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Chapter 1

Introduction

Galois representations are central in modern number theory, perhaps most famously in the proof of Fermat’s
Last Theorem. There are natural sources of Galois representations in algebraic geometry, and the Langlands
program conjecturally connects them with automorphic forms. For example, given a classical modular
eigenform there is an associated two-dimensional Galois representation which we say is modular. Another
example comes from an elliptic curve defined over Q: the absolute Galois group of the rationals acts on the
p-adic Tate module, giving a two-dimensional Galois representation over the p-adic integers. Fermat’s Last
Theorem follows from the fact that the Galois representations arising from elliptic curves are modular.

More generally, Galois representations arise from algebraic geometry through the action of the Galois
group on the p-adic étale cohomology of a variety defined over a number field. Such representations are
ramified at finitely many primes and are potentially semistable above p. An absolutely irreducible p-adic
Galois representation satisfying these latter properties is said to be geometric. The Fontaine-Mazur conjecture
asserts that all geometric Galois representations arise as subsets of Tate twists of p-adic étale cohomology.
A more refined version has been proven in the two-dimensional case: two-dimensional geometric Galois
representations of Gal(Q/Q) are modular.

A key technique in answering these questions is the deformation theory of a residual Galois representation
ρ : Gal(Q/Q)→ GLn(Fq). Understanding the universal deformation ring (the ring R�

ρ which parametrizes
lifts of ρ to complete Noetherian local rings with residue field Fq) gives results about Galois representations.
Residual representations are also interesting in their own right. In the two-dimensional case, Serre’s con-
jecture states that every odd irreducible representation is the reduction of a modular Galois representation.
This was proven by Khare and Winterberger. Generalizations of Serre’s conjecture to groups other than
GL2 have been proposed, most recently by Gee, Herzig, and Savitt [GHS15]. The combination of Serre’s
conjecture and the Fontaine-Mazur conjecture motivates the study of when a residual representation admits
a geometric lift to characteristic zero.

In particular, we are interested in the following situation. Let K be a finite extension of Q with absolute
Galois group ΓK . Suppose k is a finite field of characteristic p, O the ring of integers in a p-adic field
with residue field O/m = k, and G is a connected reductive group defined over O. For a continuous
representation ρ : ΓK → G(k), in light of these conjectures it is important to study when there exists a
continuous representation ρ : ΓK → G(O) lifting ρ that is geometric in a suitable sense over O[ 1

p ] (using

G ↪→ GLn).
Suppose K = Q. When G = GL2, Ramakrishna developed a technique to produce geometric lifts

[Ram02]. His results provided evidence for Serre’s conjecture. In the symplectic and orthogonal cases,
we generalize this method and prove the existence of geometric lifts in favorable conditions. Two essential
hypotheses are that ρ is odd (as defined in §2.5.1) and that ρ restricted to the decomposition group at p looks
like the reduction of a crystalline representation with distinct Hodge-Tate weights. For precise statements,
see Theorem 1.1.2.2 and Theorem 2.5.3.4. This provides evidence for generalizations of Serre’s conjecture.
In contrast, when G = GLn with n > 2, the representation ρ cannot be odd, and the method does not apply.
In such cases, there is no expectation that such lifts exist.

Ramakrishna’s method works by establishing a local-to-global result for lifting Galois representations
subject to local constraints. Let ρ be a lift of ρ to O/mn. Provided a cohomological obstruction vanishes,

3



it is possible to lift ρ over O/mn+1 subject to local constraints if (and only if) it possible to lift ρ|Γv over
O/mn+1 for all v in a fixed set of places of Q containing p and the places where ρ is ramified. In Chapter 2,
we generalize Ramakrishna’s argument so it can be applied to any connected reductive group and show that
the cohomological obstruction vanishes if we allow controlled ramification at additional places at which ρ is
unramified.

It remains to pick local deformation conditions at p and at places where ρ is ramified which are liftable
in the sense that it is always possible to suitably lift ρ|Γv . At p, we define a Fontaine-Laffaille deformation
condition in Chapter 3 by using deformations arising from Fontaine-Laffaille modules that carry extra data
corresponding to a symmetric or alternating pairing.

