prime except 2 is very good. The prime p being very good for a split almost-reductive group
scheme G for example implies that:

• the center of LieGk is the Lie algebra of ZGk , and LieGk is a direct sum of LieG′k and
LieZGk , where G′ is the derived group of G◦ and ZGk is the center of G◦k;
• ZG′k and π1(G◦k) have order prime to p.

These facts are well-known.

2.2. Deformation Functors. Next we recall some facts about the deformation theory for Galois
representations: a basic reference is [Maz97], with the extension to algebraic groups beyond GLn
discussed in [Til96].

Let Γ be a pro-finite group satisfying the following finiteness property: for every open subgroup
Γ0 ⊂ Γ, there are only finitely many continuous homomorphisms from Γ0 to Z/pZ. This is true for
the absolute Galois group of a local field and for the Galois group of the maximal extension of a
number field unramified outside a finite set of places.

Let ĈO be the category of coefficient O-algebras: complete local Noetherian rings with residue
field k, with morphisms local homomorphisms inducing the identity map on k and with the structure
morphism a map of coefficient rings. Let CO denote the full subcategory of Artinian coefficient O-
algebras. Recall that a small surjection of coefficient O-algebras f : A1 → A0 is a surjection such
that ker(f) ·mA1 = 0.

For A ∈ ĈO, define

Ĝ(A) := ker(G(A)→ G(k))

We are interested in deforming a fixed ρ : Γ→ G(k). Let g = LieG.

• Let f : A1 → A0 be a morphism in ĈO and ρ0 : Γ → G(A0) a continuous homomorphism.
A lift of ρ0 to A1 is a continuous homomorphism ρ1 : Γ → G(A1) such that the following
diagram commutes:

Γ
ρ1
//

ρ0

!!

G(A1)

f

��

G(A0)

Define the functor D�
ρ,O : ĈO → Sets by sending a coefficient O-algebra A to the set of lifts

of ρ to A.
• With the notation above, two lifts ρ and ρ′ of ρ to A1 ∈ CO are strictly equivalent if they

are conjugate by an element of Ĝ(A1). A deformation of ρ0 to A1 is a strict equivalence

class of lifts. Define the functor Dρ,O : ĈO → Sets by sending a coefficient O-algebra A to
the set of deformations of ρ to A.

We will drop the subscript O when it is clear from context.

Fact 2.3. The functor D�
ρ,O is representable. When gΓ

k = Lie(ZG)k, the functor Dρ,O is repre-
sentable.

The first part is simple, the second is a reformulation of [Til96, Theorem 3.3].
The representing objects are denoted R�

ρ,O and (when it exists) Rρ,O. The former is called the
universal lifting ring, while the latter is the universal deformation ring. While we usually care
about deformations, it is technically easier to work with lifts.

This deformation theory is controlled by Galois cohomology. Let ad(ρ) denote the representation
of Γ on gk via the adjoint representation. Letting G′ be the derived subgroup of G◦ with Lie
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algebra g′, we also consider the representation ad0(ρ) of Γ on g′k. As p is very good, we have
gk = g′k⊕zg where zg is the Lie algebra of ZG. The condition in Fact 2.3 is just that H0(Γ, ad(ρ)) =

zg, or equivalently that H0(Γ, ad0(ρ)) = 0. In general, since p is very good the natural map

H i(Γ, ad0(ρ))→ H i(Γ, ad(ρ)) is injective for all i; we often use this without comment.
We can use the first order exponential map [Til96, §3.5] to understand the tangent space. Recall

that for a smooth O-group scheme G, and a small surjection f : A → A/I of coefficient rings
(I ·mA = 0), smoothness gives an isomorphism

exp : g⊗k I ' ker(G(A)→ G(A/I)) = ker(Ĝ(A)→ Ĝ(A/I)).

The tangent space Dρ,O(k[ε]/ε2) is identified with H1(Γ, ad(ρ)): Under this isomorphism, the
cohomology class of a 1-cocycle τ corresponds to the lift ρ(g) = exp(ετ(g))ρ(g). For the universal
lifting ring R�

ρ,O, the tangent space is identified with the k-vector space Z1(Γ, ad(ρ)) of (continuous)

1-cocycles of Γ valued in ad(ρ).

Remark 2.4. We also observe that

dimk Z
1(Γ, ad(ρ))− dimkH

1(Γ, ad(ρ)) = dimk B
1(Γ, ad(ρ)) = dimk g− dimkH

0(Γ, ad(ρ))

since the space of coboundaries admits a surjection from ad(ρ) with kernel ad(ρ)Γ. This will be
useful when comparing dimensions of lifting rings and deformation rings that are smooth.

We will want to studying special classes of deformations.

Definition 2.5. A lifting condition is a sub-functor D� ⊂ D�
ρ,O : CO → Sets such that:

(1) For any coefficient ring A, D�(A) is closed under strict equivalence.
(2) Given a Cartesian diagram in CO

A1 ×A0 A2
π2 //

π1
��

A2

��

A1
// A0

and ρ ∈ D�
ρ,O(A1 ×A0 A2), we have ρ ∈ D�(A1 ×A0 A2) if and only if D�(π1) ◦ ρ ∈ D�(A1)

and D�(π2) ◦ ρ ∈ D�(A2).

As it is closed under strict equivalence, we naturally obtain a deformation condition, a sub-functor
D ⊂ Dρ,O.

By Schlessinger’s criterion [Sch68, Theorem 2.11] being a lifting condition is equivalent to the
functor D� being pro-representable. Likewise, the deformation condition D associated to a lifting
condition D� is pro-representable provided that Dρ,O is.

The tangent space of a deformation condition D is a k-subspace of H1(Γ, ad(ρ)), and will be
denoted by H1

D(Γ, ad(ρ)). For a small surjection A1 → A0 and ρ ∈ D(A0), the set of deformations
of ρ to A1 subject to D is a H1

D(Γ, ad(ρ))-torsor. This torsor-structure is compatible with the action
of the unrestricted tangent space to Dρ on the space of all deformations of ρ to A1.

Example 2.6. Let G′ be the derived group of G◦. The most basic examples of deformation
conditions are the conditions imposed by fixing the lift of the homomorphism Γ→ (G/G′)(k). To

be precise, for the quotient map µ : G→ G/G′ =: S, a fixed ν : Γ→ S(O) lifting µ ◦ρ, and A ∈ ĈO
with structure morphism ı : O → A, we define a deformation condition D0 ⊂ Dρ by

Dν(A) = {ρ ∈ Dρ(A)|Γ→ G(A) : µA ◦ ρ = ı ◦ νA}.

One checks this is a deformation condition. Its tangent space is H1(Γ, ad0(ρ)) since p is very good.
We define D�

ρ similarly.
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Another important easy example is the unramified deformation condition for a non-archimedean
place v where ρ is unramified: this consists of lifts that are unramified (possibly with a specified
choice of ν). The tangent space is H1

nr(Γv, ad(ρ)) (respectively H1
nr(Γv, ad0(ρ))).

Definition 2.7. A deformation condition D is locally liftable (over O) if for all small surjections
f : A1 → A0 of coefficient O-algebras the natural map

D(f) : D(A1)→ D(A0)

is surjective.

A geometric way to check local liftability is to show that the corresponding deformation ring
(when it exists) is smooth. Obviously it suffices to check liftability for lifts instead of deformations,
so we can work with the lifting deformation ring and avoid representability issues for Dρ.
Example 2.8. The unramified deformation condition is liftable: an unramified lift is completely
determined by the image of Frobenius in G(A0), and G is smooth over O.

When attempting to lift with a fixed lift ν of Γ → (G/G′)(k), the obstruction to lifting is
measured by a 2-cocycle ob(ρ0) that lies in H2(Γ, ad0(ρ)). To see this, recall that the obstruction
cocycle is defined by picking a set theoretic lift ρ1 of a given ρ0 : ΓK → G(A0): the 2-cocycle records
the failure of ρ1 to be a homomorphism. By choosing the continuous set-theoretic lift ΓK → G(A1)
so that ΓK → (G/G′)(A0) agrees with ν (as we may easily do since ker ρ0 is open in ΓK), the
obstruction cocycle takes values in ad0(ρ).

2.3. Global Deformations. We now study global deformation conditions. Let K be a number
field, S a finite set of places of K that contains all the places of K at which ρ are ramified and all
archimedean places. Let ΓS be the Galois group of the maximal extension of K unramified outside
of S and ΓK be the absolute Galois group of K.

Definition 2.9. A global deformation condition DS for ρ : ΓS → G(k) is a collection of local
deformation conditions {Dv}v∈S for ρ|Γv . We say it is locally liftable (over O) if each Dv is locally
liftable (over O). A global deformation of ρ : ΓS → G(k) subject to DS is a deformation ρ : ΓS →
G(A) such that ρ|Γv ∈ Dv(A) for all v ∈ S.

For v ∈ S, let Lv denote the tangent space of the local deformation condition Dv. A global
deformation condition gives a generalized Selmer group. We will be mainly interested in the dual
Selmer group

(2.1) H1
D⊥S

(ΓS , ad(ρ)∗) = {x ∈ H1(ΓS , ad(ρ)∗) : resv(x) ∈ L⊥v for all v ∈ S}.

For Ramakrishna’s method to work, it is crucial that the local tangent spaces be large enough
relative to the local invariants. We say that a global deformation condition satisfies the tangent
space inequality if

(2.2)
∑
v∈S

dimLv ≥
∑
v∈S

dimH0(Γv, ad0(ρ)).

Let DS = {Dv} be a global deformation condition, and G′ be the derived group of G◦ with
quotient µ : G→ G/G′. We assume that the deformation condition includes the condition of fixing
a lift ν : ΓK → (G/G′)(O) of the character µ ◦ ρ : ΓK → (G/G′)(k). This means that all of
the local deformation conditions have tangent spaces lying in H1(Γv, ad0(ρ)), and the obstruction
cocycles automatically land in H2(Γv, ad0(ρ)) (see Example 2.6 and Example 2.8), with similar
statements for global deformation conditions. In favorable circumstances, we can use the following
local-to-global principle to produce lifts.

Proposition 2.10. Let A1 → A0 be a small extension of coefficient O-algebras with kernel I, and
consider a lift ρ0 : ΓS → G(A0) of ρ subject to DS. Provided H1

D⊥S
(ΓS , ad0(ρ)∗) = 0, lifting ρ0 to

A1 subject to DS is equivalent to lifting ρ0|Γv to A1 subject to Dv for all v ∈ S.
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Proof. One direction is obvious. Conversely, suppose we have local lifts. The key input is the
Poitou-Tate exact sequence:

H1(ΓS , ad0(ρ))→
⊕
v∈S

H1(Γv, ad0(ρ))/Lv → H1
D⊥S

(ΓS , ad0(ρ)∗)∨ → H2(ΓS , ad0(ρ))→
⊕
v∈S

H2(Γv, ad0(ρ)).

The vanishing of H1
D⊥S

(GS , ad0(ρ)∗) implies that the first map is a surjection and the last an

injection.
As ρ0|Γv is liftable for all v ∈ S, the local obstructions to lifting vanish. The global obstruction

to lifting ρ0 to A1, ob(ρ0) ∈ H2(ΓS , ad0(ρ)) ⊗ I, therefore maps to 0 in
⊕

v∈S H
2(Γv, ad0(ρ)) ⊗ I.

As this latter restriction map is injective, there is a lift ρ1 of ρ0 to A1 on ΓS . We wish to show it
can be chosen subject to DS .

The set of all lifts of ρ0|Γv is an H1(Γv, ad0(ρ)) ⊗ I-torsor. The existence of local lifts means
that there exist φv ∈ H1(Γv, ad0(ρ)) ⊗ I such that φv · ρ0|Γv ∈ Dv(A1). By the surjectivity of the
first map in the sequence, there exists φ ∈ H1(ΓS , ad0(ρ)) ⊗ I such that φ|v agrees with φv up to
an element of Lv ⊗ I for all v ∈ S. As the set of lifts of ρ0|Γv subject to Dv is a Lv ⊗ I-torsor, this
implies that (φ · ρ1)|Γv ∈ Dv(A1). In other words, φ · ρ1 is a lift of ρ0 to A1 satisfying DS . �

Remark 2.11. This is a variant of [Pat15, Corollary 3.11].

3. Generalizing Ramakrishna’s Method

The key to generalizing Ramakrishna’s method is the ability to choose local conditions so that
Proposition 2.10 will apply. This generalization is carried for split reductive group schemes with
connected fibers in [Pat15] and in the author’s thesis with only minor technical differences between
them. Here we refer to [Pat15] for proofs and only point out the modifications necessary to deal
with split almost-reductive groups like GOm. So let O be the ring of integers in a p-adic field with
residue field k, and let q = #k. Consider a split almost-reductive group scheme G over O with Lie
algebra g. Let K be a number field and denote the p-adic cyclotomic character by χ : ΓK → Z×p ,

with reduction χ : ΓK → F×p . Fix a split maximal torus T ⊂ G◦.

3.1. Ramakrishna’s Deformation Condition. We start by assuming:

(A1) there is γ ∈ ΓK such that ρ(γ) ∈ G◦(k) is regular semisimple, and ZGk(ρ(γ))◦ = Tk;
(A2) there is a unique root α ∈ Φ(G,T ) such that α(ρ(γ)) = χ(γ);
(A3) there is a place v of K lying over a rational prime ` such that ρ is unramified at v,

ρ(Γv) ⊂ G◦(k), and ρ(Frobv) is regular semisimple element. The identity component of
ZGk(ρ(Frobv)) is Tk, and α(ρ(Frobv)) = χ(Frobv) = χ(γ) 6= 1.

Under these assumptions, we can define Ramakrishna’s deformation condition Dram
v for ρv : Γv →

G◦(k) as in [Pat15, §4.2]. We form the root group Uα ⊂ G◦ associated to α.

Definition 3.1. For a coefficient O-algebra A, consider a lift ρ : Γt
v → G◦(A). The lift ρ satisfies

Ramakrishna’s condition relative to T provided that ρ(Frobv) ∈ T (A), α(ρ(Frobv)) = χ(Frobv),
and ρ(Gal(Kt

v/K
nr
v )) ⊂ Uα(A) ⊂ G◦(A).

Define Ramakrishna’s deformation condition Dram
v (A) to be lifts which are Ĝ(A)-conjugate to

one which satisfies Ramakrishna’s condition relative to T .

Letting S be the quotient of G◦ by its derived group with quotient map µ, we can also study
lifts ρ : ΓKv → G◦(A) such that µ ◦ ρ is a fixed unramified lift ν of µ ◦ ρ. As the condition µ ◦ ρ = ν
cuts out a closed subscheme of the universal lifting ring for Dram

v , this is a deformation condition
we will denote by Dram,ν

v .

Fact 3.2. The deformation conditions Dram
v and Dram,ν

v are liftable. The dimension of their tangent
spaces are dimH0(Γv, ad(ρ)) and dimH0(Γv, ad0(ρ)) respectively.
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Remark 3.3. In order to apply the results of [Pat15, §4.2] (or the analogous results in [Boo16,
§2.4]), it is important to work with a connected reductive group. This is why we assume that
ρ(Γv) ⊂ G◦(k). Similarly, when analyzing disconnected L-groups [Pat15, §9.2] reduces to situations
where the Galois-representation on the (constant) component group scheme is trivial in order to
use this deformation condition.

3.2. Big Representations. Let K(ad0(ρ)) and K(ad0(ρ)∗) denote the fixed field of the kernel
of the actions of ΓK on ad0(ρ) and ad0(ρ)∗ respectively, and F be the compositum. Let DS be
a global deformation condition satisfying the tangent space inequality (2.2). The natural class of
representations ρ : ΓK → G(k) to which Ramakrishna’s method will apply are those which satisfy
the following conditions:

Definition 3.4. A representation ρ : ΓK → G(k) is big relative to DS provided that

(i) we have H0(ΓK , ad0(ρ)) = H0(ΓK , ad0(ρ)∗) = 0;
(ii) we have H1(Gal(K(ad0(ρ))/K), ad0(ρ)) = 0 and H1(Gal(K(ad0(ρ)∗)/K), ad0(ρ)∗) = 0;

(iii) for any non-zero ψ ∈ H1
DS (ΓS , ad0(ρ)) and φ ∈ H1

D⊥S
(ΓS , ad0(ρ)∗), the fields Fψ and Fφ are

linearly disjoint over F , where Fψ (respectively Fφ) is the fixed field of the kernel of the
homomorphism obtained by restricting ψ (respectively φ) to ΓF ;

(iv) for any non-zero ψ ∈ H1
DS (ΓS , ad0(ρ)) and φ ∈ H1

D⊥S
(ΓS , ad0(ρ)∗), there is an element

γ ∈ ΓK such that ρ(γ) ∈ G◦(k) is regular semisimple with ZGk(ρ(γ))◦ = Tk, and for which
there is a unique root α ∈ Φ(G,T ) satisfying α(ρ(γ)) = χ(γ) 6= 1, for which k[ψ(ΓK)]
has an element with non-zero tα-component, and for which k[φ(ΓK)] has an element with
non-zero g−α-component.

Remark 3.5. In (iv), note that α(ρ(γ)) makes sense because ρ(γ) ∈ T (k), as any semisimple
element g ∈ G◦(k) satisfies g ∈ ZGk(g)◦. Also, tα is the span of the α-coroot vector and g−α is the
−α root space.

Remark 3.6. Observe that these conditions are insensitive to extension of k.

Let S be a finite set of places of K containing the archimedean places, the places over p, and the
places where ρ is ramified.

Proposition 3.7. Let DS be a global deformation condition that satisfies the tangent space in-
equality, and suppose ρ is big relative to DS. There is a finite set of places T ⊃ S such that the
deformation condition DT obtained by extending DS allowing deformations according to Dram

v for
v ∈ T\S satisfies

H1
D⊥T

(ΓK , ad0(ρ)∗) = 0.

Proof. This is almost [Pat15, Proposition 5.2]. There, we find places v of K satisfying the hypothe-
ses necessary to define Ramakrishna’s deformation condition using the Chebotarev density theorem
on the extension FψFφK(ρ)/K, where K(ρ) is the fixed field of the kernel of ρ, using as input the
element γ in the definition of bigness. The only difference here is that we have the additional
requirement that ρ(Γv) ⊂ G◦(k), or equivalently ρ(Frobv) ∈ G◦(k) as ρ is unramified at v.

Let K ′ denote the fixed field of the kernel of the composition of ρ with the map to the component
group of Gk. We apply the Chebotarev density theorem to the extension FψFφK(ρ)/K ′, using that
ρ(γ) ∈ G◦(k), obtaining a place v′ with ρ(Frobv′) ∈ G◦(k) as well as the original conditions. As
the primes of K ′ which are split over K have density 1, we may freely add the condition that the
place v′ of K ′ is split over the place v of K. As K ′v′ = Kv, we conclude that ρ(Frobv) ⊂ G◦(k).
The original argument then shows that adding Ramakrishna’s deformation condition at v to the
global deformation condition decreases the size of the dual Selmer group. �
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There is an easy case in which we can check that ρ is big relative to a global deformation DS
satisfying the tangent space inequality. Let G′ be the derived group of G◦, and h the Coxeter
number of G′.

Proposition 3.8. Suppose that K ∩ Q(µp) = Q, that p is relatively prime to the order of the
component group of Gk, and that the root system of G◦ is irreducible and of rank greater than 1.
If G′(k) ⊂ ρ(ΓS), and p− 1 is greater than the maximum of 8#ZG′ and{

(h− 1)#ZG′ if #ZG′ is even

(2h− 2)#ZG′ if #ZG′ is odd

then ρ is big relative to DS.

Proof. This is part of the proof of [Pat15, Theorem 6.4]. Small modifications are needed to deal with
almost-reductive G. In particular, when deducing (ii), it is necessary to use inflation-restriction to
pass from the statement that H1(G′(k), ad0(ρ)) = 0 to the statement that H1(ρ(ΓS), ad0(ρ)) = 0
using that the index of G′(k) ⊂ G◦(k) ⊂ G(k) is prime to p. The arguments for (iii) and(iv) are
unchanged: both rely on constructing elements in the image of ρ using root data, so the argument
can take place inside G◦. �

Remark 3.9. The argument is not optimized to produce the weakest restriction on p. The approach
works uniformly for any irreducible root system: in any specific case improvements should be
possible.

Remark 3.10. The formulation in [Boo16, §2.3] is very similar (only treating the case that G has
connected fibers). Conditions (i), (iii), and (iv) are replaced by the simpler but stronger conditions
that ad0(ρ) is an absolutely irreducible representation of ΓK and the condition that

(iii) there exists γ ∈ ΓK such that ρ(γ) is regular semisimple with associated maximal torus
ZGk(ρ(γ))◦ equal to the split maximal torus Tk, and for which there is a unique root
α ∈ Φ(G,T ) satisfying α(ρ(γ)) = χ(γ) 6= 1. (If dimT = 1, we furthermore require that
χ(γ)3 6= 1.)

This condition holds in the situation of Proposition 3.8. The analysis follows analogous lines. The
conditions that the root system of G◦ is irreducible and that G′ is not of rank 1 are removed by
additional bookkeeping and imposing a stronger bound on p when the rank of G′ is 1.

3.3. Choosing Deformation Conditions. Let G′ be the derived group of G◦ and µ : G→ G/G′

be the quotient map. For a fixed lift ν of

µ ◦ ρ : ΓK → (G/G′)(k),

the heart of the matter is to choose deformations conditions so that we may apply Proposition 2.10
and Proposition 3.7 to produce a geometric lift of ρ with µ ◦ ρ = ν. We need:

(1) Locally liftable deformation conditions at finite places away from p where ρ is ramified.
(2) Locally liftable deformation conditions at places above p whose characteristic-zero points

are lattices in crystalline (or semistable representations).
(3) The tangent space inequality (2.2) to hold, which will require ρ to be odd.

It is necessary to extend O and k in order to define some of these deformation conditions: the
condition that ρ is big is unaffected (Remark 3.6), so we are free to do so. We will find such
deformation conditions when G = GSpm with even m ≥ 4 or G = GOm with m ≥ 5. In order to
have the necessary oddness assumption on ρ, in the latter case m 6≡ 2 (mod 4).

At the places where ρ is ramified, in §6 and §7, we will construct a minimally ramified deformation
condition by studying deformations of nilpotent (or equivalently unipotent) elements provided p ≥
m . For each place, this will potentially require a finite extension of k. After such a further extension,
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this will be a liftable deformation condition at v with tangent space of dimension h0(Γv, ad0(ρ))
(see Corollary 7.16). This generalizes the results for GLn obtained in [CHT08, §2.4.4].

At the places above p, when G = GOm or GSpm after extending k we will construct a Fontaine-
Laffaille deformation condition using Fontaine-Laffaille theory in §9. This requires the assumption
that ν⊗O[1

p ] is crystalline, p is unramified in K, ρ is torsion-crystalline with Hodge-Tate weights in

an interval of length p−2
2 , and that the Fontaine-Laffaille weights for each Zp-embedding of OK into

O are pairwise distinct. The deformation condition is liftable, and the dimension of the tangent
space will be h0(Γv, ad0(ρ)) + [Kv : Qp](dimGk−dimBk), where B is a Borel subgroup of G. This
generalizes the results for GLn obtained in [CHT08, §2.4.2].