At a prime ` 6= p where ρ is ramified, we generalize the minimally ramified deformation condition defined
for GLn in [CHT08, §2.4.4]. In simple cases, this deformation condition controls the ramification of ρ
by controlling deformations of a unipotent element u of GLn(k). There is a natural parabolic k-subgroup
containing u, and the deformation condition is analyzed by deforming this parabolic subgroup and then lifting
u inside this subgroup. This idea does not work for other algebraic groups. In Example 1.2.3.2 and §4.4.3,
we discuss an explicit example in GSp4 where the analogous deformation based on parabolics is provably
not liftable. In Chapter 4, we define a minimally ramified deformation condition by instead requiring that u
deform so that “it lies in the same unipotent orbit as u,” and explain that this is a general phenomenon. The
discovery and study of this deformation condition at ramified places ` 6= p (see §1.2.3) is the key innovation
in this thesis. For GLn, our notion agrees with minimally ramified deformation of [CHT08], but for other
groups it is a genuinely different (liftable) deformation condition.

1.1 Motivation and Results

We will now review the background and state the results in more detail.

1.1.1 Background about Galois Representations

Let p be a prime.

Definition 1.1.1.1. A Galois representation ρ : ΓQ → GL2(Qp) is modular if there exists a modular
eigenform f such that the Galois representation associated to f at the prime p is isomorphic to ρ. A residual
Galois representation ρ : ΓQ → GL2(Fp) is modular if it is the reduction of a modular representation ρ.

Serre’s conjecture is one of the ingredients which motivated Ramakrishna’s lifting result for two dimen-
sional representations.

Fact 1.1.1.2 (Serre’s Conjecture). Let ρ : ΓQ → GL2(Fp) be an odd irreducible representation. Then ρ is
modular.

Remark 1.1.1.3. More precise versions give the weight and level of an associated modular form. This
conjecture was proven by Khare and Winterberger [KW09a] [KW09b].

Let K be a number field with absolute Galois group ΓK . Next we define two notions necessary to state
the Fontaine-Mazur conjecture.

Definition 1.1.1.4. An irreducible representation of ΓK over Qp comes from geometry if it is isomorphic

to a sub-quotient of Hi
ét(XK ,Qp(r)) for some variety X over K and some r ∈ Z.

Definition 1.1.1.5. A Galois representation ρ : ΓK → G(Qp) is geometric if it is unramified outside of a
finite set of places and is potentially semi-stable (equivalently, de Rham) at all places of K above p.

Conjecture 1.1.1.6 (Fontaine-Mazur Conjecture). Let ρ : ΓK → GLn(Qp) be an irreducible representation.
It is geometric if and only if it comes from geometry.

When n = 2 and K = Q, any irreducible geometric representation that is not the Tate-twist of an even
representation factoring through a finite quotient of ΓQ is modular up to a Tate twist.
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The full Fontaine-Mazur conjecture is an open problem, but the statement in the case that n = 2 and
K = Q follows from work of Kisin and Emerton [Kis09] [Eme11].

Motivated by these conjectures, Ramakrishna developed a lifting technique that produces geometric
deformations.

Fact 1.1.1.7. Under certain technical conditions, if ρ : ΓQ → GL2(Fp) is an odd irreducible representation
for which inertia at p acts as a fundamental character of level two, then there exists a geometric lift that is
crystalline at p.

This is the main theorem of [Ram02], which further develops the lifting technique of [Ram99]. Given
this result, Serre’s conjecture is a consequence of the two-dimensional version of the Fontaine-Mazur conjec-
ture. Ramakrishna’s result was seen as good evidence for Serre’s conjecture before its proof by Khare and
Winterberger.