Remark 3.11. The restriction that p is unramified in K and that the Hodge-Tate weights of
ρ are in an interval of length p−2

2 is required to use Fontaine-Laffaille theory. Approaches using
different flavors of integral p-adic Hodge theory should be able to remove it (for example, the
deformation condition based on ordinary representations worked out by Patrikis [Pat15, §4.1] does
so for a special class of representations). However, most previous work on studying deformation
rings using integral p-adic Hodge theory only gives results about the crystalline deformation ring
with p inverted, which does not suffice for our method.

The assumption that the Hodge-Tate weights are pairwise distinct is crucial, as otherwise the
expected dimensions of the local crystalline deformation rings are too small to use in Ramakrishna’s
method.

We also need to specify a deformation condition at the archimedean places v: we just require lifts
for which µ◦ρ|Γv = ν|Γv . This condition is very simple to arrange, as #Γv ≤ 2. At a complex place,
the dimension of the tangent space is zero and the dimension of the invariants is dimk ad0(ρ). At
a real place, the tangent space is zero when p > 2 and the invariants are the invariants of complex
conjugation on ad0(ρ).

Now we study the tangent space inequality (2.2). Let S be a set of places consisting of primes
above p, places where ρ is ramified, and the archimedean places. When using the local deformation
conditions as above at v ∈ S, the inequality (2.2) says exactly that
(3.1)

[K : Q](dimGk − dimBk) =
∑
v|p

[Kv : Qp](dimGk − dimBk) ≥
∑
v|∞

h0(Γv, ad0(ρ)) =
∑
v|∞

ad0(ρ)Γv

This is very strong: it is always true that dim ad0(ρ)Γv ≥ [Kv : R](dimGk−dimBk), so (3.1) holds
if and only if K is totally real and ρ is odd at all real places of K.

Assuming K is totally real and ρ is odd at all real places, we use Ramakrishna’s deformation
condition Dram

v at a collection of new places as in Proposition 3.7 (again possibly extending k). This
gives a new deformation condition DT for which H1

D⊥T
(ΓT , ad0(ρ)∗) = 0. Using Proposition 2.10,

we obtain the desired geometric lift.
Let us collect together all of our assumptions and record the result.

Theorem 3.12. Let G = GSpm with even m ≥ 4, or G = GOm with m ≥ 5. For a big rep-
resentation ρ : ΓK → G(k) with p ≤ m, fix a lift ν : ΓK → (G/G′)(k) to O of µ ◦ ρ such that
ν ⊗O[1

p ] is Fontaine-Laffaille. We furthermore assume that K is totally real and that ρ is odd at

all real places (which requires m 6≡ 2 (mod 4)). Assume that p is unramified in K and that ρ is

Fontaine-Laffaille at all places above p with Fontaine-Laffaille weights in an interval of length p−2
2 ,

pairwise distinct for each Qp embedding of K into O[1
p ]. Extend O (and k) so that all of the required

local deformation conditions may be defined. Then there is a finite set T of places containing the
archimedean places, the places above p, and the places where ρ is ramified such that there exists a
lift ρ : ΓK → G(O) such that

• µ ◦ ρ = ν.
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• ρ is ramified only at places in T
• ρ is Fontaine-Laffaille at all places above p, and hence crystalline.

In particular, ρ is geometric. If we combine this with Proposition 3.8, we obtain Theorem 1.1.

Remark 3.13. Using the local deformation conditions for GLn in [CHT08, §2.4.1] and [CHT08,
§2.4.4], the same argument gives an identical result with G = GLn. But for n > 2 it is impossible
to satisfy the oddness hypothesis. For GL2, this is a variant of [Ram02, Theorem 1b].

Remark 3.14. For other groups, the method will produce lifts provided appropriate local condi-
tions exist. The deformation conditions we used are only available in full strength for symplectic
and orthogonal groups. An alternative deformation condition above p is the ordinary deformation
condition [Pat15, §4.1], available for any G. For ramified primes not above p, §6 provides a defor-
mation condition assuming a certain nilpotent centralizer is smooth and ρ|Γv is tamely ramified of
the special type considered in §6.

4. Representatives for Nilpotent Orbits

As a first step on the road to defining the minimally ramified deformation condition, we study
integral representatives of nilpotent orbits. Useful background about nilpotent orbits is collected
in [Jan04]. We focus on classical groups, so consider G = GLn, G = Spm, or G = Om over a
discrete valuation ring O with residue field k of characteristic p > 0. Assume p is very good for
Gk. Let g = LieG and K be the field of fractions of O.

The nilpotent orbits forG over an algebraically closed field of good characteristic2 can be classified
by combinatorial data C that is independent of the characteristic. For classical groups, nilpotent
orbits can be classified by their Jordan canonical form in terms of partitions . For a partition σ ∈ C,
let OF,σ ⊂ gF denote the corresponding orbit over the algebraically closed field F . For σ ∈ C, we
seek elements

(4.1) Nσ ∈ g such that (Nσ)k ∈ Ok,σ and (Nσ)K ∈ OK,σ.

This makes precise the statement that NK and Nk “lie in the same nilpotent orbit.”

Remark 4.1. For a general reductive group scheme G, the Bala-Carter classification can be in-
terpreted as giving a characteristic-free classification of nilpotent orbits, allowing a generalization
of the condition in (4.1). One can obtain such Nσ in terms of root data following [SS70, III.4.29].
We need the additional information provided by the concrete description in the symplectic and
orthogonal cases to analyze the centralizer ZG(N) as an O-scheme, so do not use this.

Example 4.2. Nilpotent orbits for GLn correspond to partitions n = n1 + n2 + . . . + nr. For a
partition σ of n, Let Nσ ∈ g be the nilpotent matrix in Jordan canonical form whose blocks (in
order) are of sizes n1, n2, . . . , nr. Clearly Nσ has entries in O and satisfies (4.1).

For symplectic and orthogonal groups, we can produce the desired Nσ using a minor extension of
the classical results known over algebraically closed fields [Jan04, §1]. Let G = Spm with m = 2n,
or G = Om with m = 2n or m = 2n + 1. We assume n ≥ 2. Recall that Spm and Om are defined
using standard pairings on a free O-module M of rank m. For m = 2n, the standard alternating
pairing ϕstd on Om is the one given by the block matrix(

0 I ′n
−I ′n 0

)
,

where I ′n denotes the anti-diagonal matrix with 1’s on the diagonal. The standard symmetric pairing
ϕstd on Om is the one given by the matrix I ′m.

2By convention, characteristic zero is good for any group.
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Remark 4.3. We chose to work with Om instead of SOm, as the classification is cleaner for Om.
The nilpotent orbits are almost the same for SOm, except that certain nilpotent orbits of Om (the
ones where the partition contains only even parts) split into two SOm-orbits [Jan04, Proposition
1.12] (conjugation by an element of Om with determinant −1 carries one such orbit into the other).

Definition 4.4. Let σ denote a partition m = m1 +m2 + . . .+mr of m. It is admissible if

• every even mi appears an even number of times when G = Om ;
• every odd mi appears an even number of times when G = Spm.

The admissible partitions of m are in bijection with nilpotent orbits of Spm or Om over an
algebraically closed field [Jan04, Theorem 1.6]. The corresponding orbit is the intersection of g ⊂
glm with the GLm-orbit corresponding to that partition of m. Note that GLm-orbit representatives
in Jordan canonical form need not lie in g.

We will construct nilpotents together with a pairing, and then show how to relate the constructed
pairing to the standard pairings used to define G. Let ε = 1 in the case of Om, and ε = −1 in the
case of Spm.

Definition 4.5. Let d ≥ 2 be an integer. Define M(d) = Od, with basis v1, . . . vd and a perfect
pairing ϕd such that

ϕd(vi, vj) =

{
(−1)i, i+ j = d+ 1

0, otherwise

(alternating for even d, symmetric for odd d). Define a nilpotent Nd ∈ End(M(d)) by Ndvi = vi−1

for 1 < i ≤ d and Ndv1 = 0.
Similarly, define M(d, d) = O2d with basis v1, . . . vd, v

′
1, . . . , v

′
d and a perfect ε-symmetric pairing

ϕd,d by extending

ϕd,d(vi, vj) = ϕd,d(v
′
i, v
′
j) = 0 and ϕd,d(vi, v

′
j) =

{
(−1)i, i+ j = d+ 1

0, otherwise

Define a nilpotent Nd,d ∈ End(M(d, d)) by Nd,dvi = vi−1 and Nd,dv
′
i = v′i−1 for 1 < i ≤ d, and

Nd,dv1 = Nd,dv
′
1 = 0.

It is straightforward to verify the pairings are perfect and that Nd and Nd,d are skew with respect
to the corresponding pairing. The pairing ϕd,d can be symmetric or alternating.

Given an admissible partition σ : m = m1 +m2 + . . .+mr, we will construct a free O-module of
rank m with an ε-symmetric perfect pairing and a nilpotent endomorphism respecting that pairing
such that the Jordan block structure of nilpotent endomorphism in geometric fibers is given by σ.
Let ni(σ) = #{j : mj = i}.

• If G = Om then ni(σ) is even for even i, so we can define

Mσ =
⊕
i odd

M(i)⊕ni(σ) ⊕
⊕
i even

M(i, i)⊕ni(σ)/2.

• If G = Spm then ni(σ) is even for odd i, so we can define

Mσ =
⊕
i odd

M(i, i)⊕ni(σ)/2 ⊕
⊕
i even

M(i)⊕ni(σ).

Let ϕσ and Nσ denote the pairing and nilpotent endomorphism defined by the pairing and nilpotent
endomorphism on each piece using Definition 4.5. In all cases, Mσ is a free O-module of rank m.
For each σ, let Gσ be the automorphism scheme Aut(Mσ, ϕσ), so for an algebraically closed field
F over O we have an isomorphism (Gσ)F ' GF well-defined up to G(F )-conjugation by using
F -linear isomorphisms (Mσ, ϕσ)F ' (Fm, ϕstd).
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Lemma 4.6. For all admissible partitions of m, the specializations of the Nσ at geometric points
ξ of SpecO constitute a set of representatives for the nilpotent orbits of Gξ, and the specializations
lie in the orbit corresponding to σ.

Proof. The set of admissible partitions of m is in bijection with the set of nilpotent orbits over
any algebraically closed field. The Nσ we constructed are integral versions of the representatives
constructed in [Jan04, §1.7]. �

Let e1, e2, . . . em be the standard basis for Om. The elements ei and em+1−i pair non-trivially
under the standard pairing. When m = 2n + 1, en+1 pairs non-trivially with itself under the
standard pairing. We now relate the standard pairings to the pairings ϕσ.

Proposition 4.7. Suppose that
√
−1,
√

2 ∈ O×. Then ϕσ is equivalent to the standard pairing
over O. There exists an O-basis {vi} of Om with respect to which the pairing is given by ϕσ and
Nσ satisfies the condition in (4.1) for G = Spm or G = Om.

Proof. The standard pairings are very similar to ϕσ. In the case of Spm, each basis vector pairs
trivially against all but one other basis vector, with which it pairs as ±1. So after reordering the
basis, ϕσ is the standard pairing. The case of Om is slightly more complicated. Let σ : m =
m1 +m2 + . . .+mr be an admissible partition. The construction of Mσ and ϕσ gives a basis {vi,j}
where 1 ≤ i ≤ r and 1 ≤ j ≤ mi. From the construction of ϕσ, we see that vi,j pairs trivially
against all basis vectors except for vi,mi+1−j . So as long as 2j 6= mi + 1, we obtain a pair of basis
vectors which are orthogonal to all others and which pair to ±1. For each odd mi, the vector
vi,(mi+1)/2 pairs non-trivially with itself. The standard pairing with respect to the basis ei has such
a vector only when m = 2n+ 1 and then only for one ei.

We must change the basis over O so that ϕσ becomes the standard symmetric pairing. Let
v = vi,(mi+1)/2 and v′ = vj,(mj+1)/2 be two distinct vectors which pair non-trivially with themselves.

In particular, ϕσ(v, v) = (−1)(mi+1)/2 := η and ϕσ(v′, v′) = (−1)(mj+1)/2 := η′. Define

w =

√
ηv −

√
−η′v′

√
2

and w′ =

√
ηv +

√
−η′v′

√
2

.

Then we see that ϕσ(w,w) = 0 = ϕσ(w′, w′) and ϕσ(w,w′) = 1. Making this change of variable over
O (which requires

√
−1,
√

2 ∈ O×), we have reduced the number of basis vectors which pair non-
trivially with themselves by two, and produced a new pair of basis vectors orthogonal to the others
and which pair to 1. By induction, we may therefore pick a basis v′1, . . . , v

′
m for which at most one

basis vector pairs non-trivially with itself under ϕσ. After re-ordering, we may further assume that
ϕσ(v′i, v

′
j) = 0 unless i+ j = m+ 1, in which case ϕσ(v′i, v

′
j) = ±1. Suppose j = m+ 1− i. If i 6= j,

by scaling v′i we may assume that ϕσ(v′i, v
′
j) = 1. If i = j, we already know that ϕσ(v′i, v

′
j) = 1.

With respect to this basis, ϕσ is the standard pairing.
The last statement immediately follows from Lemma 4.6. �

5. Smoothness of Centralizers of Pure Nilpotents

Let G be a split reductive group scheme over a discrete valuation ring O with g = LieG. Let k
be the residue field of characteristic p > 0, and assume p is very good for Gk. For N ∈ g, denote
the scheme-theoretic centralizer of N by ZG(N); it represents the functor

R 7→ {g ∈ G(R) : AdG(g)NR = NR}

for O-algebras R. We will study the centralizer ZG(Nσ) in more detail where Nσ ∈ g is an element
satisfying (4.1). In particular, this centralizer will be shown to be smooth when G is symplectic or
orthogonal. We first review the known theory over fields, and then develop and apply a technique
to deduce smoothness over O (i.e. O-flatness) from the known smoothness in the field case.
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5.1. Centralizers over Fields. In this section, let k be an algebraically closed field, G be a
connected reductive group over k, and N a nilpotent element of g = LieG. As the formation of the
scheme-theoretic centralizer commutes with base change, smoothness results for ZG(N) over k will
imply such results over general fields (not necessarily algebraically closed).

The group scheme ZG(N) is the fiber over 0 ∈ g of the composition

G
AdG−→ GL(g)

T 7→TN−N−→ g.

Hence LieZG(N) is the kernel of

g
adg−→ End(g)

T 7→TN−→ g

which is the Lie algebra centralizer zg(N).

Remark 5.1. In references using the language of varieties rather than schemes (such as [Jan04]),
ZG(N) is usually defined via its geometric points and hence is reduced and smooth, so the condition
that the scheme ZG(N) is smooth becomes the condition that the variety ZG(N) has Lie algebra
zg(N).

In a wide range of situations, all nilpotent centralizers are smooth. A direct calculation shows
that this holds for G = GLn (see [Jan04, §2.3]), and a criterion of Richardson [Jan04, Theorem 2.5]
can be applied to show:

Fact 5.2. If G is an orthogonal or symplectic (similitude) group, any nilpotent centralizer is smooth
over k.

Remark 5.3. Suppose ZG(N) is smooth over k and p is good for G. The classification of nilpotent
orbits is independent of p, as are their dimensions, so the dimension of ZG(N) is independent of p
as well.

5.2. Checking Flatness over a Dedekind Base. We want to analyze smoothness of centralizers
in the relative setting (especially over SpecO). If ZG(Nσ) → SpecO is flat and the special and
generic fibers are smooth then ZG(N) is smooth over O. The following lemma gives a way to check
that a morphism to a Dedekind scheme is flat.

Lemma 5.4. Let f : X → S be finite type for a connected Dedekind scheme S. Then f is flat
provided the following all hold:

(1) for each s ∈ S, Xs is reduced and non-empty;
(2) for each s ∈ S, Xs is equidimensional with dimension independent of s;
(3) there are sections {σi ∈ X(S)} to f such that for every irreducible component of a fiber

above a closed point, there is a section σi which meets the fiber only in that component.

Remark 5.5. This lemma is a modification of [GY03, Proposition 6.1] to allow multiple irreducible
components in the fibers.

Proof. It suffices to prove the result when S = Spec(A) for A a discrete valuation ring with uni-
formizer π. Let Xη be the generic fiber and Xs the special fiber. Consider the schematic closure
ı : X ′ ↪→ X of the generic fiber. The scheme X ′ is flat over Spec(A) since flatness is equivalent to
being torsion-free over a discrete valuation ring, and there is an exact sequence

(5.1) 0→ J → OX → ı∗OX′ → 0

where J is a coherent sheaf killed by a power of π. We will show that ı is an isomorphism by
analyzing the special fiber.

First, we claim that the dimension of each irreducible component on the special fiber of X ′ is
the same as the dimension of the equidimensional Xη. We will get this from flatness of X ′. The
generic fiber of X ′ is Xη, which is equidimensional and non-empty by hypothesis. Furthermore, X ′

is the union of the closures Zi of the reduced irreducible components Xη,i of Xη, and each Zi is
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A-flat with integral η-fiber, hence integral. We just need to analyze the dimension of irreducible
components of (Zi)s when (Zi)s 6= ∅. Since Zi is integral, we can apply [Mat89, Theorem 15.1,
15.5] to such Zi to conclude that the dimension of each irreducible component of the special fiber
of X ′ is the same as the dimension of the generic fiber.

Observe that the sections σi factor through the closed subscheme X ′ ⊂ X, as we can check this
on the generic fiber since X ′ is A-flat. Thus X ′ meets every irreducible component of Xs away from
the other irreducible components of Xs. We would have that |X ′s| = |Xs| if X ′s is equidimensional
of the same dimension as the equidimensional Xs. We have shown the dimension of any irreducible
component in X ′s is the same dimension as the common dimension of irreducible components of the
generic fiber Xη of X ′. By hypothesis, the dimension of any irreducible component of the generic
fiber of X is the same as the dimension of any irreducible component of the special fiber of X. Thus
the dimension of any irreducible component of X ′s is the same as the dimension of each irreducible
component of Xs, giving that |X ′s| = |Xs|. As Xs is reduced, this forces ıs : X ′s ↪→ Xs to be an
isomorphism.

Now tensoring (5.1) with the residue field of A gives an exact sequence

0→ J/πJ → OX,s → ı∗OX′,s → 0

because OX′ is A-flat. But J/πJ = 0 as ıs is an isomorphism. Hence J = πJ = π2J = . . . = πnJ =
0 for n large, so X = X ′ is flat over A. �

Corollary 5.6. In the situation of the lemma, if the fibers are also smooth then X is smooth.

Proof. For a flat morphism of finite type between Noetherian schemes, smoothness of all fibers is
equivalent to smoothness of the morphism. �

5.3. Centralizers for Orthogonal and Symplectic Groups. To apply Corollary 5.6, we need
information about the component group of centralizers of nilpotents. For GLn over a field, all such
centralizers are connected. For symplectic and orthogonal groups, there is an explicit description
of Z(Nσ) where Nσ is the nilpotent constructed in 4. We continue the notation of that section:
G is Spm or Om (with m ≥ 4) over a discrete valuation ring O with a residue field k of good
characteristic p 6= 2.

Let σ : m1 + . . . + mr be an admissible partition of m. We assume that O is large enough so
that Proposition 4.7 holds, and take N := Nσ. Then there exists elements v1, . . . , vr ∈ M := Om
such that

v1, Nv1, . . . , N
m1−1v1, v2, Nv2, . . . , N

mr−1vr

is a basis for M . Furthermore, Nmivi = 0 for i = 1, . . . r, and the pairing between basis elements
is given by ϕ := ϕσ. In particular, each vi pairs non-trivially with only one other basis element
Xdi−1vi∗ , for some i∗ ∈ {1, . . . , r}.

To understand the G-centralizer of N , we construct an associated grading of M as in [Jan04,
§3.3,3.4]. This is motivated by the Jacobson-Morosov theory of sl2-triples over a field of suffi-
ciently large characteristic, but for symplectic and orthogonal groups it is constructed by hand in
characteristic p 6= 2 below.

Remark 5.7. Let Mk = M ⊗O k = km. Every nilpotent X ∈ End(Mk) gives a filtration (and
grading) of Mk defined by Fili = ker(Xi). For GLn, this is a nice filtration and is used in [CHT08]
to define the minimally ramified deformation condition for GLn. However, this filtration need not
be isotropic with respect to the pairing, so we will construct a nicer grading associated to X.

Definition 5.8. Let M(s) be the span of N jvi for all i and j such that s = 2j + 1 −mi. We set

M (s) =
⊕

t≥sM(t), and also define L(s) to be the span of {vi : vi ∈M(s)}.
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We now record some elementary properties of the preceding construction; all are routine to check,
and the analogous proofs over a field may be found in [Jan04, §3.4]. We have that M =

⊕
sM(s),

and

vi ∈M(−(di − 1)), Nvi ∈M(−(di − 1) + 2), . . . , Ndi−1vr ∈M(dr − 1).

Furthermore, we know N ·M(s) ⊂M(s+ 2) and M(s) = N ·M(s− 2)⊕ L(s) for s ≤ 0.
The dimension of M(s) is ms(σ) := #{j : dj − 1 ≥ |s|}. The dimension of L(s) equals ls(σ) :=

ms+1(σ)−ms(σ). Furthermore, the pairing ϕ interacts well with the grading: a computation with
basis elements gives that ϕ(M(s),M(t)) 6= 0 implies s+ t = 0.

The above grading on M corresponds to the one-parameter subgroup λ : Gm → G for which
the action of t ∈ Gm on M(s) is given by scaling by ts. The dynamic method (see [CGP15, §2.1])
associates to λ a parabolic subgroup PG(λ) with Levi ZG(λ). Define CN and UN to be the scheme-
theoretic intersections

CN = ZG(N) ∩ ZG(λ) = {g ∈ ZG(N) : gM(i) = M(i) for all i}

UN = ZG(N) ∩ UG(λ) = {g ∈ ZG(N) : (g − 1)M (i) ⊂M (i+1) for all i}.

Fact 5.9. The group-scheme ZG(N)k is a semi-direct product of (CN )k and the smooth connected
unipotent subgroup (UN )k. In particular, the connected components of ZG(N)k are the same as the
connected components of (CN )k.

Remark 5.10. This is [Jan04, Proposition 3.12]. The existence of λ and this decomposition is not
specific to symplectic and orthogonal groups [Jan04, Proposition 5.10].

We finally give a concrete description of CN . We first define a pairing on L(s). Recall that the
space L(s) of “lowest weight vectors” in M(s) has basis {vi : 1 − di = s}. We define a pairing on
L(s) by

ψs(v, w) = ϕ(v,N−sw).

A direct calculation shows that ψs is non-degenerate and that ψs is symmetric if (−1)s = ε and is
alternating if (−1)s = −ε [Jan04, §3.7].

A point of CN preserves the grading on M , and since it commutes with the “raising operator” N
its action on M is determined by its action on the space L(s) of “lowest weight vectors” in M(s).
So the following fact is no surprise.

Proposition 5.11. There is an isomorphism of algebraic groups

CN '
∏
s≤0

Aut(L(s), ψs)

The corresponding statement over a field is [Jan04, §3.8 Proposition 2, 3]: the proof is the same.

Example 5.12. Let G = Spm. Unraveling when ψs is symmetric or alternating, we see that

CN '
∏

s≤0;s odd

O(L(s), ψs)×
∏

s≤0;s even

Sp(L(s), ψs).

The special fibers of the symplectic factors are connected, while the orthogonal factors have two
connected components in the special fiber. Thus there are 2t connected components, where t is the
number of odd s for which L(s) 6= 0. For each component, there is a section g ∈ CN (O) meeting
that component corresponding to a choice of ± Id ∈ O(L(s), ψs) for each odd s with L(s) 6= 0. The
connected components of ZG(N) are the same as those for CN by Fact 5.9.

Example 5.13. Let G = Om. We likewise see that

CN '
∏

s≤0;s even

O(L(s), ψs)×
∏

s≤0;s odd

Sp(L(s), ψs).
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Again there are 2t connected components of ZG(N), where t is the number of even s for which
L(s) 6= 0.

Now suppose that G = SOm. The elements N we considered in this section are representatives for
some of the nilpotent orbits of SOm. The group CN has the same structure as for G = Om, except
we require that the overall determinant be 1; this has 2t−1 connected components. Though SOm

has more nilpotent orbits than Om, according to Remark 4.3 their representatives are conjugate
by an element Om(k) with determinant −1 to the representatives constructed in Proposition 4.7.
This shows that there are sections g ∈ CN (O) meeting each component.

Remark 5.14. Suppose q is a square in O×. For use in the proof of Proposition 6.13, we need the
existence of an element Φ ∈ G(O) such that adG(Φ)Nσ = qNσ. If α2 = q, taking Φ = λ(α) would

work: Φ would scale N j
σvi ∈M(s) by αs, and Nσ increases the degree by 2.

This Φ is a version for symplectic and orthogonal groups of the diagonal matrix denoted Φ(σ, a, q)
whose diagonal entries are increasing powers of q used in [Tay08, §2.3]. There it is checked that
adG(Φ(σ, a, q))Nσ = qNσ where Nσ is the nilpotent representative in Jordan canonical form con-
sidered in Example 4.2 for the partition σ of m.

5.4. Smoothness of Centralizers. We now return the case when G is a split reductive group
scheme with connected fibers over a discrete valuation ring O with residue field k of very good
characteristic p > 0. We assume that

√
−1,
√

2 ∈ O. Suppose we are given an integral representative
N = Nσ ∈ g := LieG for the nilpotent orbit on geometric fibers corresponding to σ ∈ C as in (4.1):
that is, an element such that

Nk ∈ Ok,σ and NK ∈ OK,σ.

Proposition 4.7 provides such N in symplectic and orthogonal cases as
√
−1,
√

2 ∈ O×. We wish
to check that the ZG(N) is smooth over O. This N satisfies

(5.2) ZGK (NK) and ZGk(Nk) are smooth of the same dimension.

Remark 5.15. Some assumption on N is essential. Otherwise NK and Nk can lie in different
nilpotent orbits (in terms of the combinatorial characteristic-free classification of geometric orbits),
and so ZGK (NK) and ZGk(Nk) could have different dimensions, in which case ZG(N) cannot be
O-flat. An example of this is the element N2 in Example 1.6.

Now we wish to check the conditions necessary to apply Corollary 5.6. We define

A(N) = ZGk(Nk)(k)/ZGk(Nk)
◦(k),

and study when the following holds:

(5.3) each element of A(N) arises from some s ∈ ZG(N)(O).

Note that this checks the criterion in Corollary 5.6 as

ZGk(Nk)(k)/ZGk(Nk)
◦(k) = (ZGk(Nk)/ZGk(Nk)

◦) (k)

by Lang’s theorem, and since the irreducible components of ZGk(NK) are the same as connected
components by smoothness.

We are free to make a local flat extension of O, as it suffices to check flatness after such an
extension. In particular, it suffices to check (5.3) when O is Henselian and k is algebraically closed.
Examples 5.12 and 5.13 give such sections when G = Spm or G = SOm. We will use these cases to
get a result for similitude groups.

Let π : G̃′ → G′ be the simply connected central cover of the derived group G′ over O. As p

is very good, G̃′ and G′ have isomorphic Lie algebras via π and LieG′ is a direct factor of LieG
with complement Lie(ZG), so we may abuse notation and view N as an element of all of these Lie
algebras over O.
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Let S be a (split) maximal central torus in G. Consider the isogeny S × G̃′ → G. As S acts
trivially on N , we see that S × Z

G̃′
(N) is the preimage of ZG′(N) under this isogeny. As p is very

good for G, we obtain finite étale surjections

Z
G̃′

(N)→ ZG′(N) and S × Z
G̃′

(N)→ ZG(N)

over O.

Lemma 5.16. The condition (5.3) holds for G̃′ if and only if (5.3) holds for G.

Proof. Assume G̃′ satisfies (5.3). Pick a connected component C of ZGk(Nk). The preimage of C
under S × Z

G̃′
(N) → ZG(N) is a union of k-fiber components of the form Sk × C ′ where C ′ is a

connected component of Z
G̃′k

(Nk). By assumption, there exists s ∈ Z
G̃′

(N)(O) meeting any such

C ′. The image of (1, s) is a point of ZG(N)(O) meeting C.
Conversely, assume G satisfies (5.3). Pick a connected component C ′ of Z

G̃′k
(Nk). Under S ×

Z
G̃′

(N)→ ZG(N), Sk×C ′ maps onto a connected component C of ZGk(Nk). By assumption, there

exists s ∈ ZG(N)(O) such that sk ∈ C. As k is algebraically closed, there is s′k ∈ (S × Z
G̃′

(N))(k)

lifting sk and lying in C ′. As S×Z
G̃′

(N)→ ZG(N) is a finite étale cover and O is Henselian, there

exists s′ ∈ (S × Z
G̃′

(N))(O) lifting s and reducing to s′k. �

For example, this lets us pass between Sp2n and GSp2n by way of the projective symplectic
group.

Proposition 5.17. For G a symplectic or orthogonal similitude group, and N = Nσ ∈ g the
element satisfying (4.1) given by Proposition 4.7 for an admissible partition σ, the centralizer
ZG(N) is smooth over O.

Proof. By Fact 5.2, ZGk(Nk) and ZGK (NK) are smooth. By the classification of nilpotent or-
bits over algebraically closed fields, the dimension of the orbit only depends on the combinatorial
classification for the orbit in very good characteristic and in characteristic 0, so these fibers are
equidimensional of the same dimension. By Corollary 5.6, it suffices to find s ∈ ZG(N)(O) meeting
any connected component of ZGk(Nk).

Using Lemma 5.16, we reduce checking (5.3) to the cases of Spm and SOm, covered by Examples
5.12 and 5.13. �

Remark 5.18. Consider a nilpotent orbit of GLn with representative N given in Example 4.2. As
ZGk(Nk) is connected [Jan04, Proposition 3.10], the identity section shows (5.3) holds. This shows
ZG(N) is smooth.

Remark 5.19. It is not hard to extend the above argument to work for groups such that all the
irreducible factors of the root system are of classical type. For the exceptional groups, one could
find N as in Remark 4.1 and attempt to check (5.3) holds by hand (there are finitely many cases).
A conceptual approach would be preferable.

Remark 5.20. McNinch analyzes the centralizer of an “equidimensional nilpotent” in [McN08].
An equidimensional nilpotent is an element N ∈ g such that NK is nilpotent and the dimension
of the special and generic fibers of ZG(N) are the same. [McN08, §5.2] claims that such ZG(N)
are O-smooth because the fibers are smooth of the same dimension. This deduction is incorrect:
it relies on [McN08, 2.3.2] which uses the wrong definition of an equidimensional morphism and
thereby incorrectly applies [sga03, Exp. II, Prop 2.3].

According to [sga03, Exp. II, Prop 2.3] (or [Gro66, §13.3, 14.4.6, 15.2.3]), for a Noetherian
scheme Y , a morphism f : X → Y locally of finite type, and points x ∈ X and y = f(x) with Oy

normal, f is smooth at x if and only if f is equidimensional at x and f−1(y) is smooth over k(y) at
x. But by definition in [Gro66, 13.3.2], an equidimensional morphism is more than just a morphism
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all of whose fibers are of the same dimension (the condition checked in [McN08, 2.3.2]): a locally
finite type morphism f is called equidimensional of dimension d at x ∈ X when there exists an
open neighborhood U of x such that for every irreducible component Z of U through x, f(Z) is
dense in some irreducible component of Y containing y and for all x′ ∈ U the fiber f−1(f(x′)) ∩ U
has all irreducible components of dimension d.

This is much stronger than the fibers simply being of the same dimension. To see the importance
of the extra conditions, consider a discrete valuation ring O with field of fractions K and residue
field k, and the morphism from X, the disjoint union of SpecK and Spec k, to Y = SpecO. The
fibers are of the same dimension (zero) and smooth but the morphism is not flat. This morphism
is also not equidimensional at Spec k: the only irreducible component of X containing Spec k is the
point itself, with image the closed point of SpecO. This is not dense in SpecO, the only irreducible
component of the only open set containing the closed point of SpecO.

The smoothness of centralizers of an equidimensional pure nilpotent is important to proving
the main results of [McN08]. In particular, the results in §6 and §7 in [McN08] crucially rely on
the smoothness of the centralizers of such nilpotents, leaving a gap in the proof of Theorem B
in [McN08] concerning the component group of centralizers. The method we have discussed here
reverses this, understanding the geometric component group well enough to produce sufficiently
many O-valued points in order to deduce smoothness of the centralizer in classical cases in very
good characteristic via Lemma 5.4.

6. Minimally Ramified Deformations: Tame Case

In this section, we will generalize the tamely ramified case of the minimally ramified deforma-
tion condition introduced in [CHT08, §2.4.4] for GLn to symplectic and orthogonal groups. We
also explain why another more immediate notion based on parabolic subgroups, giving the same
deformation condition for GLn, is not liftable in general (even for GSp4). We begin by defining the
notion of a pure nilpotent lift and then define and study the deformation condition.

6.1. Pure Nilpotent Lifts. As before, let O be a discrete valuation ring with residue field k of
characteristic p > 0, and let G be a split reductive group scheme over O (with connected fibers)
such that p is very good for G. Let g = LieG. For a nilpotent element N ∈ gk of type σ ∈ C, we
will define the notion of a pure nilpotent lift of N in g and study the space of such lifts, assuming
there exists Nσ ∈ g lifting N such that (Nσ)K ∈ OK,σ and such that ZG(Nσ) is smooth over O.

Remark 6.1. For GLn and for orthogonal and symplectic (similitude) groups, Remark 5.18 and
Proposition 5.17 show that for any nilpotent N ∈ gk, there exists N ′σ ∈ g such that (N ′σ)k ∈ Ok,σ,

ZG(N ′σ) is O-smooth, and such that (N ′σ)k and N are G(k)-conjugate. Thus (N ′σ)k and N are
conjugate by g ∈ G(k′) for some finite extension k′/k. Lift g to an element g ∈ G(O′) for a Henselian
discrete valuation ring local over O and having residue field k′. The element Nσ := gN ′σg

−1 ∈ gO′

reduces to Nk′ and has the required properties. So the above hypothesis is satisfied after a finite
flat local extension of O.

Definition 6.2. Define the functor NilN : CO → Sets by

NilN (R) = {N ∈ gR|AdG(g)(Nσ) = N for some g ∈ Ĝ(R)}.

Call these N ∈ NilN (R) the pure nilpotents lifting N .

This is obviously a subfunctor of the formal neighborhood of N in the affine space g over O
attached to g. The key to analyzing NilN is that ZGR(N) is smooth over R since ZG(Nσ) is O-
smooth and N is in the G-orbit of (Nσ)R. To ease notation below, we shall write gNg−1 rather

than AdG(g)(N) for g ∈ Ĝ(R).

Lemma 6.3. Under the assumption that ZG(Nσ) is O-smooth, the functor NilN is pro-representable.
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Proof. We will use Schlessinger’s criterion to check pro-representability. As NilN is a subfunctor

of the formal neighborhood of the scheme g at N , the only condition to check is the analogue of
Definition 2.5(2): given a Cartesian diagram in CO

R1 ×R0 R2
π2 //

π1
��

R2

��

R1
// R0

and Ni ∈ NilN (Ri) such that N1 and N2 reduce to N0, we want to check that N1×N2 ∈ NilN (R1×R0

R2). By definition, there exists g1 ∈ Ĝ(R1) and g2 ∈ Ĝ(R2) such that N1 = g1Nσg
−1
1 and

N2 = g2Nσg
−1
2 . Consider the element g1g

−1
2 ∈ Ĝ(R0). Observe that

g1g
−1
2 Nσg2g

−1
1 = g1N0g

−1
1 = Nσ ∈ gR0 .

In particular, g1g
−1
2 ∈ ZG(Nσ)(R0). The extension R2 → R0 has nilpotent kernel, so as ZG(Nσ) is

smooth over O there exists h ∈ ZG(Nσ)(R2) lifting g1g
−1
2 . The element

(g1, hg2) ∈ R1 ×R0 R2

conjugates N1 ×N2 to Nσ. Hence N1 ×N2 ∈ NilN (R1 ×R0 R2). �

Lemma 6.4. The functor NilN is formally smooth, in the sense that for a small surjection R2 → R1

of coefficient O-algebras the map
NilN (R2)→ NilN (R1)

is surjective. Moreover, when ZG(Nσ) is O-smooth and NilN is representable, it has relative di-
mension dimGk − dimZGk(Nk) over O.

Proof. Given N ∈ NilN (R1), there exists g ∈ Ĝ(R1) such that gNg−1 = Nσ. As G is smooth over

O, we may find g′ ∈ Ĝ(R2) lifting g. Then (g′)−1Nσg
′ is a lift of N to R2. From its definition, the

tangent space to NilN is gk/zg(Nk), so the formally smooth NilN has relative dimension dimGk −
dimZGk(Nk) since ZG(N) is O-smooth. �

Lemma 6.5. Suppose that A is a complete local Noetherian O-algebra with residue field k. Under
the assumption that ZG(Nσ) is O-smooth, the inverse limit lim←−NilN (A/mn

A) equals {N ∈ gA : N =

gNσg
−1 for some g ∈ G(A)}.

Proof. It is immediate that the second is a subset of the first. On the other hand, suppose we had

compatible elements Ni ∈ NilN (A/mi
A) such that Ni is Ĝ(A/mi

A)-conjugate to Nσ.

By induction, we will show there exists gi ∈ Ĝ(A/mi
A) such that Ni = giNσg

−1
i and gi reduces to

gi−1. The base case i = 1 is just the assertion that (Nσ)k equals N1. Given gi ∈ Ĝ(A/mi
A), we know

there is some element g′i+1 ∈ Ĝ(A/mi+1
A ) such that Ni = g′i+1Nσ(g′i+1)−1. The element (g′i+1)−1gi

lies in ZG(Nσ)(A/mi
A). As ZG(Nσ) is smooth over O, we may lift to produce an element g̃ ∈

ZG(Nσ)(A/mi+1
A ) for which Ni = g′i+1g̃Nσ(g′i+1g̃)−1 and such that g′i+1g̃ reduces to gi ∈ Ĝ(A/mi

A).
This completes the induction.

Finally let g ∈ Ĝ(A) be the limit of the gi and observe gNσg
−1 is the limit of the Ni. �

Remark 6.6. If we had defined NilN on the larger category ĈO in the obvious way, Lemma 6.5
would say that NilN is continuous.

Remark 6.7. One can define a scheme-theoretic “nilpotent cone” over O as the vanishing locus
of the ideal of non-constant homogeneous G-invariant polynomials on g. The arguments in this
section could be rephrased as constructing a formal scheme of pure nilpotents inside the formal
neighborhood of N in g. A natural question is whether there is a broader notion of pure nilpotents
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that gives a locally closed subscheme of the scheme-theoretic nilpotent cone. For instance, for
N,N ′ ∈ g, if their images in gK and gk are nilpotent in orbits with the same combinatorial
parameters, are N and N ′ conjugate under G over a discrete valuation ring local over O?

When G = GLn, this has been explored by Taylor in the course of constructing local deformation
conditions [Tay08, Lemma 2.5]. The method uses the explicit description of the orbit closures given
by specifying the Jordan canonical form to define an analogue of the orbit closures over O. It would
be interesting to find a way to do the same for a general split connected reductive group.

6.2. Passing between Unipotents and Nilpotents. We now specialize to the case that G is
either GSpm or GOm (or GLm to recover the results of [CHT08, §2.4.4]) over the ring of integers
O in a p-adic field with residue field k of characteristic p > 0 with m ≥ 4. As always, we assume
that p is very good for Gk (i.e. p 6= 2). Let g = Lie(G).

As in §6.1, we work with a pure nilpotent Nσ ∈ g for which ZG(Nσ) is O-smooth, (Nσ)K ∈ OK,σ,

and (Nσ)k ∈ Ok,σ. Define N := (Nσ)k. We studied deformations of N in §6.1, but will ultimately

want to analyze deformations of Galois representations which take on unipotent values at certain
elements of a local Galois group. Thus, we need a way to pass between unipotent and nilpotent
elements. For classical groups, we can use a truncated version of the exponential and logarithm
maps:

Fact 6.8. Suppose that p ≥ m and that R is an O-algebra. If A ∈ Matm(R) has characteristic
polynomial xm then

exp(A) := 1 +A+A2/2 + . . .+Am−1/(m− 1)!

has characteristic polynomial (x − 1)m. If B ∈ Matm(R) has characteristic polynomial (x − 1)m

then

log(B) := (B − 1)− (B − 1)2/2 + . . .+ (−1)m(B − 1)m−1/(m− 1)

has characteristic polynomial xm. Furthermore for C ∈ GLm(R) and an integer q, we have

• exp(CAC−1) = C exp(A)C−1

• log(CBC−1) = C log(B)C−1

• log(exp(A)) = A

• exp(log(B)) = B
• exp(qA) = exp(A)q

• log(Bq) = q log(B)

This is [Tay08, Lemma 2.4]. The key idea is that because all the higher powers of A and B − 1
vanish and all of the denominators appearing are invertible as p ≥ m, we can deduce these facts
from results about the exponential and logarithm in characteristic zero.

Suppose J is the matrix for a perfect symmetric or alternating pairing over R.

Corollary 6.9. For A and B as in Fact 6.8 with exp(A) = B, ATJ + JA = 0 if and only if
BTJB = J .

Proof. Directly from the definitions we see that exp(AT ) = exp(A)T . Observe that exp(JAJ−1) =
JBJ−1 and exp(−AT ) = (BT )−1. Thus JAJ−1 = −AT if and only if (BT )−1 = JBJ−1. �

We shall use this exponential map to convert pure nilpotents into unipotent elements. Let R be
a coefficient ring over O. By Definition 6.2, any pure nilpotent N ∈ NilN (R) is G(R)-conjugate to
Nσ, so it has characteristic polynomial xm. Denoting the derived group of G by G′, any nilpotent
element of g lies in (g′) = (LieG′), so NJ +JN = 0 (and not just NJ +JN = λJ for some λ ∈ O).
Thus, Corollary 6.9 shows that exp(N) ∈ G(R). This gives an exponential map

(6.1) exp : NilN → G

such that for g ∈ Ĝ(R), N ∈ NilN (R), and q ∈ Z we have exp(qN) = exp(N)q and g exp(N)g−1 =
exp(AdG(g)N).
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Remark 6.10. This is a realization over O of a special case of the Springer isomorphism identifying
the nilpotent and unipotent varieties in very good characteristic. For later purposes, we will need
that the identification is compatible with the multiplication in the sense that exp(qA) = exp(A)q.
In the case of GLm, a Springer isomorphism that works in any characteristic is given by X → 1+X
for nilpotent X, but this is not compatible with multiplication.

6.3. Minimally Ramified Deformations. As before, G is GSpm, GOm or GLm over the ring of
integers O of a p-adic field with residue field k with p ≥ m. Let L be a finite extension of Q` (with
` 6= p), and denote its absolute Galois group by ΓL. Consider a representation ρ : ΓL → G(k). We
wish to define a (large) smooth deformation condition for ρ generalizing the minimally ramified
deformation condition for GLn defined in [CHT08, §2.4.4]. In this section we do so for a special
class of tamely ramified representations. This requires making an étale local extension of O, which
will be harmless for our purposes.

Recall that Γt
L, the Galois group of the maximal tamely ramified extension of L, is isomorphic

to the semi-direct product

Ẑ n
∏
p′ 6=`

Zp′

where Ẑ is generated by a Frobenius φ and the conjugation action by φ on the direct product is
given by the cyclotomic character. We consider representations of Γt

L which factor through the

quotient Ẑ n Zp. Picking a topological generator τ for Zp, the action is explicitly given by

φτφ−1 = qτ

where q is the size of the residue field of L. Note q is a power of `, so it is relatively prime to p.

This leads us to study representations of the group Tq := Ẑ n Zp.
Let ρ : Tq → G(k) be such a representation. We first claim that ρ(τ) ∈ G(k) is unipotent. This

element decomposes as a commuting product of semisimple and unipotent elements of G(k). The
order of a semisimple element in G(k) is prime to p, while by continuity there is an r ≥ 0 such that
τp

r ∈ ker(ρ). Thus ρ(τ) is unipotent.
Informally, a deformation ρ : Tq → G(R) will be minimally ramified if ρ(τ) lies in the “same”

unipotent orbit as ρ(τ). To make this meaningful over an infinitesimal thickening of k, we shall
use the notion of pure nilpotents as in Definition 6.2 since unipotence and unipotent orbits are not
good notions when not over a field. As N := log(ρ(τ)) is nilpotent, by Remark 6.1 after making an
étale local extension of O we may assume that there exists a pure nilpotent Nσ ∈ g lifting N for
which ZG(Nσ) is smooth. Making a further extension if necessary, we may also assume that the
unit q ∈ O× is a square. We obtain an exponential map exp : NilN → G as in (6.1).

For clarity, we collect all of the assumptions we have made:

(1) G is GSpm, GOm or GLm;
(2) p > m;
(3) there exists a pure nilpotent Nσ ∈ g lifting N for which ZG(Nσ) is smooth;
(4) q ∈ O× is a square.

Definition 6.11. Under these assumptions, for a coefficient ring R over O, a continuous lift
ρ : Tq → G(R) of ρ is minimally ramified if ρ(τ) = exp(N) for some N ∈ NilN (R).

Example 6.12. Take G = GLn. Then X 7→ 1n + X gives an identification of nilpotents and
unipotents. Up to conjugacy, over algebraically closed fields parabolic subgroups correspond to
partitions of n and every nilpotent orbit is the Richardson orbit of such a parabolic. Let ρ(τ)−1n =:
N correspond to the partition σ = n1 +n2 + . . .+nr. By Example 4.2, the lift Nσ of N is conjugate
to a block nilpotent matrix with blocks of size n1, n2, . . . , nr. The points N ∈ NilN (R) are the
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Ĝ(R)-conjugates of Nσ. It is clear (since p > n) that if ρ(τ) ∈ NilN (R) then

ker(ρ(τ)− 1n)i ⊗R k → ker(ρ(τ)− 1n)i(6.2)

is an isomorphism for all i. Conversely, repeated applications of [CHT08, Lemma 2.4.15] show that

any ρ(τ) satisfying this collection of isomorphism conditions is Ĝ(R)-conjugate to Nσ. Thus the
minimally ramified deformation condition for GLn defined in [CHT08] agrees with our definition.
Note that the identification X 7→ 1n + X does not satisfy qX → (1 + X)q, so it will not work
in our argument. The proof of [CHT08, Lemma 2.4.19] uses a different method for which this
non-homomorphic identification suffices.