1.1.2 Geometric Lifts

We are interested in generalizations of Ramakrishna’s lifting result to reductive groups beyond GL2, in
particular symplectic and orthogonal groups. Generalizations of Serre’s conjecture have been proposed in
this setting, and most of the effort has been to find the correct generalization of the oddness condition
and the weight (see for example the discussion in [GHS15], especially §2.1). The general flavor of these
generalizations is that an odd irreducible Galois representation will be automorphic in the sense that it
appears in the cohomology of an Fp-local system on a Shimura variety. For a general reductive group,
there is no expectation that such representations will lift to characteristic zero. For example, as discussed
in [CHT08, §1] the Taylor-Wiles method would work only if

[K : Q] (dimG− dimB) =
∑
v|∞

dimH0(Gal(Kv/Kv), ad0(ρ)) (1.1.2.1)

where B is a Borel subgroup of G and ad0(ρ) is the adjoint representation of ΓK on the Lie algebra of the
derived group of G. Only under such a “numerical coincidence” do we expect to obtain automorphy lifting
theorems, and hence expect geometric lifts. This coincidence cannot hold for GLn when n > 2, but can hold
for G = GSp2n and G = GOm, and for the group Gn related to GLn considered in [CHT08].

We will define the notion of an odd Galois representations in §2.5.1, for which (1.1.2.1) holds. This will
imply that K is totally real and for each archimedean place v of K and any complex conjugation cv, the
invariant subspace of the action of ρ(cv) on ad0(ρ) has “minimal” possible dimension (equal to dimG−dimB).
There are odd representations for symplectic and orthogonal groups, but no odd representations for GLn
when n > 2. Thus we can hope to construct geometric lifts of odd representations valued in GOm or GSpm.

Remark 1.1.2.1. Our argument naturally uses connected reductive groups, so there are issues when GOm

is disconnected. In the orthogonal case we work with representations valued in GO◦m to avoid this issue,
although as discussed in Remark 2.5.3.2 it is also possible to modify the argument to apply to some discon-
nected reductive groups.

Consider the reductive O-group scheme G = GO◦m or G = GSpm and a (continuous) residual representa-
tion ρ : ΓK → G(k). In favorable circumstances, we will produce geometric lifts of ρ. The exact hypotheses
needed are somewhat complicated. We will state a simple version now, and defer a more detailed statement
to Theorem 2.5.3.4.

Suppose that p is unramified in K and p > 16m. Let G′ be the derived group of G, and assume that
G′(k) ⊂ ρ(ΓK). Furthermore suppose that ρ is odd as defined in §2.5.1. At places v above p, assume that
ρ|ΓKv is torsion crystalline with Hodge-Tate weights in an interval of length p−2

2 , so it is Fontaine-Laffaille
(these notions will be reviewed in §3.1). Furthermore, suppose that for each Zp-embedding of OKv in OKv ,
the Fontaine-Laffaille weights for ρ|ΓKv with respect to that embedding are pairwise distinct.

Let µ : G → Gm be the similitude character, and define ν = µ ◦ ρ : ΓK → k×. Suppose there is a lift
ν : ΓK →W (k)× that is Fontaine-Laffaille at all places above p.

Theorem 1.1.2.2. Under these assumptions, there exists a geometric lift ρ : ΓK → G(O) of ρ where O
is the ring of integers in a finite extension of Qp with residue field containing k such that µ ◦ ρ = ν. In
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particular, ρ is ramified at finitely many places of K, and for every place v of K above p the representation
ρ|ΓKv is Fontaine-Laffaille and hence crystalline.

1.1.3 Relation to Previous Work

Ramakrishna developed his lifting technique when K = Q and G = GL2 in [Ram99] and [Ram02], and
produced geometric lifts. There have been various reformulations and generalizations of this that our results
build on. In particular, the formalism developed in [Tay03] (still in the case of GL2) suggested that it
should be possible to generalize the technique to algebraic groups beyonds GL2. Attempts were made
in [Ham08] and [Man09] to generalize the result to GLn, but ran into the obstruction that there were
no odd representations for n > 2. The results in [Ham08] simply assume the existence of liftable local
deformation conditions which probably do not exist, but do provide a nice model for the arguments in
Chapter 2 generalizing Ramakrishna’s method. In contrast, [Man09] constructs local deformation conditions
but does not aim to produce geometric lifts.