The functor of minimally ramified lifts is pro-representable by a ring Rm.r.�
ρ as it suffices to

specify images of τ and φ subject to constraints that ρ(τ) = exp(N) and ρ(φ)ρ(τ)ρ(φ)−1 = ρ(τ)q.

Proposition 6.13. Under our assumptions, the lifting ring Rm.r.�
ρ is formally smooth over O of

relative dimension dimGk.

Proof. Let Φ = ρ(φ) ∈ G(k) and let ĜΦ be the formal completion of G at Φ. Using the relation

ρ(φ)ρ(τ)ρ(φ)−1 = ρ(τ)q,

we deduce that ΦN Φ
−1

= qN . Therefore we study the functor MN on ĈO defined by

MN (R) = {(Φ, N) : N ∈ NilN (R), Φ ∈ ĜΦ(R), ΦNΦ−1 = qN} ⊂ NilN (R)× ĜΦ(R).

Any such lift (Φ, N) to a coefficient ring R determines a homomorphism Tq → G(R) lifting ρ via

φ 7→ Φ and τ 7→ exp(N): it is continuous because exp(N) is unipotent. We will analyze MN
through the composition

MN → NilN → Spf O.
First, observe that MN → NilN is relatively representable as “ΦN = qNΦ” is a formal closed

condition on points Φ of (ĜΦ)R for each N ∈ NilN (R).
From Lemma 6.4, we know that NilN is formally smooth over O, and the universal nilpotent is

gNσg
−1 for some g ∈ Ĝ(NilN ). To check formal smoothness of the map MN → NilN , it therefore

suffices to check the formal smoothness of the fiber of MN over the O-point Nσ of NilN .
We have written down Φσ ∈ G(O) satisfying ΦσNσΦ−1

σ = qNσ in Remark 5.14. Observe that

Φ Φ
−1
σ ∈ ZG(Nσ)(k). By smoothness, we may lift Φ Φ

−1
σ to an element s ∈ ZG(Nσ)(O). Then sΦσ

reduces to Φ and satisfies (sΦσ)Nσ(sΦσ)−1 = qNσ, so the fiber of MN over Nσ has an O-point.

The relative dimension of the formally smooth NilN is dimGk − dimZGk(N) by Lemma 6.4, and

MN → NilN is a ẐG(Nσ)-torsor since it has an O-point over Nσ. As ZG(Nσ) is smooth it follows
that MN is formally smooth over Spf O of relative dimension dimGk. �

Example 6.14. This recovers [CHT08, Lemma 2.4.19] in the case G = GLn.

Let S be the (torus) quotient of G by its derived group G′, and µ : G → S the quotient map.
For use later, we now study a variant where we fix a lift ν : Tq → S(O) of µ ◦ ρ : Tq → S(k):

Corollary 6.15. Under assumptions (1) to (4), the deformation condition of minimally ramified

lifts ρ : Tq → G(R) satisfying µ◦ρ = ν is a liftable deformation condition. The lifting ring Rm.r.,ν,�
ρ

is of relative dimension dimGk−1, and the tangent space to the deformation functor has dimension
dimkH

0(Tq, ad(ρ))− 1.

Proof. The last claim about the dimension of the tangent space to the deformation functor follows
from the claim about the dimension of the lifting ring and Remark 2.4.

The quotient torus S = G/G′ is split of rank 1, so the subscheme Rm.r.,ν,�
ρ ⊂ Rm.r.�

ρ is the

vanishing of locus of a single function. As Rm.r.�
ρ is formally smooth over O with relative dimension
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dimGk, it suffices to check that the tangent space of Rm.r.,ν,�
ρ over k (in the sense of [Maz97, §15])

is a proper subspace of the tangent space of Rm.r.�
ρ : this will establish formal smoothness and the

dimension claim.
Let Z be the maximal central torus of G. On the level of Lie algebras, we know that LieG splits

over O as a direct sum of LieG′ and LieS ' LieZ as p is very good for G. We can modify a lift
ρ0 over R = k[ε]/(ε2) by multiplying against an unramified non-trivial character Tq → Z(R) with

trivial reduction, changing µ ◦ ρ0. Thus the tangent space of Rm.r.,ν,�
ρ is a proper subspace of that

of Rm.r.�
ρ . �

6.4. Deformation Conditions Based on Parabolic Subgroups. The use of nilpotent orbits
is not the only approach to defining a deformation condition at ramified places not above p. As
discussed in §1.3, the method used to prove [CHT08, Lemma 2.4.19] suggests a generalization from
GLn to other groups G based on deformations lying in certain parabolic subgroups of G. This
deformation condition is not smooth for algebraic groups beyond GLn, so it does not work in
Ramakrishna’s method. In this section we give a conceptual explanation for this phenomenon.

Let P ⊂ G be a parabolic O-subgroup. The Richardson orbit for Pk intersects (LieRuP )k in a
dense open set which is a single geometric orbit under Pk. Suppose that ρ(τ) is the exponential of
a k-point N in the Richardson orbit, and consider deformations ρ : Tq → G(O) of ρ ramified with
respect to P in the sense that ρ(τ) ∈ P (compare with Definition 1.4). This requires specifying a
lift of N that lies in LieP . One could hope that such lifts would automatically be G(O)-conjugate
to the fixed lift Nσ defined in Proposition 4.7, reminiscent of the definition we gave for NilN , a
situation in which the associated deformation (or lifting) ring is smooth.

We now show that often smoothness fails if N does not lie in the Richardson orbit of Pk. Lifts
of N can “change nilpotent type” yet still lie in a parabolic lifting Pk, such as the example of the
standard Borel subgroup in GL3 with

N =

0 1 0
0 0 p
0 0 0

 lifting N =

0 1 0
0 0 0
0 0 0


In particular, we easily obtain non-pure nilpotents. This is very bad: the nilpotent orbits over a
field are smooth but the nilpotent cone is not smooth, so the deformation problem of deforming
with respect to P should not be smooth because “it sees multiple orbits”. Furthermore, even if we
could lift ρ(τ) appropriately, there would still be problems lifting ρ(φ) because the centralizer of
a non-pure nilpotent is not smooth over O (the special and generic fiber typically have different
dimensions). So it is crucial to choose a parabolic such that N lies in the Richardson orbit of Pk.

For GLn, all nilpotent orbits are Richardson orbits. This is not true in general. In particular,
we should not expect the deformation condition of being ramified with respect to a parabolic to
be liftable. Example 1.5 illustrates this phenomenon for GSp4, which we now revisit in a more
conceptual manner.

Example 6.16. Take G = GSp4. Parabolic subgroups correspond to isotropic flags. Up to
conjugacy, these subgroups are stabilizers of the flags

0 ⊂ Span(v1) ⊂ Span(v1, v2) ⊂ Span(v1, v2, v3) ⊂ k4, 0 ⊂ k4

0 ⊂ Span(v1) ⊂ Span(v1, v2, v3) ⊂k4, 0 ⊂ Span(v1, v2) ⊂ k4

where {v1, v2, v2, v4} is a basis of k4. Their Richardson orbits correspond to the nilpotent orbits
indexed respectively by the partitions 1+1+1+1, 4, 4, and 2+2. In particular, the same nilpotent
orbit is associated with two flags, and the nilpotent orbit corresponding to the partition 2 + 1 + 1
does not appear. This corresponds to a nilpotent orbit that is not a Richardson orbit; for the
representation in Example 1.5, log(ρ(τ)) is in this nilpotent orbit.
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7. Minimally Ramified Deformations of Symplectic and Orthogonal Groups

We continue the notation of the previous section. We have defined the minimally ramified

deformation condition for representations factoring through the quotient Tq = Ẑ n Zp of the tame
Galois group Γt

L at a place away from p. In this section, we will adapt the matrix-theoretic
methods in [CHT08, §2.4.4], making use of more conceptual module-theoretic arguments, to define
the minimally ramified deformation condition for any representation when G = GSpm or G = GOm.
(Minor variants of this method work for Spm and SOm, and the original method of [CHT08, §2.4.4]
works for GLm.) We naturally embed G into GL(M) for a free O-module M of rank m, and let V
denote the reduction of M , a vector space over the residue field k.

We consider a representation ρ : ΓL → G(k) ⊂ GL(V )(k) which may be wildly ramified (with L
an `-adic field for ` 6= p). We will define a deformation condition for ρ in terms of the minimally
ramified deformation condition for certain associated tamely ramified representations, after possibly
extending O. In §7.1, we analyze ρ as being built out of two pieces of data: representations of a
closed normal subgroup ΛL of ΓL whose pro-order is prime to p, and tamely ramified representations
of ΓL/ΛL. The representation theory of ΛL is manageable since its pro-order is prime to p, and
representations of ΓL/ΛL can be understood using the results of the previous section.

7.1. Decomposing Representations. We begin with a few preliminaries about representations
over rings. Let Λ′ be a profinite group and R be an Artinian coefficient ring with residue field k. If
Λ′ has pro-order prime to p, the representation theory of Λ′ over k is nice: every finite-dimensional
continuous representation is a direct sum of irreducibles, and every such representation is projective
over k[Λ] for any finite discrete quotient Λ of Λ′ through which the representation factors. We are
also interested in corresponding statements over an Artinian coefficient ring R.

Fact 7.1. Let R be an Artinian coefficient ring with residue field k. Suppose the pro-order of Λ′

is prime to p. Let P and P ′ be R[Λ′]-modules that are finitely generated over R with continuous
action of Λ′, and F be a k[Λ′]-module that is finite dimensional over k with continuous action of
Λ′. Let Λ be a finite discrete quotient of Λ′ through which the Λ′-actions on P , P ′, and F factor.

(1) If P is free as an R-module, it is projective as a R[Λ]-module.
(2) If P and P ′ are projective over R[Λ], they are isomorphic if and only if P and P ′ are

isomorphic.
(3) There exists a projective R[Λ]-module (unique up to isomorphism) whose reduction is F .

These statements are special cases of results in [Ser77, §14.4]. We now record two lemmas which
do not need the assumption that the pro-order of Λ′ is prime to p. Here and elsewhere, we use
HomΛ′ to denote homomorphisms as representations of Λ′ (equivalently as R[Λ′]-modules).

Lemma 7.2. Let P and P ′ be R[Λ′]-modules, finitely generated over R with continuous action of
Λ′ factoring through a finite discrete quotient Λ of Λ′. Assume P and P ′ are R[Λ]-projective. The
natural map gives an isomorphism

HomΛ′(P, P
′)⊗R k → HomΛ′(P , P ′).

Proof. We may replace HomΛ′ with HomΛ. Note that mP ′ = m ⊗R P ′, so HomΛ(P,mP ′) =
HomΛ(P, P ′)⊗Rm as P and P ′ are R[Λ]-projective. Then apply HomΛ(P,−) to the exact sequence
0→ mP ′ → P ′ → P ′/mP ′ → 0. �

Lemma 7.3. Let Λ be a finite group and let M and M ′ be finite R[Λ]-modules whose reductions

M and M
′

are non-isomorphic irreducible k[Λ]-modules. Then HomR[Λ](M,M ′) = 0.

Proof. Filter M ′ by the composition series {miM ′}, and consider the surjection

mi/mi+1 ⊗M ′ � miM ′/mi+1M ′.
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The action of Λ on mi/mi+1⊗M ′ is solely on the irreducible M
′
, so as a k[Λ]-module miM ′/mi+1M ′

is isomorphic to a direct sum of copies of M
′
. Thus

HomR[Λ](M,miM ′/mi+1M ′) = Homk[Λ](M,miM ′/mi+1M ′) = 0

as M and M
′

are non-isomorphic k[Λ]-modules.
By descending induction on i, we shall show that

HomR[Λ](M,miM ′) = 0.

For large i, miM ′ = 0. Consider the exact sequence

0→ mi+1M ′ → miM ′ → miM ′/mi+1M ′ → 0.

Applying HomR[Λ](M,−), we obtain a left exact sequence

0→ HomR[Λ](M,mi+1M ′)→ HomR[Λ](M,miM ′)→ HomR[Λ](M,miM ′/mi+1M ′)

The left term is 0 by induction, and the right term is 0 by the above calculation. This completes
the induction. �

Given ρ : ΓL → G(k) ⊂ GL(V )(k) and a lift ρ : ΓL → G(R) ⊂ GL(M)(R) for some R ∈ CO,
we now turn to decomposing the R[ΓL]-module M . Let IL ⊂ ΓL be the inertia group, and pick
a surjection IL → Zp. Define ΛL to be the kernel of this surjection (normal in ΓL). This is a
pro-finite group with pro-order prime to p, and is independent of the choice of surjection. Define
the quotient

TL := ΓL/ΛL,

which is a quotient of the tamely ramified Galois group Γt
L and of the form Tq = Ẑ n Zp as in §6.

We wish to compatibly decompose V and M as ΛL-modules and then understand the action of ΓL
on the decomposition.

We first make a finite extension of k (and of O) so that all of the (finitely many) irreducible
representations of ΛL over k occurring in V are absolutely irreducible over k.

Because ΛL has order prime to p, ResΓL
ΛL

(V ) is completely reducible and we can write

ResΓL
ΛL

(V ) =
⊕
τ

Vτ

where τ runs through the set of isomorphism classes of irreducible representations of ΛL over k
occurring in V , and each Vτ is the τ -isotypic component. We will obtain an analogous decomposition
for M .

Let Γ be a finite discrete quotient of ΓL through which ρ factors, and let Λ be the image of ΛL
in Γ. Using Fact 7.1(3) we can lift τ to a projective R[Λ]-module τ̃ unique up to isomorphism. We
will eventually want this lift to have additional properties (see §7.2), but this is not yet necessary.
We set Wτ := HomΛL(τ̃ ,M) and consider the natural morphism⊕

τ

τ̃ ⊗RWτ →M.

Note that M is R[Λ]-projective by Fact 7.1(1).

Lemma 7.4. This map is an isomorphism of R[ΛL]-modules.

Proof. It suffices to check it is an isomorphism of R[Λ]-modules. When R = k, EndΛ(τ) = k as we
extended k so that all of the irreducible representations of Λ over k occurring inside V are absolutely
irreducible. Splitting up V as a direct sum of irreducibles, we obtain the desired isomorphism.

In the general case, the map is an isomorphism after reducing modulo m (use Lemma 7.2).
Thus by Nakayama’s lemma it is surjective. Since M is R-projective, the formation of the kernel
commutes with reduction modulo m. Thus, again using Nakayama’s lemma the kernel is zero. �
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We define Mτ to be the image of τ̃⊗RHomΛL(τ̃ ,M) in M . It is the largest R[ΛL]-direct summand
whose reduction is a direct sum of copies of τ .

We next seek to understand the action of ΓL on this canonical decomposition of M . For g ∈ ΓL,
consider the R[ΛL]-module gMτ : it is a direct summand of M over R whose reduction is a direct
sum of copies of the representation τ g defined by τ g(h) = τ(g−1hg) for h ∈ ΛL. Thus we see that
gMτ = Mτg inside M , and ΓL permutes the Mτ ’s. The orbits corresponds to sets of conjugate
representations.

Consider the stabilizer of Vτ :

ΓL,τ = {g ∈ ΓL : gVτ = Vτ inside V } = {g ∈ ΓL : τ g ' τ} ⊂ ΓL

with corresponding image

Γτ = {g ∈ Γ : gVτ = Vτ inside V } = {g ∈ Γ : τ g ' τ} ⊂ Γ.

Then the k-span of the ΓL-orbit of Vτ is exactly the representation IndΓL
ΓL,τ

Vτ = IndΓ
Γτ Vτ . Letting

[τ ] denote the set of R[Λ]-isomorphism classes of Λ-representations Γ-conjugate to τ , by taking into
account the action of Γτ the isomorphism in Lemma 7.4 becomes an isomorphism of R[ΓL]-modules

(7.1)
⊕
[τ ]

IndΓL
ΓL,τ

Mτ
∼−→M

using one representative τ per ΓL-conjugacy class [τ ].
For orthogonal or symplectic representations, we will make precise the notion that this decompo-

sition is “compatible with duality”. Denote the similitude character by µ, and let ν := µ◦ρ : ΓL →
k×. Let N be a free O-module of rank 1 on which ΓL acts by a specified continuous O×-valued lift ν
of ν, and let N be its reduction modulo m. For an R-module M , define M∨ = HomR(M,NR) with
the evident ΓL-action. The perfect pairing gives an isomorphism of R[ΓL]-modules ψ : M ' M∨.
In particular, using Lemma 7.4 we see that⊕

τ

Mτ = M
ψ
'M∨ =

⊕
τ

(Mτ )∨,

To simplify notation, we will write M∨τ for (Mτ )∨. Note that the right side is also an isotypic
decomposition, with M∨τ the maximal direct whose direct sum is a direct sum of copies of τ∨. By
comparing isotypic pieces, we obtain a natural isomorphism (of R[ΛL]-modules)

ψτ : M∨τ 'Mτ∗

for some irreducible representation τ∗ of ΛL occurring in V . Note that τ∗ ' τ∨ as k[ΛL]-modules.
There are three cases:

• Case 1: τ is not conjugate to τ∗;
• Case 2: τ is isomorphic to τ∗;
• Case 3: τ is conjugate to τ∗ but not isomorphic.

In the second case, we claim that the isomorphism of k[ΛL]-modules ı : τ ' τ∨ gives a sign-
symmetric (for some fixed sign ετ ) perfect pairing on τ . Note that W τ = HomΛ(τ, V ) by Lemma 7.2,
and that

W τ = HomΛ(τ, V )
ψ
' HomΛ(τ, V ∨)

ı' HomΛ(τ∨, V ∨) 'W∨τ .

Denote this isomorphism by ϕτ : it defines a pairing 〈, 〉W τ
on W τ via

〈w1, w2〉W τ
:= ϕτ (w1)(w2).
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We can also define 〈v1, v2〉τ := ı(v1)(v2) for v1, v2 ∈ τ . We have a commutative diagram of
isomorphisms

τ ⊗W τ
id⊗ϕτ

//

eval

��

τ ⊗W∨τ
ı⊗id

// τ∨ ⊗W∨τ

eval∨

��

Vτ
ψτ

// V ∨τ

The commutativity says that for elementary tensors mi = vi ⊗ wi ∈ Vτ = τ ⊗W τ we have

〈m1,m2〉M = ψ(m1)(m2) = (ı(v1)⊗ ϕτ (w1)) (v2 ⊗ w2)

= ı(v1)(v2) · ϕτ (w1)(w2) = 〈v1, v2〉τ 〈w1, w2〉W τ
.

(7.2)

Remember that the pairing on V is ε-symmetric.

Lemma 7.5. The pairing 〈, 〉τ is a sign-symmetric (for a fixed sign ετ ).

Proof. Suppose there exists v ∈ τ such that ı(v)(v) 6= 0. For w1, w2 ∈W τ , (7.2) gives

ı(v)(v)ϕτ (w1)(w2) = 〈v ⊗ w1, v ⊗ w2〉V = ε〈v ⊗ w2, v ⊗ w1〉V = εı(v)(v)ϕτ (w2)(w1).

Canceling ı(v)(v), we conclude that 〈w1, w2〉W τ
= ε〈w2, w1〉W τ

. Using (7.2), we conclude that

εı(v2)(v1)·ϕτ (w2)(w1) = ε〈m2,m1〉V = 〈m1,m2〉V = ı(v1)(v2)·ϕτ (w1)(w2) = εı(v1)(v2)·ϕτ (w2)(w1).

Choosing w1 and w2 with 〈w2, w1〉W τ
6= 0 (possible as 〈, 〉V is perfect), we then conclude that

〈v1, v2〉τ̃ = 〈v2, v1〉τ̃ .
Otherwise ı(v)(v) = 0 for all v ∈ τ , in which case 〈, 〉τ̃ is alternating. �

In §7.2 we will see that the action of ΛL on the module underlying τ̃ can be extended to an
action of ΓL,τ factoring through Γτ . Therefore, Wτ = HomΛL(τ̃ ,M) is naturally a representation
of TL,τ := ΓL,τ/ΛL, and of Tτ := Γτ/Λ (a finite quotient of TL,τ ). In §7.4, we will use the minimally
ramified deformation condition of §6 to specify which deformations Wτ are allowed. Together with
the decomposition (7.1) ⊕

[τ ]

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )→M

this defines a deformation condition for ρ. Some care is needed to ensure compatibility of the lifts
with the pairing on M , which will require breaking into cases in the next sections based on the
relationship between τ and τ∗.

7.2. Extension of Representations. We continue the notation of the previous section, where τ
is an absolutely irreducible representation of ΛL over k. We need to lift this to a representation
over O and extend it to a representation of ΓL,τ . We will have to do something extra for the
representation to be compatible with a pairing, depending on how τ and τ∗ are related.

In Case 1, we ignore the pairing. Lemma 2.4.11 of [CHT08] let us pick a O[ΓL,τ ]-module τ̃ that
is a free O-module and reduces to τ . In this case, τ̃∨ is a free O-module reducing to τ∗.

In Case 2, from Lemma 7.5 it follows that τ is a symplectic or orthogonal representation. We will
adapt the GLn-technique of [CHT08] to produce a symplectic or orthogonal extension τ̃ . Letting
n = dim τ , the representation τ gives a homomorphism τ : ΛL → G(k) where G is GSpn or GOn.

First, we claim that there is a continuous lift τ̃ : ΛL → G(W (k)): without the pairing, this
would be Fact 7.1(3). To also take into account the pairing, consider deformation theory for the
residual representation τ . This is a smooth deformation condition as H2(ΛL, ad τ) = 0: ΛL has
pro-order prime to p and ad τ has order a power of p. Therefore the desired lift exists. It is

unique (up to conjugation by an element of Ĝ(O)) because the tangent space is zero dimensional as
H1(ΛL, ad τ) = 0. By considering representations of the group ΛL/ ker(τ), we may and do assume
that ker(τ̃) = ker(τ) as subgroups of ΛL.
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Remark 7.6. For g ∈ ΓL,τ , the k[ΛL]-modules τ g ' τ are isomorphic. By uniqueness of the lift,
this means that there is A ∈ G(O) such that τ̃ g(γ) = Aτ̃(γ)A−1 for all γ ∈ ΓL. Furthermore,
ΓL,τ = {g ∈ ΓL : τ̃ g ' τ̃}.

We will now show how to continuously extend τ̃ to ΓL,τ . The first step in constructing the
extension is to understand the structure of ΓL,τ and IL ∩ ΓL,τ , where IL is the inertia group.

Recall that TL = ΓL/ΛL is the semi-direct product of Ẑ and Zp, where Ẑ is generated by a lift
of Frobenius φ and Zp is generated by an element σ, with φσφ−1 = σq where q = `a is the size of
the residue field of L.

Lemma 7.7. The exact sequence

1→ ΛL → ΓL → TL → 1

is topologically split, so ΓL is a semi-direct product.

Proof. This is [CHT08, 2.4.10]. �

For TL,τ := ΓL,τ/ΛL, this gives a topological splitting of

1→ ΛL → ΓL,τ → TL,τ → 1.