For groups beyond GLn, [CHT08] gave a lifting result for a group Gn related to GLn but which admits
odd representations. Studying the local deformation conditions for Gn reduced to studying representations
valued in GLn. At primes above p, [CHT08] studied a deformation condition based on Fontaine-Laffaille
theory which is generalized in Chapter 3. The idea of doing so goes back to [Ram93]. (They also discussed
a deformation condition based on the notion of ordinary representations which is not used in their lifting
result). At primes not above p but where ρ is ramified, they defined a minimally ramified deformation
condition, which we generalize in Chapter 4; this generalization is non-obvious and is our main innovation.

Building on this, Patrikis’ unpublished undergraduate thesis [Pat06] explored Ramakrishna’s method for
symplectic groups. In particular, it generalized Ramakrishna’s method to the group GSpn, and generalized
the Fontaine-Laffaille deformation condition at p. It did not generalize the minimally ramified deformation
condition, so can only be applied to residual representations ΓQ → GSpn(k) which are unramified away from
p, a stringent condition. Our results at p in Chapter 3 are a mild generalization of Patrikis’ study of the
Fontaine-Laffaille deformation condition.

More recently, Patrikis used Ramakrishna’s method to produce geometric representations with excep-
tional monodromy [Pat15]. This involves generalizing Ramakrishna’s method to any connected reductive
group G and then modifying the technique to deform a representation valued in the principal SL2 ⊂ G
(coming from a modular form) to produce a geometric lift with Zariski-dense image. Chapter 2 is similar but
independent of Patrikis’ generalization of Ramakrishna’s method. Our extensive study of local deformations
conditions is not needed in [Pat15]: as the goal there is just to produce examples of geometric representations
with exceptional monodromy, he could avoid generalizing the minimally ramified deformation condition.

Remark 1.1.3.1. There is also a completely different technique to produce lifts based on automorphy lifting
theorems. For example, Khare and Winterberger use it in their proof of Serre’s conjecture: see [KW09b, §4]
especially the proof of Corollary 4.7. The finite generation needed in that argument comes from relating the
Galois deformation ring to a Hecke algebra.

1.2 Overview of the Proof

There are three main steps in the proof Theorem 1.1.2.2. In Chapter 2 we generalize Ramakrishna’s method
to split connected reductive groups beyond GL2; this reduces the problem to defining appropriate liftable
local deformation conditions. The second step is carried out in Chapter 3, where at places above p we use
Fontaine-Laffaille theory to produce a liftable deformation condition. Finally in Chapter 4 we reformulate
and generalize a deformation condition at places above p studied in [CHT08, §2.4.4] for GLn to obtain a
liftable deformation condition for GSp2n and GOm.

1.2.1 Generalizing Ramakrishna’s Method

Looking at the reformulation of Ramakrishna’s method in [Tay03], it is not surprising that the method
generalizes to algebraic groups beyond GL2. It was generalized in [CHT08] to the group

Gn = (GLn×GL1) o {1, j} where j(g, µ)j−1 = (µ(g−1)T , µ).
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We generalize the method to apply to any connected reductive group, although the method can only pro-
duce geometric lifts for groups for which there exist odd representations and for which we have nice local
deformation conditions. Stefan Patrikis independently carried out this generalization [Pat15]. His results
on the formalism are similar, with some minor variation in the technical hypotheses, but don’t address local
deformation conditions we require in Chapter 4.

Fix a prime p and finite field k of characteristic p. Let S be a finite set of places of a number field
containing the places above p and the archimedean places, and define ΓS to be the Galois group of the
maximal extension of K unramified outside of S. Consider a continuous representation ρ : ΓS → G(k) where
G is a split connected reductive group scheme over the ring of integers O in a p-adic field with maximal ideal
m whose residue field contains k. We assume that p is very good for G (Definition 2.1.1.1), so according to
Lemma 2.1.1.6 the Lie algebra of the derived group of G is a direct summand of the Lie algebra of G: we
denote this summand with adjoint action of ΓK by ad0(ρ). The cohomology of this Galois module controls
the deformation theory of ρ.