As ΓL,τ is an open subgroup of ΓL, we observe that TL,τ is an open subgroup of TL. Note that
TL,τ is normal and topologically generated by some powers of φ and σ which will be denoted by φτ
and στ (since any open subgroup of a semidirect product C n C ′ for pro-cyclic C and C ′ is of the
form C0 n C ′0 for open subgroups C0 ⊂ C and C ′0 ⊂ C ′). In particular, using the notation of §6.3
TL,τ is itself isomorphic to Tq′ for some q′. The element στ and ΛL together topologically generate
ΓL,τ ∩ IL.

Before extending τ̃ , we need several technical lemmas.

Lemma 7.8. We have that EndΛL(τ̃) = O.

Proof. As τ is absolutely irreducible, EndΛL(τ) = k. By Lemma 7.2, we see that the reduction
of EndΛL(τ̃) modulo the maximal ideal of O is k, so the map O ↪→ EndΛL(τ̃) is surjective by
Nakayama’s lemma. �

Lemma 7.9. The dimension of τ is not divisible by p.

Proof. As τ is continuous and ΛL has pro-order prime to p, the representation τ factors through a
finite discrete quotient Λ of ΛL whose order is prime to p. Such a representation is the reduction of a
projective O[Λ]-module by Fact 7.1(3). Inverting p, we obtain a representation of Λ in characteristic
zero that is absolutely irreducible since the “reduction” τ is absolutely irreducible over k. By [Ser77,
§6.5 Corollary 2], the dimension of this representation (equal to the dimension of τ) divides the
order of Λ. �

We will now extend τ̃ from ΛL ⊂ IL to ΓL,τ by defining it on the topological generators στ and
φτ . We say that such an extension has tame determinant if det(τ̃(στ )) has finite order which is
prime to p. Lemmas 7.10 and 7.11 adapt [CHT08, Lemma 2.4.11] and fill in some details.

Lemma 7.10. There is a unique continuous extension τ̃ : ΓL,τ∩IL → G(O) with tame determinant.

Proof. A continuous extension of τ̃ to ΓL,τ ∩ IL is determined by its value on στ . As στ ∈ ΓL,τ , in
light of Remark 7.6 there is an A ∈ G(O) such that for g ∈ ΛL we have

τ̃(στgσ
−1
τ ) = Aτ̃(g)A−1.

We would like to send στ to the element A. For an appropriate modification of A (still lying in
G(O)), this will produce a continuous extension with tame determinant. As στ is a topological
generator for a group isomorphic to Zp, the continuity of the extension with στ 7→ A is equivalent
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to some p-power of A having trivial reduction. We wish to show that there is a unique choice of
such A that also makes the extension have tame determinant.

We will first show that some power Ap
b

lies in the centralizer of the image τ̃(ΛL). Consider
the conjugation action of 〈στ 〉 on ΛL. As ker τ̃ = ker τ is a normal subgroup of ΓL,τ (if g ∈ ΓL,τ
and τ(h) = 1, then τ g(h) is conjugate to τ(h) = 1 by Remark 7.6) we get an action of 〈στ 〉 on
ΛL/ ker τ ' τ(ΛL). The action is continuous, so there is a power pb such that for all g ∈ ΛL we
have

τ(σp
b

τ gσ
−pb
τ ) = τ(g).

As ker τ̃ = ker τ , we see that

Ap
b
τ̃(g)A−p

b
= τ̃(σp

b

τ gσ
−pb
τ ) = τ̃(g).

Therefore Ap
b

lies in the centralizer of τ̃(ΛL) in G(O).
By Lemma 7.8, this centralizer is isomorphic to O×. We claim that by multiplying A by some

unit in O, we can arrange for the continuous extension τ̃ to exist and have tame determinant. We
will use the fact that an element of O× is the product of a 1-unit and a Teichmuller lift of an

element of k×. As Ap
b ∈ O× and the pth power map is an automorphism of k×, we may multiply

A by a unit scalar so that Ap
b

reduces to the identity matrix. By Lemma 7.9, the dimension n of τ
is prime to p so we may multiply A by a 1-unit so that det(A) has finite order prime to p. Sending
στ to this particular A gives a continuous extension with tame determinant.

Let’s show this extension is unique. Any extension must send στ to an element of the form wA
for w ∈ O× (the centralizer of the image τ̃(ΛL)). By continuity, there is a power pb such that

(wA)p
b

reduces to the identity. This means that wp
b

reduces to the identity, and hence that w
reduces to the identity. On the other hand, det(wA) det(A)−1 = wn. The left side has finite order
that is relatively prime to p, so wn does too. This forces wn = 1 since its reduction is 1. But as
n is prime to p (Lemma 7.9), the only nth roots of unity in O× are Teichmuller lifts. Therefore
w = 1. �

Lemma 7.11. There is a continuous extension τ̃ : ΓL,τ → G(O).

Proof. We extend τ̃ in Lemma 7.10 continuously to ΓL,τ by defining it on φτ . As φτ ∈ ΓL,τ , by

Remark 7.6 there is an element A ∈ G(O) conjugating τ̃ : ΛL → G(O) to τ̃φτ : ΛL → G(O). Each
has a unique extension to a continuous morphism from IL ∩ ΓL,τ to G(O) with tame determinant.
Therefore for g ∈ IL ∩ ΓL,τ we have

τ̃(φτgφ
−1
τ ) = Aτ̃(g)A−1

since the right side has the same (tame) determinant as τ̃ on IL ∩ Tτ . We can continuously extend
τ̃ : IL ∩ ΓL,τ → G(O) by sending φτ to A since A has reduction with finite order. �

This gives the desired lift and extension of τ in the case that τ ' τ∗.
In Case 3, τ is conjugate to τ∗ but not isomorphic. The argument follows the same structure as

the previous case, but we make a few modifications to treat τ ⊕ τ∗ together. In particular, we can
pick a copy of the k[ΛL]-module τ inside V and a copy of τ∗ ' τ∨ inside V such that the pairing
restricted to τ ⊕ τ∗ is perfect. It is sign-symmetric with sign ετ⊕τ∗ .

Define ΓL,τ⊕τ∗ = {g ∈ ΓL : (τ ⊕ τ∗)g ' τ ⊕ τ∗}. It contains ΓL,τ with index 2, as conjugation
either preserves τ and τ∗ or swaps them. Arguing as in the paragraph after Lemma 7.7, we obtain
a split exact sequence

0→ ΛL → ΓL,τ⊕τ∗ → TL,τ⊕τ∗ → 1

where TL,τ⊕τ∗ is an open normal subgroup of TL topologically generated by some powers of φ and
σ which we denote by φτ⊕τ∗ and στ⊕τ∗ . We may arrange that either

• Case 3a: φ2
τ⊕τ∗ = φτ and στ⊕τ∗ = στ or

• Case 3b: φτ⊕τ∗ = φτ and σ2
τ⊕τ∗ = στ .
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In Case 3a, we begin by lifting τ to O as a representation of ΛL: as before, we do this using
the fact that the pro-order of ΛL is prime to p, and obtain a lift τ̃ unique up to isomorphism.
We extend τ̃ to be a representation of ΓL,τ ∩ IL by defining it on στ using the GLn-version of
Lemma 7.10, [CHT08, Lemma 2.4.11]. There it is shown all such extensions are unique up to
equivalence. In particular, τ̃ and (τ̃φτ⊕τ∗ )∨ are isomorphic O[ΓL,τ ∩ IL]-modules. We can use this

to define a sign-symmetric perfect pairing on τ̃ ⊕ τ̃φτ⊕τ∗ that is compatible with the action of
ΓL,τ ∩ IL and φτ⊕τ∗ , hence of ΓL,τ⊕τ∗ .

In Case 3b, as τ∨ and τστ⊕τ∗ are isomorphic k[ΛL]-modules it follows that τ̃∨ and τ̃στ⊕τ∗ are
isomorphic O[ΛL]-modules. In particular, this isomorphism gives a natural way to define a sign-
symmetric perfect pairing on M = τ̃ ⊕ τ̃στ⊕τ∗ lifting the residual one. This pairing is compatible
with the action of ΓL,τ⊕τ∗∩IL (which is generated by ΛL and στ⊕τ∗). Finally, we claim that M and

Mφτ are isomorphic. As φτ ∈ ΓL,τ preserves τ , acting by φτ gives an isomorphism ψ : M 'Mφτ
of

k[ΛL]-modules such that ψ(τ) = τφτ . By uniqueness of the lift of τ as a O[ΛL]-module, we obtain
an isomorphism ψτ of τ̃ and τ̃φτ and hence an isomorphism ψ : M 'Mφτ via the identifications

τ̃στ⊕τ∗ ' τ̃∨
ψ−1
v' (τ̃φ

−1
τ )∨ ' (τ̃∨)φτ ' (τ̃στ⊕τ∗ )φτ .

This isomorphism is compatible with the pairing. The key observation is that for m ∈ τ̃ and
f ∈ τ̃∨ ' τ̃στ⊕τ∗ , we have that

〈ψ(m), ψ(f)〉M = 〈ψv(m), f ◦ ψ−1
v 〉M = f(ψ−1

v (ψv(m))) = f(m) = 〈m, f〉M .
Then we proceed as in the proof of Lemma 7.11, defining an image of φτ using this isomorphism.

In conclusion, we have shown:

Lemma 7.12. In case 3, there exists an O[ΓL,τ⊕τ∗ ]-module τ̃ ⊕ τ∗ with pairing lifting τ ⊕ τ∗

together with its pairing.

7.3. Lifts with Pairings. We continue the notation of §7.1, and analyze how the duality pairing
interacts with the decomposition (7.1). Recall that we obtained an isomorphism M ' M∨ of
R[ΓL]-modules which gave isomorphisms Mτ 'M∨τ∗ of R[ΓL,τ ]-modules. The key point is that for
any lift and extension τ ′ of τ , the isomorphism of R[ΛL]-modules

τ ′ ⊗HomΛL(τ ′,M)→Mτ

is compatible with the ΓL,τ -action.
To do this, it is convenient to break into the cases introduced at the end of §7.1. For an irreducible

k[Λ]-module τ occurring in V , note that (τ g)∨ = (τ∨)g for any g ∈ ΓL, so if τ ' τ∗ then τ g ' (τ g)∗.
We let

• Σn denote the set of ΓL-conjugacy classes of such τ for which τ is not conjugate to τ∗;
• Σe denote the set of ΓL-conjugacy classes of such τ for which τ ' τ∗;
• Σc denote the set of ΓL-conjugacy classes of such τ for which τ∗ is conjugate to τ but
τ 6' τ∗.

From (7.1), we obtain a decomposition

(7.3) M =
⊕
τ∈Σn

IndΓL
ΓL,τ

(
τ ′ ⊗Wτ

)
⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(
τ ′ ⊗Wτ

)
⊕
⊕
τ∈Σc

IndΓL
ΓL,τ

(
τ ′ ⊗Wτ

)
where τ ′ is any lift and extension of τ to Γτ and Wτ = HomΛ(τ ′,M) is a representation of TL,τ .
Note that Wτ is free as an R-module (since M and τ ′ are, with τ ′ 6= 0 and R local), and hence that
Wτ is tamely ramified of the type considered in §6.

We may rewrite this to make use of the special extensions constructed in §7.2. In particular, for
τ ∈ Σc we rewrite

IndΓL
ΓL,τ

(
τ ′ ⊗Wτ

)
= IndΓL

ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗

)
.
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This uses the notation and results from Case 3 in §7.2, in particular the fact that τ ⊕ τ∗ is an
irreducible representation of the group Λ′L generated by ΛL and a g ∈ ΓL with τ∗ ' τ g, and the

definition Wτ⊕τ∗ := HomΛ′L
(τ̃ ⊕ τ∗,M). Note that Wτ⊕τ∗ is a representation of TL,τ⊕τ∗ , which is

a subgroup of TL = ΓL/ΛL, hence of the form Tq as considered in §6. Using the extensions τ̃ and

τ̃ ⊕ τ∗ from Cases 1 and 2 from §7.2, we obtain a decomposition

M =
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗

)
.(7.4)

Now let M ′ be another R[ΓL]-module that is finite free over R such that the irreducible repre-
sentations of ΛL occurring in V ′ := M ′/mM ′ are among the same τ ’s, so

M ′ =
⊕
τ∈Σn

IndΓL
ΓL,τ

(
τ̃ ⊗W ′τ

)
⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(
τ̃ ⊗W ′τ

)
⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗W ′τ⊕τ∗

)
.

Lemma 7.13. The natural map⊕
τ∈Σn

HomTL,τ (Wτ ,W
′
τ )⊕

⊕
τ∈Σe

HomTL,τ (Wτ ,W
′
τ )⊕

⊕
τ∈Σc

HomTL,τ⊕τ∗ (Wτ⊕τ∗ ,W
′
τ⊕τ∗)→ HomΓL(M,M ′)

is an isomorphism.

Proof. We may immediately pass to working with representations of the finite discrete groups Γ
and Λ. Notice that

HomΓ(IndΓ
Γτ (Mτ ), IndΓ

Γτ (M ′τ )) ' HomΓτ (IndΓ
Γτ (Mτ ),M ′τ ) ' HomΓτ (Mτ ,M

′
τ )

where the second isomorphism uses that HomΓτ (Mτg ,M
′
τ ) = 0 by Lemma 7.3 when τ and τ g are

non-isomorphic. Furthermore, if τ1 and τ2 are not Γ-conjugate then

HomΓ(IndΓ
Γτ1

(Mτ1), IndΓ
Γτ2

(M ′τ2)) ' HomΓτ (IndΓ
Γτ1

(Mτ1),Mτ2) = 0

using Lemma 7.3 as τ g1 is not isomorphic to τ2 for any g ∈ Γ. Then using (7.1) we see that

HomΓ(M,M ′) =
⊕

[τ1],[τ2]

HomΓ(IndΓ
Γτ1

(Mτ1), IndΓ
Γτ2

(M ′τ2)) =
⊕
[τ ]

HomΓτ (Mτ ,M
′
τ ).

All the irreducible finite-dimensional representations of Λ occurring in V and V ′ are absolutely
irreducible over k by design. For τ ∈ Σn ∪ Σe, consider the natural inclusion

(7.5) HomR(Wτ ,W
′
τ ) ↪→ HomΛ(τ̃ ⊗Wτ , τ̃ ⊗W ′τ ) = HomΛ(τ̃ , τ̃)⊗R HomR(Wτ ,W

′
τ ),

using that Wτ and W ′τ are R-free of finite rank and Λ acts trivially. But R ↪→ HomΛ(τ̃ , τ̃) is
an isomorphism because EndΛ(τ) = k and because surjectivity can be checked modulo mR using
Lemma 7.2. As Mτ ' τ̃ ⊗Wτ , this implies that

HomΓτ (Mτ ,M
′
τ ) = HomΛ(Mτ ,M

′
τ )Tτ = HomΛ(τ̃ ⊗Wτ , τ̃ ⊗W ′τ )Tτ

= HomR(Wτ ,Wτ )Tτ = HomTτ (Wτ ,W
′
τ )

where Tτ is the image of TL,τ in Γτ . An analogous computation in the case τ ∈ Σc completes the
proof. �

We can now consider the duality isomorphism M 'M∨. By Lemma 7.13, this is equivalent to a
collection of isomorphisms of R[TL,τ ]-modules ϕτ : Wτ 'W∨τ∗ for τ ∈ Σe ∪Σn and an isomorphism
of R[TL,τ⊕τ∗ ]-modules ϕτ : Wτ⊕τ∗ 'W∨τ⊕τ∗ for τ ∈ Σc. We analyze the cases separately.

In Case 1 (when τ is not conjugate to τ∗), note that IndΓL
ΓL,τ

Mτ is an isotropic subspace of M .

In particular, the perfect sign-symmetric pairing on IndΓL
ΓL,τ

Mτ ⊕ IndΓL
ΓL,τ∗

Mτ∗ is equivalent to an
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isomorphism of R[ΓL]-modules

IndΓL
ΓL,τ

Mτ '
(

IndΓL
ΓL,τ∗

Mτ∗

)∨
,

which is equivalent to the isomorphism ofR[TL,τ ]-modules ϕτ : Wτ 'W∨τ∗ . (Note that the similitude
character ν is present in the use of the dual.)

In Case 2 (when τ is isomorphic to τ∗), the perfect sign-symmetric pairing on IndΓL
ΓL,τ

Mτ is

equivalent to an isomorphism Wτ ' W∨τ of R[TL,τ ]-modules. Thus it gives a pairing 〈, 〉Wτ on Wτ

via

〈w1, w2〉Wτ := ϕτ (w1)(w2).

We claim this pairing is sign-symmetric.
From §7.2 we have an isomorphism ı : τ̃ ' τ̃∨ of R[ΓL,τ ]-modules. As at the end of §7.1,

let ψ : M → M∨ be the isomorphism of R[ΓL]-modules given by m 7→ 〈m,−〉M , and define
〈v1, v2〉τ̃ := ı(v1)(v2). We have a commutative diagram

τ̃ ⊗Wτ
id⊗ϕτ

//

��

τ̃ ⊗W∨τ
ı⊗id

// τ̃∨ ⊗W∨τ

��

Mτ
ψ

// M∨τ

The commutativity says that for elementary tensors mi = vi ⊗ wi ∈Mτ = τ̃ ⊗Wτ we have

〈m1,m2〉M = ψ(m1)(m2) = (ı(v1)⊗ ϕτ (w1)) (v2 ⊗ w2)

= ı(v1)(v2) · ϕτ (w1)(w2) = 〈v1, v2〉τ 〈w1, w2〉Wτ .
(7.6)

The pairings are perfect and 〈·, ·〉τ is ετ -symmetric, so the pairing on Wτ is εWτ -symmetric if and
only if the pairing on Mτ is ε-symmetric. We have that ε = εWτ ετ .

In Case 3 (τ ∈ Σc), an analogous argument using the isomorphism τ̃ ⊕ τ∗ ' τ̃ ⊕ τ∗
∨

of

R[ΓL,τ⊕τ∗ ]-modules (which define the εWτ⊕τ∗ -symmetric pairing on τ̃ ⊕ τ∗) shows that the pair-

ing induced by ϕτ : Wτ⊕τ∗ 'W∨τ⊕τ∗ is ετ⊕τ∗-symmetric if and only if the pairing on

IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗W ′τ⊕τ∗

)
induced from the pairing on M is sign-symmetric with sign ε = ετ⊕τ∗εWτ⊕τ∗ .

7.4. Minimally Ramified Deformations. We can now define the minimally ramified deforma-
tion condition for ρ : ΓL → G(k), under the continuing assumption that we have extended k so all
irreducible representations of ΛL occurring in V are absolutely irreducible over k. From (7.4), we
obtain a decomposition

(7.7) V =
⊕
τ∈Σn

IndΓL
ΓL,τ

(
τ̃ ⊗W τ

)
⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(
τ̃ ⊗W τ

)
⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗W τ⊕τ∗

)
.

where W τ is a representation of TL,τ over k and W τ⊕τ∗ is a representation of TL,τ⊕τ∗ .

If τ ∈ Σn, define Gτ := Aut(W τ ). If τ ∈ Σe, there is a sign-symmetric perfect pairing 〈·, ·〉W τ

on W τ : in that case define Gτ := GAut(W τ , 〈·, ·〉W τ
). (The notation GAut means automorphisms

preserving the pairing up to scalar.) If τ ∈ Σc, there is a sign-symmetric perfect pairing on W τ⊕τ∗ :
in that case define Gτ := GAut(W τ⊕τ∗ , 〈·, ·〉W τ⊕τ∗

). Make a finite extension of k so that all the

pairings are split. Lift Gτ to a split reductive group Gτ over O by lifting the split linear algebra
data.
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Definition 7.14. Let ρ : ΓL → G(R) be a continuous Galois representation lifting ρ as above, with
associated R[Γ]-module

M =
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗

)
.

We say that ρ is minimally ramified with similitude character ν if each Wτ and Wτ⊕τ∗ is minimally
ramified in the sense of Definition 6.11 as a representation of TL,τ or TL,τ⊕τ∗ valued in the group
Gτ with specified similitude character. (Note that defining the minimally ramified deformation
condition as in §6 may require an additional étale local extension of O, which as always is harmless
for applications.)

Let Dm.r.,ν
ρ denote the deformation functor for ρ with specified similitude character ν, and Dm.r.

Gτ

(respectively Dm.r.,ν
Gτ

) denote the deformation functor for W τ or W τ⊕τ∗ viewed as a representation

valued in Gτ (respectively with specified similitude character ν). In particular, letting r = dimW τ

(or dimW τ⊕τ∗ when τ ∈ Σc), we have that the adjoint representation adW τ is the Lie algebra of
Gτ , which is the Lie algebra of GSpr or GOr when τ ∈ Σe or Σc, and the Lie algebra of GLr when
τ ∈ Σn. Let Σ′n consist of one representative for each pair of representations τ, τ∗ ∈ Σn.

Proposition 7.15. There is a natural isomorphism of functors

Dm.r. ν
ρ →

∏
τ∈Σ′n

Dm.r.
Gτ ×

∏
τ∈Σe

Dm.r. ν
Gτ ×

∏
τ∈Σc

Dm.r. ν
Gτ .

Proof. This expresses the decomposition obtained in this section: given a lift ρ of ρ, we obtain a
decomposition of M as in Definition 7.14. Our analysis with pairings shows that when τ ∈ Σe, Wτ

is a deformation of W τ together with its εWτ -symmetric perfect pairing. Likewise, when τ ∈ Σc we
know that Wτ⊕τ∗ is a deformation of W τ⊕τ∗ together with its εWτ⊕τ∗ -symmetric pairing. When

τ ∈ Σn, we know Wτ 'W∨τ∗ . This gives the natural map: to ρ ∈ Dm.r. ν
ρ (R) associate the collection

of the Wτ for τ ∈ Σe ∪ Σc ∪ Σ′n.
Conversely, given Wτ for τ ∈ Σe ∪Σc ∪Σ′n, and defining Wτ∗ := W∨τ for τ ∈ Σ′n we can define a

lift

M :=
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗

)
.

as in (7.1). (Note that the groups ΓL,τ depend only on the fixed residual representation V .) For τ ∈
Σe, the perfect pairing on the liftWτ gives an isomorphism ϕτ : Wτ 'W∨τ ofR[TL,τ ]-modules, which

gives a sign-symmetric pairing (with sign εWτ ετ = ε) on IndΓL
ΓL,τ

(τ̃ ⊗Wτ ) (using (7.6)). Likewise,

for τ ∈ Σc the sign-symmetric pairing on Wτ⊕τ∗ gives one on IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗

)
. For

τ ∈ Σn, we obtain an isomorphism ϕτ : Wτ ' W∨τ∗ of R[TL,τ ]-modules and hence an ε-symmetric

perfect pairing on (τ̃ ⊗Wτ )⊕ (τ̃∨⊗Wτ∗) which gives one on IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕ IndΓL
ΓL,τ

(τ̃∨ ⊗Wτ∗).

Putting these together, we obtain a sign-symmetric pairing on M ; the action of ΓL preserves it up
to scalar, giving a continuous homomorphism ρ : ΓL → G(R).

Finally, we claim that these constructions are compatible with strict equivalence of lifts, giv-

ing an identification of the deformation functors. For g ∈ Ĝ(R), decompose the g-conjugate
ΓL-representation Mg according to (7.4). As g reduces to the identity, it must respect the de-
composition into τ -isotypic pieces, so gives automorphisms gτ ∈ Aut(Wτ ) and gτ ∈ Aut(Wτ⊕τ∗).
If τ ∈ Σe or Σc, as g is compatible with the pairing on M we see gτ is compatible with the pairing
as well. For τ ∈ Σe, the gτ -conjugate TL,τ -representation W gτ

τ is minimally ramified as minimally

ramified lifts of W τ for the group TL,τ are a deformation condition, and likewise for τ ∈ Σc and
τ ∈ Σ′n.
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Conversely, given gτ ∈ Aut(Wτ ) reducing to the identity (compatible with the pairing on Wτ or
Wτ⊕τ∗ if there is one), using (7.1) and acting on each piece we obtain a lift of the form Mg for

g ∈ Ĝ(R). Thus the identification is compatible with strict equivalence. �

Corollary 7.16. The minimally ramified deformation condition with fixed similitude character is
liftable. The dimension of the tangent space is h0(ΓL, ad0(ρ)).

Proof. Liftability is a consequence of Proposition 7.15 and the smoothness of the minimally ramified
lifting ring for representations of TL,τ (Proposition 6.13 and Corollary 6.15). By Corollary 6.15,

for τ ∈ Σe the dimension of the tangent space of Dm.r.,ν
Gτ

is h0(TL,τ , adW τ )− 1 = h0(TL,τ , ad0W τ ),

and for τ ∈ Σc the dimension is h0(TL,τ⊕τ∗ , adW τ⊕τ∗)− 1 = h0(TL,τ⊕τ∗ , ad0W τ⊕τ∗). For τ ∈ Σ′n,

by Proposition 6.13 the dimension of the tangent space of Dm.r.
Gτ

is h0(TL,τ , adW τ ). Using Propo-
sition 7.15, we see that the dimension of the tangent space of the minimally ramified deformation
condition is∑

τ∈Σe

h0(TL,τ , ad0W τ ) +
∑
τ∈Σc

h0(TL,τ⊕τ∗ , ad0W τ⊕τ∗) +
∑
τ∈Σ′n

h0(TL,τ , adW τ ).

It remains to identify this quantity with h0(ΓL, ad0(ρ)). Using Lemma 7.13

H0(ΓL,End(V )) = Homk[ΓL](V, V )

=
⊕

τ∈Σe∪Σn

HomTL,τ (W τ ,W τ )⊕
⊕
τ∈Σc

HomTL,τ⊕τ∗ (W τ⊕τ∗ ,W τ⊕τ∗)

=
⊕

τ∈Σe∪Σn

H0(TL,τ ,End(W τ ))⊕
⊕
τ∈Σc

H0(TL,τ⊕τ∗ ,End(W τ⊕τ∗)).

We are interested in H0(ΓL, ad0(ρ)): the elements ψ ∈ H0(ΓL,End(V )) compatible with the pairing
on V in the sense that for v, v′ ∈ V

〈ψv, ψv′〉 = 〈v, v′〉.
The pairing on Vτ = τ ⊗W τ is induced by the pairings on W τ and τ when τ ∈ Σe, and is induced
by the pairings on W τ⊕τ∗ and τ ⊕ τ∗ when τ ∈ Σc. When τ ∈ Σ′n, the pairing on Vτ ⊕ Vτ∗ comes

from the ΓL,τ -isomorphism Vτ ' V ∨τ∗ which in turn comes from the TL,τ -isomorphism W τ ' W
∨
τ∗ .

So ψ is compatible with the pairing if and only if

• when τ ∈ Σe, the associated ψτ ∈ H0(TL,τ ,End(W τ )) is compatible with the pairing on

W τ ;
• when τ ∈ Σc, the associated ψτ ∈ H0(TL,τ⊕τ∗ ,End(W τ⊕τ∗) is compatible with the pairing

on W τ⊕τ∗ ;
• when τ ∈ Σ′n, the associated ψτ and ψτ∗ are identified by duality and the isomorphism

W τ 'W
∨
τ∗ .

In the first two cases, ad0W τ and ad0W τ⊕τ∗ are the symplectic or orthogonal Lie algebra, consisting
exactly of endomorphisms compatible with the pairing on W τ . In the third, we just choose one of
ψτ and ψτ∗ without restriction, which determines the other. Thus we see

H0(ΓL, ad0(ρ)) =
⊕
τ∈Σe

H0(TL,τ , ad0W τ )⊕
⊕
τ∈Σc

H0(TL,τ⊕τ∗ , ad0W τ⊕τ∗)⊕
⊕
τ∈Σ′n

H0(TL,τ , adW τ ). �

8. Fontaine-Laffaille Theory with Pairings

We begin by establishing some notation and reviewing the key results of Fontaine-Laffaille theory.
It was first studied by Fontaine and Laffaille [FL82], who introduced a contravariant functor relat-
ing torsion-crystalline representations and Fontaine-Laffaille modules. For deformation theory, in
particular compatibility with tensor products, it is necessary to use a covariant version, introduced
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in [BK90]. The details of relating this covariant functor to the functor studied by Fontaine and
Laffaille that are omitted in [BK90] are written down in [Con94]. We then study Fontaine-Laffaille
modules with the extra data of a pairing by analyzing tensor products and duals, in preparation for
studying the Fontaine-Laffaille deformation condition in §9. This analysis generalizes unpublished
results in [Pat06].

8.1. Covariant Fontaine-Laffaille Theory. Let K = W (k′)[1
p ] for a perfect field k′ of character-

istic p. LetW = W (k′) and σ : W →W denote the Frobenius map. Recall that a torsion-crystalline
representation with Hodge-Tate weights in [a, b] is a Zp[ΓK ]-module T for which there exists a crys-
talline representation V with Hodge-Tate weights in [a, b] and ΓK-stable lattices Λ ⊂ Λ′ in V such
that Λ′/Λ is isomorphic to T . Our convention will be that the Hodge-Tate weight of the cyclotomic
character is −1, which will work well with covariant functors. The analogue of torsion-crystalline
representations on the semilinear algebra side are certain classes of Fontaine-Laffaille modules:

Definition 8.1. A Fontaine-Laffaille module is aW -moduleM together with a decreasing filtration
{M i}i∈Z of M by W -submodules and a family of σ-semilinear maps {ϕiM : M i →M} such that:

• The filtration is separated and exhaustive: M = ∪i∈ZM i and ∩i∈ZM i = 0.
• For m ∈M i+1, p · ϕi+1

M (m) = ϕiM (m).

Morphisms of Fontaine-Laffaille modules f : M → N are W -linear maps such that f(M i) ⊂ N i

and f ◦ ϕiM = ϕiN ◦ f for all i. The category of Fontaine-Laffaille modules is denoted MFW .

Let MFfW,tor denote the full subcategory consisting of M for which M is of finite length (as a

W -module) and for which
∑

i∈Z ϕ
i(M i) = M , and MF

f,[a,b]
W,tor to be the full subcategory with the

additional condition that Ma = M and M b+1 = 0.

Maps in MFfW,tor are strict for the filtration, and MFfW,tor is an abelian category.

Remark 8.2. Jumps in the filtration will turn out to correspond Hodge-Tate weights, so the
condition Ma = M and M b+1 = 0 with a ≤ b corresponds to Hodge-Tate weights lying in [a, b].
We call the set of jumps in the filtration the Fontaine-Laffaille weights.

We are also interested in a variant that allows non-torsion modules.

Definition 8.3. A filtered Dieudonné module M is a Fontaine-Laffaille module (that is finite over
W ) for which the M i are direct summands of M as W -modules and for which∑

i∈Z
ϕi(M i) = M.

Let DK denote the full subcategory of MFW consisting of filtered Dieudonné modules M for which
Ma = M and M b+1 = 0 for some 0 ≤ b− a ≤ p− 2.

Note that DK is also an abelian category. For M ∈ MF
f,[a,b]
W,tor , it is automatic that M i is a direct

summand of M . There are natural notions of tensor products and duality.

Definition 8.4. For Fontaine-Laffaille modules M1 and M2, define M1⊗W M2 to have underlying

W -module M1⊗WM2, filtration given by (M1⊗WM2)n =
∑

i+j=nM
i
1⊗WM j

2 , and maps ϕnM1⊗WM2

induced by the ϕiM1
and ϕjM2

.

Definition 8.5. For M ∈ MFfW,tor, define M∗ to be HomW (M,K/W ) with the dual filtration

(M∗)i := HomW (M/M1−i,K/W )

and with ϕiM∗ characterized for f ∈ (M∗)i and m ∈M j by ϕiM∗(f)(ϕj(m)) = 0 when j ≥ 1− i and
by ϕiM∗(f)(ϕj(m)) = f(p−i−jm) when j < 1− i (in which case −i− j ≥ 0).
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Lemma 8.6. There is a unique (ϕiM∗) satisfying these constraints. Using it, M∗ is an object of

MFfW,tor. Then M 7→M∗ is a contravariant functor from MFfW,tor to itself, and M 'M∗∗ naturally
in M .

Proof. Uniqueness is immediate, while existence is checked in [Con94, §7.5]. We will use a similar
argument in Lemma 8.20 and Lemma 8.21. �

To connect Fontaine-Laffaille modules and torsion-crystalline representations, we use the period
ring Acris. For our purposes, what is important is that Acris is a W -algebra that has an action of
ΓK , a σ-semilinear endomorphism ϕ (coming from the pth power map) and a filtration {FiliAcris}.
In particular, it carries both an action of ΓK and the structure of a Fontaine-Laffaille module.
A convenient reference is [Hat, §2.2], which reviews Acris for the purposes of constructing the
contravariant Fontaine-Laffaille functor. We use it to define an analogue of Vcris:

Definition 8.7. For M ∈ MF
f,[2−p,1]
W,tor , define

Tcris(M) := ker
(
1− ϕ0

Acris⊗M : Fil0(Acris ⊗M)→ Acris ⊗M
)
.

Remark 8.8. A small argument (see [Hat, §2.2]) also shows that

Acris,∞ := Acris ⊗W K/W = lim−→
n

Acris/p
nAcris ∈ MF

f,[0,p−1]
W,tor .

This allows us define a contravariant functor from MF
f,[0,p−1]
W,tor to RepZp(ΓK) by

T ∗cris(M) := HomMFW (M,Acris,∞).

This functor agrees with the functor US considered by Fontaine and Laffaille [Hat, Remark 2.7].

If M ∈ MF
f,[2−p,1]
W,tor is killed by p, then

T ∗cris(M
∗) = HomMFW (M∗, Acris/pAcris)

' ker
(
1− ϕ0

Acris⊗M : Fil0(Acris ⊗M)→ Acris ⊗M
)

= Tcris(M)

which is how Fontaine and Laffaille’s results about T ∗cris imply results about Tcris.

We can extend Tcris to DK by defining an analogue of Tate-twisting:

Definition 8.9. For M ∈ MF
f,[a,b]
W,tor and an integer s, define M(s) to have the same underlying

W -module with filtration M(s)i = M i−s and maps ϕiM(s) = ϕi−sM .

Tate-twisting allows us to shift the weights and extend results in the range [2 − p, 1] to any

interval [a, b] where b− a ≤ p− 2. For M ∈ MF
f,[a,b]
W,tor , we define

Tcris(M) = Tcris(M(−(b− 1)))(b− 1)

Fact 8.10. We have:

(1) The covariant functor Tcris : DK → RepZp [ΓK ] is well-defined, and is exact and fully faith-
fully.

(2) For M ∈ DK , Tcris(M) = lim←−Tcris(M/pnM).

(3) The essential image of Tcris : MF
f,[a,b]
W,tor → RepZp [ΓK ] is stable under formation of sub-objects

and quotients.

(4) For M ∈ MF
f,[a,b]
W,tor , the length of M as a W -module is equal to the length of Tcris(M) as a

Zp-module.
(5) For M ∈ DK , the ΓK-representation Tcris(M)[1

p ] is crystalline.
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(6) Any torsion-crystalline Fp[ΓK ]-module V whose Hodge-Tate weights lie in an interval of
length p− 2 is in the essential image of Tcris.

This is a modified version of [BK90, Theorem 4.3]. Additional details of the proof of that
theorem are recorded in [Con94, §7]. The first, fourth, and fifth statements are stated explicitly
in [BK90, Theorem 4.3]. The second is proven in [Con94, §7.2]. The claim about the essential
image follows from the results of [Con94, §8.3-9.6]: a formal argument shows that if T ∗cris takes
simple objects to simple objects, the essential image is stable under formation of sub-objects and
quotients. The content is that T ∗cris takes simple objects to simple objects. The formal argument
adapts to Tcris, and Remark 8.8 allows us to deduce that Tcris takes simple objects to simple objects
as all simple objects are automatically killed by p. The last statement follows from relating Tcris

to T ∗cris on p-torsion objects and the fact that for r ∈ {0, 1, . . . , p − 2}, the functor T ∗cris induces

an anti-equivalence between MF
f,[0,r]
W,tor and the full subcategory of RepZp(ΓK) consisting of torsion-

crystalline ΓK representations with Hodge-Tate weights in [−r, 0].

Remark 8.11. Our convention that the Hodge-Tate weight of the cyclotomic character is −1
makes the Fontaine-Laffaille weights and Hodge-Tate weights match under Tcris.

8.2. Tensor Products and Freeness. We now address two properties of Tcris where it is crucial
to be using the covariant functor. Definition 8.4 defined a tensor product for Fontaine-Laffaille

modules. If M1 ∈ MF
f,[a1,b1]
W,tor and M2 ∈ MF

f,[a2,b2]
W,tor , it is straightforward to verify that M1 ⊗M2 is

an object of MF
f,[a1+a2,b1+b2]
W,tor . The functor Tcris is compatible with tensor products in the following

sense:

Fact 8.12. Suppose that M1, M2, and M1⊗M2 each has Fontaine-Laffaille weights in an interval
of length at most p− 2. Then Tcris(M1)⊗Zp Tcris(M2) ' Tcris(M1 ⊗M2).

There is a natural from the left to the right coming from the multiplication of Acris. To check
this map is an isomorphism, one first checks on simple M1 and M2 using Fontaine and Laffaille’s
classification of simple Fontaine-Laffaille modules when the residue field k′ is algebraically closed.
This is explained in [Con94, §10.6]. Then one uses a dévissage argument to reduce to the general
case, as explained in [Con94, §7.11].

Remark 8.13. An analogue of this compatibility is stated in [FL82, Remarques 6.13(b)] for the
contravariant functor T ∗cris, but is missing a p-torsion hypothesis. In that case, we have

T ∗cris(M1) = HomMFW (M1, , Acris,∞) = HomMFW (M1, Acris/pAcris)

and likewise for M2. Then multiplication on Acris/pAcris gives a natural map

T ∗cris(M1)⊗ T ∗cris(M2)→ T ∗cris(M1 ⊗M2)

which can be checked to be an isomorphism by dévissage. But Acris,∞ is not a ring, so there is no
natural map without a p-torsion hypothesis on M1 and M2. This explains why it is crucial to work
with the covariant functor Tcris.

For M ∈ MF
f,[a,b]
W,tor , if V = Tcris(M) has “extra structure” then so does M . For example, if V were

a deformation of a residual representation over a finite field k, V would be an O = W (k)-module.
As Tcris is covariant and fully faithful, it is immediate that M is naturally an O-module. The
actions of Zp on M via the embeddings into O and W = W (k′) are obviously compatible. We
denote the Frobenius on O by σ.

Recall that a Galois representations of ΓK defined over a finite extension L of Qp can be viewed as
Qp-vector spaces with the additional action of L. Assume there exists an embedding ofK into L over
Qp, so L splits K over Qp. Such a Galois representations are modules over L⊗QpK '

∏
τ :K↪→L Lτ

via a ⊗ b 7→ (aτ(b)). For each Qp-embedding τ , there is a collection of Hodge-Tate weights. We
will generalize this structure to the setting of Fontaine-Laffaille modules.
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Assume k′ is finite, and more specifically that k′ embeds in k, so O[1
p ] splits the finite unramified

K over Qp. Hence

O ⊗Zp W '
∏

τ :W↪→O
Oτ

as O-algebras, where τ varies over Zp-embeddings of W into O and W acts on Oτ := O via τ . We
likewise obtain a decomposition of the O ⊗Zp W -module M as

M =
⊕

τ :W↪→O
Mτ .

Note that

HomO⊗ZpW
(M,M ′) =

⊕
τ :W↪→O

HomO(Mτ ,M
′
τ ).

Lemma 8.14. If V = Tcris(M) is equipped with a ΓK-equivariant O-module structure then for
M i
τ := Mτ ∩M i we have

M i =
⊕

τ :W↪→O
M i
τ

and furthermore the σ-semilinear map ϕiM |M i
τ

: M i
τ → M factors through Mστ . The length of M

as an O-module equals the length of V as an O-module multiplied by [K : Qp].

Proof. The first statement is straightforward, and the second is bookkeeping using Fact 8.10(4). �

We also have a result about freeness.

Lemma 8.15. Let V and M be R-modules for an artinian coefficient O-algebra R with residue field
k. Then V is a free R-module if and only if M is a free R-module. When M is a free R-module,
all of the M i

τ are free R-direct summands. All of the Mτ have the same rank.

Proof. Let N be a finitely generated R-module with n = dimkN/mRN . Then N is free if and only
if lgO(N) = n lgO(R) , as we see via Nakayama’s lemma applied to a map Rn → N inducing an
isomorphism modulo mR. From the exact sequence of Fontaine-Laffaille modules

0→ mRM →M →M/mRM → 0

and the fact that Tcris is covariant and exact, we see that Tcris(M/mRM) = V/mRV . Using
Lemma 8.14, if dimk V/mRV = n then M/mRM is a k-vector space of dimension [K : Qp]n. Thus
to relate R-freeness of M and V we just need to show that lgO(M) = [K : Qp] lgO(V ), which again
follows from Lemma 8.14.

Now suppose M is a free R-module. By functoriality, the Zp-module direct summands Mτ of
M are each R-submodules, so each Mτ is an R-module direct summand of M . Hence each Mτ is
R-free when M is free. To deduce the same for each M i

τ , we just need that each M i
τ is an R-module

summand. By R-freeness of M , it suffices to show that each M i
τ/mRM

i
τ → M/mRM is injective.

Since M i
τ is the “τ -component” of M i by Lemma 8.14 it is an R-module summand of M i. Thus it

suffices to show that

M i/mRM
i →M/mRM

is injective for all i. But this follows from the fact that MF
f,[a,b]
W,tor is abelian.

To check that all of the Mτ have the same rank, by freeness it suffices to check that dimkM τ is
independent of τ . As all Zp-embeddings of the unramified W into O are of the form σiτ for some
fixed Zp-embedding τ and σ has finite order, it suffices to show that

dimkM τ ≥ dimkMστ .
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As each M
i
τ is a k-module direct summand of M τ , M τ is isomorphic to gr•M τ . But ϕi

M
(M

i+1
) = 0,

so we obtain a map ∑
i

ϕiMτ
: gr•M τ →Mστ .

As Fontaine-Laffaille modules satisfy

M =
∑
i

ϕi(M
i
)

the map
∑

i ϕ
i
Mτ

is surjective. This completes the proof. �

Remark 8.16. We get a set of Fontaine-Laffaille weights for each Zp-embedding τ : W ↪→ O. We
can also define the multiplicity of a weight wτ to be the rank of the R-module Mwτ

τ /Mwτ+1
τ . The

number of Fontaine-Laffaille weights (counted with multiplicity) is the same for each embedding.
We say the Fontaine-Laffaille weights with respect to an embedding are distinct if each has mul-
tiplicity 1. This is analogous to the way a Hodge-Tate representation of ΓK over a p-adic field
splitting K over Qp has a set of Hodge-Tate weights for each Qp-embedding of K into that field.

We can now define a notion of a tensor product for Fontaine-Laffaille modules that are also
R-modules for a coefficient ring R over O.

Definition 8.17. Define M1⊗W⊗ZpR
M2 to be the module M1⊗W⊗ZpR

M2 together with filtration

defined by (M1 ⊗W⊗ZpR
M2)n =

∑
i+j=nM

i
1 ⊗W⊗ZpR

M j
2 and with ϕnM1⊗W⊗Zp

RM2
defined in the

obvious way on the pieces.

Lemma 8.18. Suppose that M1, M2, and M1 ⊗W⊗ZpR
M2 are all in MF

f,[a,b]
W,tor with 0 ≤ b − a ≤

p − 2, and that M1 and M2 are R-modules for a coefficient ring R over O. The natural map
Tcris(M1)⊗R Tcris(M2)→ Tcris(M1 ⊗W⊗ZpR

M2) is an isomorphism of R[ΓK ]-modules.

Proof. We have an exact sequence

0→ J →M1 ⊗W M2 →M1 ⊗W⊗ZpR
M2 → 0

where J is generated by the extra relations imposed by R-bilinearity (beyond W -bilinearity). For
r ∈ R, define µr : M1 ⊗W M2 →M1 ⊗W M2 by

µr(m1 ⊗m2) = (rm1)⊗m2 −m1 ⊗ (rm2).

Then J =
∑

r∈R Im(µr); this is an object in the abelian category MF
f,[a,b]
W,tor . We will show that

Tcris(J) is the kernel of Tcris(M1 ⊗W M2)→ Tcris(M1)⊗R Tcris(M2).
It suffices to show that Tcris(N1 + N2) = Tcris(N1) + Tcris(N2) for subobjects N1 and N2 of

M1 ⊗W M2. Indeed, granting this we would know that

Tcris(J) =
∑
r∈R

Tcris(µr).

But by functoriality Tcris(µr) is the map Tcris(M1)⊗W Tcris(M2)→ Tcris(M1)⊗W Tcris(M2) given by
v1⊗ v2 7→ rv1⊗ v2− v1⊗ rv2, so Tcris(J) is the kernel of Tcris(M1⊗W M2)→ Tcris(M1)⊗R Tcris(M2)
as desired.

To prove that Tcris(N1 +N2) = Tcris(N1) + Tcris(N2), consider the exact sequence

0→ N1 ∩N2 → N1 ⊕N2 → N1 +N2 → 0.

As Tcris preserves direct sums, it suffices to show that

Tcris(N1) ∩ Tcris(N2) = Tcris(N1 ∩N2).

But this follows from the exactness of Tcris and the left exact sequence

0→ N1 ∩N2 → N1 ⊕N2 →M1 ⊗W M2
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where the second map is (n1, n2) 7→ n1 − n2. �

8.3. Duality. Let R be a coefficient ring over O and M ∈ MFfW,tor be a free R-module compatible
with the Fontaine-Laffaille structure in the sense that the the action of R is given by morphisms

of Fontaine-Laffaille modules. Fix L ∈ MFfW,tor with an R-structure compatible with the Fontaine-

Laffaille structure so that for each τ , Lτ is a free R-module of rank 1 with Lsττ = Lτ and Lsτ+1
τ = 0

for some sτ (the analogue of a character taking values in R×). We will define a dual relative to L
akin to Cartier duality. This will be useful for studying pairings.