The hope would be to use deformation theory of produce ρn : ΓS → G(O/mn) such that ρ1 = ρ, ρn lifts
ρn−1 for n ≥ 2, and such that ρn satisfies a deformation condition at places above p for which the inverse
limit

ρ = lim←− ρn : ΓS → G(O)

restricted to the decomposition group Γv would be a lattice in a de Rham (or crystalline) representation for
places v of K above p. This inverse limit would then be the desired geometric lift of ρ. Only after a careful
choice of local deformation conditions and enlarging the set S will this work. Furthermore, defining these
deformation conditions may require making an extension of k, which is harmless for our applications and is
why we only require that the residue field of O merely contains k.

Proposition 2.5.2.1 shows a lifts exist subject to a global deformation condition DS provided the dual
Selmer group H1

D⊥S
(ΓS , ad0(ρ)∗) vanishes. This Galois cohomology group is defined in (2.2.2.1), and encodes

information about all of the local deformation conditions imposed. When it vanishes, there exists a lift of
ρn to ρn+1 satisfying local deformation conditions for v ∈ S provided there exists lifts of (ρn)|Γv satisfying
the deformation condition for all v ∈ S. This can be expressed as a local-to-global principle for lifting Galois
representations with an obstruction lying in the cohomology group H1

D⊥S
(ΓS , ad0(ρ)∗).

Corollary 2.4.2.6 gives a deformation condition at places where ρ is unramified such that allowing ρ to
deform subject to this condition (i.e. enlarging S to contain such places and defining a new DS) forces
H1
D⊥S

(ΓS , ad0(ρ)∗) to be zero. We call this new deformation condition Ramakrishna’s deformation condition,

and study it in §2.4. The places of K at which we define this condition are found using the Chebotarev
density theorem: each additional place where we allow ramification subject to Ramakrishna’s deformation
condition decreases the dimension of the dual Selmer group. For such places to exist, we need non-zero
classes in certain cohomology groups, whose existence relies on the local deformation conditions satisfying
the tangent space inequality (2.2.2.2)∑

v∈S
dimLv ≥

∑
v∈S

dimH0(Γv, ad0(ρ)),

where Lv is the tangent space of the local deformation condition at v. Furthermore, ρ needs to a “big”
representation in the sense of Definition 2.3.1.1 in order to define Ramakrishna’s deformation condition.
Being a big representation is a more precise set of technical conditions that are implied for large enough p
by the condition that G′(k) ⊂ ρ(ΓK) appearing in Theorem 2.5.3.4. We discuss big representations in §2.3.

Remark 1.2.1.1. Patrikis uses a different set of technical conditions on ρ. He does not require that ad0(ρ)
be an absolutely irreducible representation of ΓK , but instead imposes several weaker conditions (conditions
(1), (5), and (6) of [Pat15, §5]).

For the tangent space inequality to hold, it is crucial that ρ be an odd representation. The deformation
conditions we will use at places v where ρ is ramified satisfy dimH0(Γv, ad0(ρ)) = dimLv. Using the
Fontaine-Laffaille deformation condition at places above p, the tangent space inequality becomes

[K : Q](dimG− dimB) ≥
∑
v|∞

h0(Γv, ad0(ρ))
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where B is a Borel subgroup of G; this can only be satisfied if K is totally real and ρ is odd. Thus in order
to use the local-to-global principle, the residual representation must be odd and the deformation conditions
we use at places above p and places where ρ is ramified must be liftable.

Remark 1.2.1.2. In general, references for results about reductive group schemes over rings are to [Con14],
which gives a self-contained development using more recent methods, even though the results are usually
also found in the earlier [SGA3].

1.2.2 Fontaine-Laffaille Deformation Condition

Let K be a finite extension of Qp, and O be the ring of integers of a p-adic field L with residue field k such
that L splits K over Qp. (The latter is always possible after extending k.) Ramakrishna’s method requires
a deformation condition Dρ for the residual representation ρ : ΓK → G(k) such that:

• Dρ is liftable;

• Dρ is large enough, in the precise sense that its tangent space has dimension

[K : Qp](dimG− dimB) + dimkH
0(ΓK , ad0(ρ))

where B is a Borel subgroup of G;

• Dρ(O) consists of certain lattices in crystalline representations.