Definition 8.19. For an M as above, define M∨ = HomR⊗ZpW
(M,L) with a filtration given by

FiliM∨ = {ψ ∈ HomR⊗ZpW
(M,L) : ψ(M j) ⊂ Li+j for all j ∈ Z}.

For ψ ∈ FiliM∨, define ϕiM∨(ψ) to be the unique function in HomR⊗ZpW
(M,L) such that

ϕiM∨(ψ)(ϕjM (m)) = ϕi+jL (ψ(m)).

for all m ∈M j and j.

If ϕiM∨ exists, it is unique since the images of the ϕjM ’s span M additively. Likewise, if ϕiM∨
exists for all i they are automatically σ-semilinear and satisfy pϕi+1

M∨ = ϕiM∨ |Fili+1M∨ . We check

ϕiM∨(ψ) is well-defined in the following lemma. The key fact is that all of the M i
τ are free R-module

direct summands of Mτ (by Lemma 8.15).

Lemma 8.20. The function ϕiM∨(ψ) is well-defined, and the filtration can equivalently be described
as

FiliM∨ =
⊕

τ :W↪→O
HomR(Mτ/M

1+sτ−i
τ , Lτ ).

Proof. We first establish the alternate description of FiliM∨. Because

HomR⊗ZpW
(M,L) =

⊕
τ :W↪→O

HomR(Mτ , Lτ ),

and Lsττ = Lτ while Lsτ+1
τ = 0, an element ψτ ∈ HomR(Mτ , Lτ ) satisfies ψτ (M j

τ ) ⊂ Li+jτ if and

only if ψτ (M j
τ ) = 0 whenever i + j > sτ . This says exactly that ψτ factors through Mτ/M

1+sτ−i
τ .

Because M1+sτ−i
τ is an R-module direct summand, hence free with free complement, a morphism

Mτ/M
1+sτ−i
τ → Lτ is equivalent to a morphism ψτ : Mτ → Lτ such that ψτ (M1+sτ−i

τ ) = 0. Thus
FiliM∨τ = HomR(Mτ/M

1+sτ−i
τ , Lτ ) as desired.

We will construct ϕiM∨ : FiliM∨ →M∨ using the exact sequence

0→
b⊕

r=a+1

M r →
b⊕

r=a

M r →M → 0(8.1)

of [FL82, Lemme 1.7]. The first map sends (mr)
r=b
r=a+1 to (pmr −mr+1)r=br=a (with the convention

that ma = 0 and mb+1 = 0), and the second map is
∑b

r=a ϕ
r
M . For ψ ∈ FiliM∨, consider the map

φ :
b⊕

r=a

M r → L
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induced by the ϕi+rL ◦ ψ : M r → L. For (mr)
r=b
r=a+1 in

b⊕
r=a+1

M r, we compute that

φ((mr)
r=b
r=a+1) =

b∑
j=a

ϕi+jL (ψ((pmj −mj+1)))

=

b∑
j=a

pϕi+jL (ψ(mj))−
b∑

j=a

ϕi+jL (ψ(mj+1)).

But ϕi+jL |Li+j+1 = pϕi+j+1
L , so this difference is

b∑
j=a

pϕi+jL (ψ(mj))−
b+1∑

j=a+1

pϕi+jL (ψ(mj))

which vanishes as mb+1 = 0 and ma = 0. Hence φ factors through the quotient M of (8.1), giving
the desired well-defined map ϕiM∨ . �

Lemma 8.21. The Fontaine-Laffaille module M∨ is an object of MFfW,tor.

Proof. It suffices to show that the inclusion∑
i

ϕiM∨(FiliM∨) ↪→M∨

is an equality. By Nakayama’s lemma, it suffices to show that the reduction modulo mR is surjective.
For an R-module N , let N denote the reduction modulo mR. We may pick free R-modules N i

τ such
that M i

τ = N i
τ ⊕M i+1

τ as each M i
τ is a (free) direct summand of the R-free Mτ that is an R-free

direct summand of M . Because p · ϕi+1
M = ϕiM |M i+1 , we see ϕiM (M

i
τ ) = ϕiM (N

i
τ ), so

Mστ =
∑
i

ϕiM (N
i
τ ).

By Lemma 8.15, M τ and Mστ have the same dimension so ϕiM |N i
τ

is injective and the sum is direct.

We also know that ϕiL|Lτ = 0 for i < sτ because p · ϕj+1
L = ϕjL|Lj+1 .

As Mτ and Lτ are free R-module summands of M and L for all τ , M∨ = M
∨

by Lemma 8.20.

We can describe an element ψ ∈ FiliM∨ as a collection of ψτ,j ∈
⊕

τ,j HomR(N
j
τ , L

i+j
τ ). But

L
i+j
τ is one-dimensional over k if i + j ≤ sτ , and is zero otherwise. Then for f = ϕiM∨(ψ) and

m =
∑

τ,j ϕ
j
M (nτ,j) with nτ,j ∈ N

j
τ , by construction we have

f(m) =
∑
τ,j

ϕi+jL (ψ(nτ,j)).

But ϕi+jL (ψ(nτ,j)) is forced to be zero unless i+ j = sτ , in which case it can take on any non-zero

value in Lτ (depending on the choice of ψ). Thus

ϕiM∨(FiliM
∨

) =
⊕
τ

Hom
(
ϕsτ−iM (N

sτ−i
τ ), Lστ

)
.

Summing over i, and using the sum decomposition M =
∑

τ,i ϕ
i
M (N

i
τ ) gives that∑

i

ϕi
M
∨(FiliM

∨
) = Hom(M,L).

This shows the desired surjectivity. �
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Remark 8.22. For fixed Zp-embedding τ : W ↪→ O, if the Fontaine-Laffaille weights (Remark 8.16)
of M with respect to τ are {wτ,i}i then the Fontaine-Laffaille weights of M∨ with respect to τ are
{sτ − wτ,i}i.

Now assume we have a Galois representation ν on the free rank-1 R-module corresponding to
L; we define the dual V ∨ = HomR[ΓK ](V,R(ν)) for a discrete ΓK-representation on a finite free
R-module V .

Lemma 8.23. For a morphism f : M → N in MF
f,[a,b]
W,tor with b − a ≤ p−2

2 , there is a natural

isomorphism Tcris(M
∨) ' Tcris(M)∨ and Tcris(f

∨) = Tcris(f)∨.

Proof. We prove this by studying the evaluation pairing M ⊗R M∨ → L. It is straightforward
to verify that this pairing is a morphism of Fontaine-Laffaille modules. Because b − a ≤ p−2

2 ,
Lemma 8.18 gives a pairing of Galois-modules

(8.2) Tcris(M)⊗R Tcris(M
∨) = Tcris(M ⊗RM∨)→ Tcris(L) = νR.

We will now prove that this pairing is perfect when R = k. We will do so by inducting on the
dimension of the k-vector space M . The case of dimension 0 is clear. Also, if M 6= 0 the pairing
of Fontaine-Laffaille modules is non-zero (look at the pairing Mτ × Hom(Mτ , Lτ ) → Lτ of vector
spaces). Thus the pairing of Galois-modules is non-zero if M 6= 0 as Tcris is faithful.

Now we use induction, so we can assume M 6= 0. The annihilator of Tcris(M
∨) is Tcris(M1) for

some f : M1 ↪→ M because the essential image of Tcris is closed under taking sub-objects. We
know M1 is a proper sub-object as the pairing is non-zero. Observe that we may define the dual
f∨ : M∨ → M∨1 by precomposition: it is surjective as we are over a field. For v1 ∈ Tcris(M1) and
v2 ∈ Tcris(M

∨), we must have

0 = 〈v1, f
∨v2〉 = 〈f(v1), v2〉.

But the pairing Tcris(M1) ⊗ Tcris(M
∨
1 ) → Tcris(L) is non-degenerate by induction, and f∨ is sur-

jective, so this means that v1 = 0. Thus T (M1) and hence M1 are trivial. Over the field k, this
ensures the pairing is perfect.

For the general case, we use the basic fact that for a coefficient ring R, if N1 and N2 are free
R-modules of the same rank with an R-bilinear pairing N1 ×N2 → R, the pairing is perfect if the
reduction (modulo mR) N1 ×N2 → k is perfect. Apply this to Tcris(M)× Tcris(M

∨)→ Tcris(L).
The statement Tcris(f

∨) = Tcris(f)∨ is just functoriality. �

9. Fontaine-Laffaille Deformations

Let G = GSpr or GOr, and consider a representation ρ : ΓK → G(k) with similitude character
ν, where K = W [1

p ] for W = W (k′) with finite k′. Let V be the underlying vector space for ρ

using the standard representation of G. Take O to be the Witt vectors of k, and assume O[1
p ] splits

K over Qp. Fix a lift ν : ΓK → O× of ν that is crystalline with Hodge-Tate weights {sτ}τ in an
interval of length p− 2, and let L = Tcris(ν).

We suppose that ρ is torsion-crystalline with Hodge-Tate weights in an interval [a, b] where

0 ≤ b − a ≤ p−2
2 so we can use Fontaine-Laffaille theory. Let M be the corresponding Fontaine-

Laffaille module (using Fact 8.10(6)), with Fontaine-Laffaille weights {wτ,i}τ,i. In this section we
define and study the Fontaine-Laffaille deformation condition assuming that for each Zp-embedding
τ : W ↪→ O the Fontaine-Laffaille weights are multiplicity-free as in Remark 8.16 (the jumps in the
filtration are of rank 1). This section is a generalization of unpublished results in [Pat06], which
treat the symplectic case when K = Qp.
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9.1. Definitions and Basic Properties. As V is a k-linear representation of ΓK , M becomes a
k′ ⊗Fp k-module and in particular a k-vector space.

Definition 9.1. For an Artinian coefficient ring R over O = W (k), define DFL
ρ (R) to be the

collection of lifts ρ : ΓK → G(R) of ρ with similitude character νR that lie in the essential image

of Tcris (after composing with G → GLn) restricted to the full subcategory MF
f,[a,b]
W,tor . Such a

deformation is called a Fontaine-Laffaille deformation.

We will analyze this deformation condition when for each fixed embedding τ : W ↪→ O the
Fontaine-Laffaille weights of ρ are multiplicity-free (when the jumps in the filtration of each M τ

are 1-dimensional over k). Note that the Fontaine-Laffaille weights of M are the same as the
Fontaine-Laffaille weights of M as each M i

τ is a direct summand.

Theorem 9.2. If the Fontaine-Laffaille weights are multiplicity-free, DFL
ρ is liftable. If B is a

Borel subgroup of G, the dimension of the tangent space of DFL
ρ is

[K : Qp] (dimGk − dimBk) +H0(ΓK , ad0(ρ)).

If ρ : ΓK → G(O) is an inverse limit of Fontaine-Laffaille deformations of ρ to O/pnO for all
n ≥ 1, it is a lattice in a crystalline representation with the same Fontaine-Laffaille weights as ρ.

The proof of this theorem will occur over the remainder of this section. The key pieces are
Proposition 9.7, Proposition 9.8, and Proposition 9.20.

To understand DFL
ρ , we must express the orthogonal or symplectic pairing in the language of

Fontaine-Laffaille modules. For a Galois module V which is a free R-module, recall we defined
V ∨ = HomR[ΓK ](V, νR). For a deformation of ρ to a coefficient ring R, we obtain an R[ΓK ]-module
V together with an isomorphism η : V ' V ∨ coming from the pairing. Let ε = 1 for G = GOr and
ε = −1 for G = GSpr. The fact that 〈v, w〉 = ε〈w, v〉 is equivalent to η∗ = εη, where η∗ is the map
V ' V ∨∨ → V ∨ induced by double duality.

Lemma 9.3. For a coefficient ring R, suppose V is a lift of V as an R[ΓK ]-module that is finite free
over R, corresponding to a Fontaine-Laffaille module M that is finite free over R. An isomorphism
of R[ΓK ]-modules

η : V ' V ∨

such that η(v)(w) = εη(w)(v) is equivalent to an R-linear isomorphism of Fontaine-Laffaille modules

γ : M 'M∨

such that γ(m)(n) = εγ(n)(m).

Proof. As the Hodge-Tate weights of ρ lie in an interval of length p−2
2 , Lemma 8.18 and Lemma 8.23

hold. In particular, Tcris(M
∨) = Tcris(M)∨. As Tcris is fully faithful in this range, we see that a map

η is equivalent to a map γ, and one is an isomorphism if and only if the other one is. It remains to
check that γ is symmetric or alternating if and only if η is. Let η∗ and γ∗ denote the isomorphisms
respectively given by

V ' V ∨∨ η∨→ V ∨ and M 'M∨∨ γ∨→M∨.

A straightforward check shows that Tcris carries η∗ to γ∗, and hence η = εη∗ if and only if γ =
εγ∗. �

Lemma 9.4. An R-linear isomorphism of Fontaine-Laffaille modules γ : M ' M∨ for which
γ(m)(n) = εγ(n)(m) is equivalent to a perfect ε-symmetric W⊗ZpR-bilinear pairing 〈·, ·〉 : M×M →
LR satisfying

• 〈M i,M j〉 ⊂ Li+j;
• 〈ϕiM (m), ϕjM (n)〉 = ϕi+jL 〈m,n〉.
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Proof. This is just writing out what γ : M →M∨ being a morphism of Fontaine-Laffaille modules
means for the pairing 〈m,n〉 = γ(m)(n).

For γ to preserve the filtration says exactly that

γ(M i) ⊂ FiliM∨ = {ψ ∈ HomW⊗ZpR
(M,L) : ψ(M j) ⊂ Li+j}.

This is equivalent to 〈M i,M j〉 ⊂ Li+j for all i, j. The compatibility of γ with the ϕ’s says exactly
that for m ∈M i

ϕiM∨(γ(m)) = γ(ϕiM (m)).

Evaluating on any ϕjM (n) ∈M and using the definition of M∨ we see

ϕiM∨(γ(m))(ϕjM (n)) = ϕi+jL (γ(m)(n)) = ϕi+jL (〈m,n〉).

Evaluating γ(ϕiM (m)), we see that

γ(ϕiM (m))(ϕjM (n)) = 〈ϕiM (m), ϕjM (n)〉.

Thus, γ being compatible with the ϕ’s is equivalent to 〈ϕiM (m), ϕjM (n)〉 = ϕi+jL (〈m,n〉). �

In particular, the pairing V × V → ν gives a perfect pairing 〈·, ·〉M : M ×M → L .

Corollary 9.5. For a coefficient ring R, Tcris gives a bijection between deformations ρ ∈ DFL
ρ (R)

and isomorphism classes of Fontaine-Laffaille modules M ∈ MF
f,[a,b]
W,tor that are free as R-modules

and for which there exists a perfect ε-symmetric W ⊗Zp R-bilinear pairing 〈·, ·〉 : M ×M → LR
satisfying

• 〈M i,M j〉 ⊂ Li+j;
• 〈ϕiM (m), ϕjM (n)〉 = ϕi+jL 〈m,n〉.

together with an isomorphism of the reduction of (M, 〈·, ·〉) with (M, 〈·, ·〉M ).

Proof. This follows by combining the two previous lemmas. Note that the pairing 〈·, ·〉 is automat-
ically perfect as it lifts the perfect pairing 〈·, ·〉M . �

Corollary 9.6. DFL
ρ is a deformation condition.

Proof. This argument goes back to Ramakrishna [Ram93], and uses exactness properties of Tcris on

MFfW,tor, Corollary 9.5, and the fact that for a morphism of coefficient rings R→ R′,

R′ ⊗R Tcris(M) = Tcris(R
′ ⊗RM).

For example, to check that DFL
ρ is a sub-functor of Dρ, let R be a coefficient ring and M be the

Fontaine-Laffaille module corresponding to ρ ∈ DFL
ρ (R). Then R′ ⊗R Tcris(M) lies in the essential

image of Tcris, and R′ ⊗R M admits a perfect ε-symmetric R′-bilinear pairing as in Corollary 9.5
given by extending the pairing on M . This shows that ρR′ ∈ DFL

ρ (R′). A similar argument checks

Definition 2.5(2). �

Using Proposition 8.10, it is simple to understand characteristic-zero points of the deformation
functor.

Proposition 9.7. Suppose we are given a compatible collection of Fontaine-Laffaille deformations
ρi : ΓK → G(Ri), where {Ri} is a co-final system of artinian quotients of the valuation ring R of
a finite extension of O[1

p ] with the same residue field as O. Then ρ = lim←− ρi is crystalline (more

precisely, a lattice in a crystalline representation) with indexed tuple of Hodge-Tate weights equal
to the corresponding indexed-tuple of Fontaine-Laffaille weights of ρ.
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Proof. It is straightforward to verify that the inverse limit of the Fontaine-Laffaille modules cor-
responding to ρi is in DK . Then the result follows from combining Fact 8.10(2) and (5). Our
convention that the cyclotomic character has Hodge-Tate weight −1 makes the Hodge-Tate weights
and Fontaine-Laffaille weights match (Remark 8.11). �

9.2. Liftability. In this section, we analyze liftability by constructing lifts of Fontaine-Laffaille
modules. Lifting the underlying module, filtration, and pairing will be relatively easy. Constructing
lifts of the ϕiM compatible with these choices requires substantial work. Let WFL,τ denote the
Fontaine-Laffaille weights of ρ with respect to a Zp-embedding τ : W ↪→ O, corresponding to the

jumps in the filtration of M τ .

Proposition 9.8. Under the assumption that the Fontaine-Laffaille weights lie in an interval of
length p−2

2 and are multiplicity-free for each τ : W ↪→ O, the deformation condition DFL
ρ is liftable.

Let ρ : ΓK → G(R) be a Fontaine-Laffaille deformation of ρ. Let M and M be the corresponding
Fontaine-Laffaille modules for ρ and ρ, which decompose as

M =
⊕
τ

Mτ and M =
⊕
τ

M τ .

Each Mτ is a free R-module by Lemma 8.15. Furthermore, the filtration {M i
τ} on Mτ is given by

R-module direct summands and ϕiM (M i
τ ) ⊂Mστ . In particular, there exist free rank-1 R-modules

N
wτ,i
τ ⊂ M

wτ,i
τ such that M

wτ,i
τ = N

wτ,i
τ ⊕ M

wτ,i+1
τ . As the pairing is O-bilinear, the pairings

Mτ ×Mτ → Lτ are collectively equivalent to the pairing M ×M → L, so to lift the pairing and
check compatibility it suffices to do so on Mτ . We also fix a basis for each Lτ , so we may talk about
the value of the pairings. Thus to analyze liftability of M , we will work with each Mτ separately
using R⊗Zp W =

∏
τ Rτ with τ varying through Zp-embeddings W ↪→ O → R.

By a basis for Mτ , we mean a basis for it as an R-module. By Lemma 8.15, the rank of Mτ is r.
For G = GSpr with r even, the standard alternating pairing with respect to a chosen basis is the
one given by the block matrix (

0 I ′r/2
−I ′r/2 0

)
where I ′m denotes the anti-diagonal matrix with 1’s on the diagonal. For G = GOr, the standard
symmetric pairing with respect to the basis is the one given by the matrix I ′r.

Example 9.9. Take R = k and fix an embedding τ : W ↪→ O. Let w1, . . . , wr be the Fontaine-
Laffaille weights of Mτ , and recall that wi+wr+1−i = sτ because M 'M∨. Pick vi ∈Mwi

τ −Mwi+1
τ .

Since ϕiM |Mi+1 = pϕi+1
M = 0,

Mστ =
∑
i

ϕi(M i
τ ) = spank ϕ

wi
M (vi).

Note that {ϕwiM (vi)} is a k-basis for Mστ , as the left side has k-dimension r and there are r Fontaine-
Laffaille weights for τ . Furthermore, compatibility with the pairing means that

〈ϕwiM (vi), ϕ
wj
M (vj)〉 = ϕ

wi+wj
L (〈vi, vj〉).

But ϕhL|Lτ = 0 unless h = sτ : for h > sτ this is because Lhτ = 0, while for h < sτ this is because

Lhτ = Lh+1
τ = Lτ and ϕhL|Lh+1

τ
= pϕh+1

L = 0. Thus 〈ϕwiM (vi), ϕ
wj
M (vj)〉 = 0 unless wi + wj = sτ , in

which case the pairing must be non-zero as it is perfect. If i 6= j, by rescaling vi we may arrange for
〈ϕwiM (vi), ϕ

wj
M (vj)〉 to be an arbitrary unit. For G = GSpr or G = GOr with r even this means after

rescaling the pairing may be taken to be standard with respect to the basis ni = ϕwi(vi) of Mστ

(and with respect to the fixed basis of Lτ ). For G = GOr with r odd and i = [r/2] + 1, defining
ωτ := 〈ϕwi(vi), ϕwi(vi)〉 ∈ k× and rescaling v1, . . . , vi−1 then brings us to the case that the pairing
is ωτ times the standard pairing with respect to the basis ni = ϕwi(vi) of Mστ .
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Remark 9.10. The constant ωτ depends on the choice of basis {vi} for Mτ , so in particular is not
independent of τ . This will not cause problems in later arguments.

Remark 9.11. There is a lot of notation in the following arguments. With τ fixed, we will use vi
to denote elements of Mwi

τ , and mi to denote elements of Mστ . Usually we will have ϕwiM (vi) = mi.
If we want to index by Fontaine-Laffaille weights instead of the integers {1, 2, . . . , r}, we will use
v′wi := vi and m′wi := mi. For a weight w ∈ WFL,τ , let w∗ ∈ WFL,τ denote the unique weight for
which w + w∗ = sτ .

Lemma 9.12. Let w1 < w2 < . . . < wr denote the Fontaine-Laffaille weights of M with respect to
τ . There exists an R-basis m1 . . . ,mr of Mστ such that mi = ϕwiM (vi) where vi is an R-basis for
a complement to Mwi+1

τ in Mwi
τ and such that the pairing 〈·, ·〉 on Mστ is an R×-multiple of the

standard pairing with respect to the basis {mi} (and the previously fixed basis of L).

Proof. Example 9.9 shows that such a basis vi exists over R/mR: pick a lift vi ∈ N i
τ of vi, and

define mi = ϕwiM (vi). We know that

〈ϕwiM vi, ϕ
wj
M vj〉 = ϕ

wi+wj
L (〈vi, vj〉).

If wi + wj > sτ , this is zero because Lsτ+1
τ = 0. If wi + wj < sτ , since ϕ

wi+wj
L |Lsττ = psτ−wi−wjϕsτL

this is not a unit. If wi + wj = sτ (equivalently, i + j = r + 1), it is a unit of R as the pairing is
perfect.

We will modify the lifts vi and then take mi = ϕwiM (vi). For 0 ≤ j ≤ r/2 (so j < r + 1 − j), we
will inductively arrange that:

(1) for i ≤ j, 〈mi,mh〉 = 0 for h 6= r + 1− i;
(2) vi is an R-basis for a complement to Mwi+1

τ in Mwi
τ ;

(3) 〈mi,mr+1−i〉 is a unit for all 1 ≤ i ≤ r.
For j = 0, the first condition is vacuous and the other two conditions hold by our choice of lift.
Given that these conditions hold for j − 1 with 1 ≤ j ≤ r

2 , we will show how to modify the vi so
that these conditions hold for j. Let c = 〈mj ,mr+1−j〉 ∈ R×. For j < h < r + 1− j, define

ṽh := vh − 〈mj ,mh〉c−1vr+1−j .

As j 6= r + 1− h, 〈mj ,mh〉 ∈ mR so ṽh lifts vh. We compute that

〈mj , ϕ
wh
M ṽh〉 = 〈mj ,mh〉 − 〈mj ,mh〉c−1〈mj ,mr+1−j〉 = 0.

For i < j, as r + 1 − i 6= h, r + 1 − h we know mi is orthogonal to both mh and mr+1−h by the
inductive hypothesis and hence 〈mi, ϕ

wh
M ṽh〉 = 0. Thus (1) holds for the R-basis

v1, . . . , vj , ṽj+1, . . . , ṽr−j , vr−j+1, . . . , vr.

As ṽh−vh ∈M
wr+1−j
τ , ṽh is still an R-basis for a complement to Mwh+1

τ in Mwh
τ (since wr+1−j >

wh as h < r + 1− j), so (2) holds for this new R-basis of Mτ . Furthermore, we see that

〈ϕwhM ṽh, ϕ
wr+1−h
M ṽr+1−h〉 − 〈mh,mr+1−h〉 ∈ mR.

As 〈mh,mr+1−h〉 is a unit, 〈ϕwhM ṽh, ϕ
wr+1−h
M ṽr+1−h〉 is a unit and (3) holds. Thus we may modify

the lifts vi and then accordingly modify mi to satisfy the inductive hypothesis.
Take such a basis for j = [r/2]. By (1),

〈mi,mi′〉 = 0

if i + i′ 6= r + 1 and one of i or i′ is at most r/2. Otherwise i′ > r + 1 − i so wi + wi′ > sτ and
hence the pairing is zero automatically. If r is even, rescale v1, . . . , vr/2 so that 〈mi,mr+1−i〉 = 1

for i ≤ r/2 using (3). If r is odd (so G = GOr), let ωτ = 〈v[r/2]+1, v[r/2]+1〉 ∈ R× and rescale
v1, . . . , v[r/2] so that 〈mi,mr+1−i〉 = ωτ for 1 ≤ i ≤ [r/2]. In these cases, the pairing with respect
to the basis v1, . . . , vr is a multiple of the standard pairing. �
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Remark 9.13. When r is odd (so G = GOr), to choose a basis where the pairing is standard we
would need to rescale v[r/2]+1 by a square root of the unit 〈m[r/2]+1,m[r/2]+1〉. This might not exist
in R. But note that the orthogonal similitude group GOr is unaffected by a unit scaling of the
quadratic form.

Now we begin the proof of Proposition 9.8. Let R′ � R be a small surjection with kernel I. To
lift ρ to ρ′ : ΓK → G(R′), we can reduce to the case when I is killed by mR′ and dimk I = 1. Lift
the R-module Mτ together with its pairing 〈·, ·〉 over R′ as follows. Choose the basis {mi} provided
by Lemma 9.12, with respect to which 〈·, ·〉 is ωτ times the standard pairing for some ωτ ∈ R×.
We take M ′στ to be a free R′-module with basis {ni} reducing to the basis {mi} of Mστ . Lift ωτ
to some ω′τ ∈ (R′)× and define a pairing on M ′τ to be ω′τ times the standard pairing on M ′τ with
respect to {ni}. Pick a lift ui ∈M ′τ of vi, and define a filtration on M ′τ by

(M ′τ )j = spanR′(ui : wi ≥ j).
We define the module M ′ =

⊕
τ :W↪→OM

′
τ over W ⊗Zp R with filtration (M ′)i =

⊕
τ :W↪→O(M ′τ )i.

It is clear the filtration reduces to the filtration on M . Furthermore, the pairing M ′τ ×M ′τ → Lτ
with respect to {ni} is a multiple of the standard one.

It remains to produce ϕiM ′ lifting ϕiM . As always, it suffices to lift all of the ϕiMτ
: M i

τ → Mστ

separately. We note that the ϕjM ′τ
: M ′jτ → M ′στ are determined by the values ϕwiM ′τ

(ui) for wi ∈
WFL,τ and the relation pϕj+1

M ′τ
= ϕjM ′τ

|
M
′wj+1
τ

. We will define ϕwiM ′τ
(ui) for each wi ∈ WFL,τ to obtain

the desired set of maps ϕjM ′ : M ′j →M ′.
It will now be more convenient to index via weights, so let n′wi = ni and u′wi = ui. Let us consider

defining

ϕwM ′τ (u′w) =
∑

i∈WFL,στ

ciwn
′
i := xw

for ciw to be determined with the obvious restriction that ciw must lift the corresponding coefficient
for ϕwM (v′w). We will study for which choices of {ciw} these maps are compatible with the pairing.

Lemma 9.14. For any choice of {ciw}, the elements xw form a basis for M ′στ .

Proof. Note that the Fontaine-Laffaille weights of M , M , and M ′ are the same. Consider the map∑
i∈WFL,τ

ϕiM ′τ : M ′iτ →M ′στ .

Quotienting by the maximal ideal of R′, as ϕ′wM is a lift of ϕw
M

we obtain a surjection∑
i∈WFL,τ

ϕi
M

: M
i
τ �Mστ

as Mστ =
∑

i ϕ
i
Mτ

(M
i
τ ). By Nakayama’s lemma, the original map is also a surjection. Thus {xw}

spans the free R-module M ′στ . But #{xw} = rkR′(M
′
στ ) = r, so {xw} is a basis for M ′στ . �

The compatibility condition with the pairing is that

〈ϕiM ′τ (x), ϕjM ′τ
(y)〉 = ϕi+jLτ

(〈x, y〉) .

Let ε = 1 for GOr and ε = −1 for GSpr with even r. For a Fontaine-Laffaille weight i ∈ WFL,τ , n′i
and n′i∗ pair non-trivially as i + i∗ = sτ . By linearity and the relation 〈x, y〉 = ε〈y, x〉, it suffices
to check compatibility with the pairing only when i, j ∈ WFL,τ , x = n′i and y = n′j and i < j or

i = j = i∗ (provided we have arranged that pϕw+1
M ′ = ϕwM ′ |M ′w+1).

Remark 9.15. The case i = j = i∗ only occurs when the pairing is orthogonal and r is odd, for
the weight of the unique basis vector which pairs with itself giving a unit.
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Of course, there is no reason to expect our initial arbitrary choice of {ciw} to work. Any other
choice is of the form {ciw + δiw} where δi,w ∈ I. The compatibility condition on M ′τ becomes∑

w,w′∈WFL,τ

(ciw + δiw)(cjw′ + δjw′)〈n′w, n′w′〉 = ϕi+jLτ

(
〈n′i, n′j〉

)
.

Expanding and using the fact that I2 = 0, we see that we wish to choose {δiw} so that∑
w,w′∈WFL,τ

(
ciwδjw′ + cjw′δiw

)
〈n′w, n′w′〉 = ω′τCij

where the constant Cij := (ω′τ )−1
(
ϕi+jLτ

(n′i, n
′
j)−

∑
w,w′∈WFL,τ

ciwcjw′〈n′w, n′w′〉
)

lies in I as ϕiM is

compatible with the pairing.
Now we can simplify based on the explicit form of the pairing with respect to the basis {n′w}.

As n′w only pairs non-trivially with n′w∗ , we obtain the relation (for i < j or i = j = i∗)∑
w≤w∗

(ciwδjw∗ + cjw∗δiw) + ε
∑
w>w∗

(ciwδjw∗ + cjw∗δiw) = Cij .(9.1)

To show that this system of linear equations has a solution, we shall interpret it as a linear trans-
formation.

It is now convenient to index the weights using {1, 2, 3 . . . , r}. Recall that the Fontaine-Laffaille

weights of Mτ are denoted w1 < w2 < . . . < wr. Let U = I⊕r
2
, and decompose U as

⊕r
i=1 Ui,

where the coordinates of Ui = I⊕r are denoted{δwi,wj}rj=1. Let U ′ = I⊕
r(r−1)

2
+σr , where σr = 1 if

there is a w ∈ WFL,τ for which w = w∗ and 0 otherwise. (So σr is zero unless G = GOr and r is

odd.) We may write U ′ =
⊕r−1

i=1 U
′
i , where the coordinates of U ′i = I⊕r−i are denoted {Cwiwj}rj=i+1,

except if σr = 1 and wi = w∗i . In that case, instead take U ′i = I⊕r−i+1 with coordinates denoted
{Cwiwj}rj=i.

Consider the function T : U → U ′ given by

(δwiwh)ih 7→

Cwiwj =
∑

wh≤w∗h

(
cwiwhδwjw∗h + cwjw∗hδwiwh

)
+ ε

∑
wh>w

∗
h

(
cwiwhδwjw∗h + cwjw∗hδwiwh

)
ij

where the cww′ ∈ R′ matter only through their images in k since mR′I = 0. It suffices to show that
T is surjective. As we arranged for I to be 1-dimensional over R′/mR′ = k, this is a question of
linear algebra over k upon fixing a k-basis of I.

We will study particular k-linear maps Ui → U ′i . To simplify notation, let εi = 1 except when
wi > w∗i and the pairing is alternating (ε = −1), in which case εi = −1.

Lemma 9.16. Suppose wi 6= w∗i . The linear transformation Ti : Ui → U ′i defined on

(δwiwh)h 7→

(
Cwiwj =

r∑
h=1

εhcwjw∗hδwiwh

)
j

is surjective. It is the composition Ui → U
T→ U ′ → U ′i .

Proof. As I is one-dimensional over R/mR = k, it suffices to study the matrix for this linear
transformation with respect to a fixed k-basis of I. Fix wh′ ∈ WFL,τ . If we take δwiwh = 0 for
wh 6= wh′ and δwiwh′ = 1, the image of {δwiwh}h ∈ Ui under Ti has coordinates Cwiwj = εwh′ cwjw∗h′

.
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Thus the matrix for Ti is 
ε1cwi+1w∗1

ε2cwi+1w∗2
. . . εrcwi+1w∗r

ε1cwi+2w∗1
ε2cwi+2w∗2

. . . εrcwi+1w∗r
. . . . . . . . . . . .

ε1cwrw∗1 ε2cwrw∗2 . . . εrcwrw∗r

 .

Multiplying the ith column by εi, the columns of this matrix are exactly the coordinates of xwj
with respect to the basis {n′w}w∈WFL,στ

as in Lemma 9.14 except that the first i rows are removed.
As the {xw} form a basis, the columns of this matrix span U ′i .

The last statement follows from the definition. �

Remark 9.17. The statement for wi = w∗i is similar. In that case, we must have ε = 1, and we
have

Cwiwi = 2
∑
j

cwiw∗j δwiwj .

Extending the definition of Ti in Lemma 9.16, we again see that the columns of the matrix repre-
senting this transformation are truncated versions of the coordinates of xwj with some signs changed
and one coordinate multiplied by 2. The image of a basis under the transformation multiplying
one coordinate by 2 is still a basis, so again Ti is surjective.

Lemma 9.18. The composition Tij : Ui → U
T→ U ′ → U ′j is zero whenever i < j.

Informally, this is saying that T is block lower-triangular with diagonal blocks that are surjective.

Proof. The coordinates of Ui are δwiwh . The coordinates of U ′j are Cwjwh for j < h (or j ≤ h if

wj = w∗j ). Looking at the formulas for Cwjwh in the definition of T , they depend only on certain
δww′ with w 6= wi: this uses that i < j ≤ h to rule out any δwiw′ from appearing. These are all zero
on the image of the inclusion Ui → U , so the composition is zero. �

Corollary 9.19. T is surjective.

Proof. The composition of Ui → U → U ′ → U ′i is exactly Ti, hence surjective. For v ∈ U ′, by
descending induction on i, we will construct ui ∈ Ui so that

T (ui + . . .+ ur)− v ∈ U ′1 ⊕ . . .⊕ U ′i−1

(meaning T (u1 + . . . + ur) = v when i = 1). For i = r, take ur be a preimage under Tr of the
component of v in U ′r. Now suppose we have selected ui+1, . . . ur. Pick a preimage ui ∈ Ui of the
projection of T (ui+1 + . . . ur)− v to U ′i using the surjectivity of Ti. We know that Tij(ui) = 0 for
j > i, so

T (ui + . . .+ ur)− v ∈ U ′1 ⊕ . . .⊕ U ′i−1.

For i = 1, we have T (u1 + . . .+ ur) = v as desired. �

Corollary 9.19 lets us choose the {δih} so that the compatibility relations (9.1) are satisfied. This
defines ϕwM ′τ (n′w), and hence we can extend to a map ϕiM ′ : M ′ →M ′ compatible with the pairing.

We then finish the proof of Proposition 9.8 as follows.
Given the deformation ρ to a coefficient ring R with associated Fontaine-Laffaille module

M =
⊕

τ :W↪→O
Mτ ,

and a small surjection R′ → R whose kernel I is 1-dimensional over the field R′/mR′ , we have
constructed a free R′-module M ′ together with a filtration {(M ′)i} and maps ϕiM ′ by lifting the
Mτ . The filtration and {ϕiM ′} make M ′ into a Fontaine-Laffaille module. There is an obvious

R′⊗Zp W -module structure. The condition M ′ =
∑

i ϕ
i
M ′(M

′i) follows from Lemma 9.14. We also
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constructed a pairing M ′ ×M ′ → L, and the filtration and ϕiM ′ are compatible with it (in the
sense of Corollary 9.5) by our choice of (δih)ih. By Corollary 9.5 and Lemma 8.15, Tcris(M

′) gives
a representation ρ′ : ΓK → G(R′) lifting ρ.

9.3. Tangent Space. The final step in the proof of Theorem 9.2 is to analyze the tangent space of
DFL
ρ . It is a subspace LFL

ρ of the tangent space H1(ΓK , ad0(ρ)) of deformations with fixed similitude
character ν. We are mainly interested in its dimension as a vector space over k, and will analyze
it by considering deformations ρ of ρ to the dual numbers k[t]/(t2). Recall that G = GSpr (with
even r) or G = GOr; let B be a Borel subgroup of G.

Proposition 9.20. Under the standing assumption that ρ is torsion-crystalline with pairwise dis-
tinct Fontaine-Laffaille weights for each τ : W ↪→ O contained in an interval of length p−2

2 ,

dimk L
FL
ρ − dimkH

0(ΓK , ad0(ρ)) = [K : Qp](dimGk − dimBk).

Let V be the Galois module given by ρ, and for a lift ρ of ρ to k[t]/(t2) let V be the corresponding
Galois module. The submodule tV is naturally isomorphic to V , and we have an exact sequence

0→ tV → V → V → 0.

Let M be the Fontaine-Laffaille module corresponding to ρ, with pairing 〈·, ·〉 : M ×M → Lk.
We know M is a k-vector space of dimension r[K : Qp]. Let M be the Fontaine-Laffaille module
corresponding to ρ. It is a free k[t]/(t2)-module, and fits in an exact sequence

0→ tM →M →M → 0

of Fontaine-Laffaille modules. The map M ⊂ M → tM induced by multiplication by t is an
isomorphism of Fontaine-Laffaille modules since it is so on underlying k-vector spaces using the
k[t]/(t2)-freeness of M . As before, we have decompositions

M =
⊕

τ :W↪→O
Mτ and M =

⊕
τ :W↪→O

M τ

from Lemma 8.14.
Using Lemma 9.12, pick a basis {vτ,i}ri=1 of the k[t]/(t2)-module Mτ such that vτ,i is a basis

for a k[t]/(t2)-complement to Mwi+1
τ in Mwi

τ and such that the pairing Mστ ×Mστ → Lστ with
respect to the mτ,i := ϕwiM (vτ,i) is ωτ -times the standard pairing. As 1-units admit square roots,
we may assume that ωτ ∈ k×. Note that {mτ,i} ∪ {tmτ,i} is a basis for Mστ as a k-vector space,
and {mτ,i}τ,i is a basis for M as a k[t]/(t2) module.

Let M0 be the subspace of M spanned by the {vτ,i}τ,i as a k-vector space. We have that

tM0 = tM 'M as vector spaces, and have an obvious decomposition

M0 =
⊕

τ :W↪→O
Mτ,0.

We obtain a pairing on M0 by restriction and a filtration by intersection: M i
τ,0 = M i ∩Mτ,0.

Lemma 9.21. We have that M i
τ = M i

τ,0 ⊗ k[t]/(t2), and hence M i = M i
0 ⊗ k[t]/(t2).

Proof. We know that the k[t]/(t2)-span of vi is a k[t]/(t2)-complement to Mwi+1
τ in Mwi

τ . Hence
Mwi
τ /Mwi+1

τ is isomorphic to the k-span of vi and tvi. As the filtration is automatically split (M i
τ

is a direct summand of Mτ , and hence M i
τ is a direct summand of M i−1

τ ), this suffices. �

Observe that the surjection of Fontaine-Laffaille modules M → M carries M0 isomorphically
onto M . Under the isomorphism of k-vector spaces M0 → M , the pairing on M0 and the pairing
on M are identified because by choice of basis the pairing on M0 is a k×-multiple of the standard
pairing. Furthermore, extending the pairing M0 ×M0 → L by k[t]/(t2)-bilinearity recovers the
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pairing on M . Using M0 ' M , we can also define ϕiM0
: M i

0 → M0 to be the lift of ϕi
M

to M i
0. It

is compatible with the pairing on M0. Note that it is not the same as ϕiM |M i
0
.

Our goal is to describe the set of strict equivalence classes of deformations M of M , so by making
these identifications it remains to study ways to lift ϕi

M
to a map

ϕiM0⊗k[t]/(t2) : M i
0 ⊗ k[t]/(t2)→M0 ⊗ k[t]/(t2).

For n, n′ ∈M i
0 we may write

ϕiM (n+ tn′) = ϕiM0
(n) + t(ϕiM0

(n′) + δi(n))

for some σ-semilinear δi : M i
0 →M0 which completely determines ϕiM . It is clear that for n ∈M i+1

0

we have δi(n) = 0 due to the relation ϕiM0
(n) = pϕi+1

M0
(n) = 0. Thus, δi factors through M i

0/M
i+1
0 ,

and together the δi define a σ-semilinear

δ : gr•(M0)→M0.

Compatibility with the pairing says exactly that

〈ϕiM (n+ tn′), ϕjM (m+ tm′)〉 = ϕi+jL (〈n+ tn′,m+ tm′〉)

for n, n′ ∈M i
0 and m,m′ ∈M j

0 and all i and j. Expanding and using the compatibility of the ϕiM0

with the pairing, we see that it is necessary and sufficient that

(9.2) 〈δi(n), ϕjM0
(m)〉+ 〈ϕiM0

(n), δj(m)〉 = 0

for n ∈ M i
0 and m ∈ M j

0 and all i and j. As M =
∑

i ϕ
i
M

(M
i
) and we defined ϕiM0

to lift ϕi
M

, it

follows that M0 =
∑

i ϕ
i
M0

(M i
0). Furthermore, we have an isomorphism ϕ : gr•(M0) → M0. This

allows us to rewrite (9.2) as the requirement that for m,n ∈ gr•(M0),

〈δ′ϕ(n), ϕ(m)〉+ 〈ϕ(n), δ′ϕ(m)〉 = 0

where δ′ is the k-linear composition of ϕ−1 with δ. In other words,

〈δ′x, y〉+ 〈x, δ′y〉 = 0

for all x, y ∈M0. Note that δ′ is compatible with the filtration, the pairing, and the k⊗W -module
structure. Denote the collection of all such δ′ by Endk⊗W (M0, 〈·, ·〉): it is isomorphic to spr(k⊗W )
or sor(k ⊗W ), which have dimension [K : Qp](dimGk − 1) over k.

Lemma 9.22. For such a choice of δ′, we obtain a Fontaine-Laffaille module M ∈ MFfW,tor together
with a pairing M ×M → L as in Corollary 9.5.

Proof. This is just bookkeeping. First, observe that
∑

i ϕ
i
M (M i) is a k[t]/(t2)-module containing

ϕiM0
(M i

0) = M0. Thus it is M . It is immediate that the pairing is compatible with the filtration.

We chose δ′ so that the pairing is compatible with the ϕiM . �

Of course, different δ′ may give isomorphic deformations of M . Suppose that we are given δ and γ
such that the Fontaine-Laffaille modules they create are strictly equivalent as deformations of M (in
the sense that they are isomorphic Fontaine-Laffaille modules and their reductions are identified
with M compatibly with the isomorphism, or equivalently that they give the same element of
DFL
ρ (k[t]/(t2))). We have shown that the underlying module, pairing, and filtration can be identified

with the fixed data M = M0⊗k[t]/(t2), 〈·, ·〉⊗k[t]/(t2), and M i
0⊗k[t]/(t2). The isomorphism reduces

to the identity modulo t (by strictness). This means there exists an isomorphism α : M0 → M0

compatible with the pairing, filtration, and module structure such that

(1 + tα)
(
ϕiM0

(n) + t(ϕiM0
(n′) + δi(n))

)
= ϕiM0

(n) + t(ϕiM0
(α(n) + n′) + γi(n)).
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Simplifying, this is the condition that

γi(n)− δi(n) = α(ϕiM0
(n))− ϕiM0

(α(n)).

In other words, δ, γ ∈ End(M0, 〈·, ·〉) define the same deformation if and only if γi−δi is of the form
α ◦ ϕiM0

− ϕiM0
◦ α for all i and some α ∈ Fil0 Endk⊗W (M0, 〈·, ·〉). This means that α is a k ⊗W -

linear endomorphism of M0 that is compatible with the filtration and pairing. We can identify
Endk⊗W (M0, 〈·, ·〉) with the Lie algebra of a symplectic or orthogonal group valued in k ⊗ W .
The filtration defines a Borel subgroup of this symplectic or orthogonal group, whose Lie algebra is
Fil0 Endk⊗W (M0, 〈·, ·〉). (The assumption that the Fontaine-Laffaille weights for each τ are pairwise
distinct is what makes it a Borel subgroup.) Hence the dimension of Fil0 Endk⊗W (M0, 〈·, ·〉) as a
k⊗W -module space is the dimension of this Borel in the symplectic orthogonal group. We conclude
that

dimk Fil0 Endk⊗W (M0, 〈·, ·〉) = [K : Qp](dimBk − 1)

where B is a Borel in the symplectic or orthogonal similitude group.
Finally, we must understand when α and β satisfy

α ◦ ϕiM0
− ϕiM0

◦ α = β ◦ ϕiM0
− ϕiM0

◦ β.

This happens exactly when α − β commutes with the ϕiM0
(as well as being compatible with the

filtration, pairing, and module structure). In other words, α− β ∈ EndMFW (M0, 〈·, ·〉). But under
Tcris, this is identified with endomorphisms of ρ preserving the pairing (not just up to a similitude
factor), and in particular has dimension dimkH

0(ΓK , ad0(ρ)).
We can express this analysis as the exact sequence

0→ EndMFW (M0, 〈·, ·〉)→ Fil0 (Endk⊗W (M0, 〈·, ·〉))→ Endk⊗W (M0, 〈·, ·〉)→ DFL
ρ (k[t]/(t2))→ 0.

We finish the proof of Proposition 9.20 by taking dimensions:

dimk L
FL
ρ − dimkH

0(ΓK , ad0(ρ)) = [K : Qp](dimGk − 1)− [K : Qp](dimBk − 1)

= [K : Qp](dimGk − dimBk).
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