We will construct such a condition using Fontaine-Laffaille theory.
Fontaine-Laffaille theory, introduced in [FL82], provides a way to describe torsion-crystalline represen-

tations in terms of semi-linear algebra when p is unramified in K. In particular, it provides an exact, fully
faithful functor Tcris from the category of filtered Dieudonné modules to the category of O[ΓK ]-modules
with continuous action (Fact 3.1.1.14), and describes the image. In [CHT08, §2.4.1], it is used to define a
deformation condition for n-dimensional representations, where the allowable deformations of ρ are exactly
the deformations of the corresponding Fontaine-Laffaille module. This requires the technical assumption
that the representation ρ is torsion-crystalline with Hodge-Tate weights in an interval of length p − 2 and
furthermore that the Fontaine-Laffaille weights of ρ under each embedding of K into L are distinct (see
Remark 3.1.2.6).

We will adapt these ideas to symplectic and orthogonal groups under the stronger assumption that the
Fontaine-Laffaille weights lie in an interval of length p−2

2 . For symplectic groups and K = Qp, this was
addressed in Patrikis’s undergraduate thesis [Pat06]: Chapter 3 is a mild generalization. The key idea is
to introduce a symmetric or alternating pairing into the semi-linear algebra data. To do so, it is necessary
to use (at least implicitly via statements about duality) the fact that the functor Tcris is compatible with
tensor products. This requires the stronger assumption that the Fontaine-Laffaille weights lie in an interval
of length p−2

2 , which guarantees that the Fontaine-Laffaille weights of the tensor product lie in an interval
of length p− 2. Furthermore, it is crucial to use the covariant version of the Fontaine-Laffaille functor used
in [BK90] instead of the contravariant version studied in [FL82] in order for this compatibility with tensor
products to hold. For more details, see §3.1.2. Given this, it is then reasonably straightforward to check
that Tcris is compatible with duality and hence to translate the (perfect) alternating or symmetric pairing of
Galois representations into a (perfect) symmetric or alternating pairing of Fontaine-Laffaille modules.

For a coefficient ring R, define DFL
ρ (R) to be all representations ρ : ΓK → G(R) lifting ρ and lying in the

essential image of Tcris. To study this Fontaine-Laffaille deformation condition, it suffices to study Fontaine-
Laffaille modules. In particular, to show that the deformation condition is liftable (i.e. that it is always
possible to lift a deformation satisfying the condition through a square-zero extension), it suffices to show
that a Fontaine-Laffaille module with distinct Fontaine-Laffaille weights together with a perfect (symmetric
or skew-symmetric) pairing can always be lifted through a square zero extension. This is a complicated but
tractable problem in semi-linear algebra: Proposition 3.2.2.1 shows this is always possible. It is relatively
simple to lift the underlying filtered module and the pairing, and requires more care to lift the semi-linear
maps ϕiM : M i → M . Likewise, to understand the tangent space of the deformation condition it suffices
to study deformations of the Fontaine-Laffaille module corresponding to ρ to the dual numbers. Again, the
most involved step is understanding possible lifts of the semi-linear maps after choosing a lift of the filtration
and the pairing.
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Remark 1.2.2.1. The proof that DFL
ρ is liftable and the computation of the dimension of its tangent space

both use in an essential way the hypothesis that for each embedding of K into L the Fontaine-Laffaille
weights are pairwise distinct.

Remark 1.2.2.2. An alternative deformation condition to use at primes above p is a deformation condition
based on the concept of an ordinary representation. This is studied for any connected reductive group
in [Pat15, §4.1]. It is suitable for use in Ramakrishna’s method, and can give lifting results for a different
class of torsion-crystalline representations.

1.2.3 Minimally Ramified Deformation Condition

Let ` 6= p be primes, L be a finite extension of Q`, and k a finite field of characteristic p. For a split
connected reductive group G over the valuation ring O of a p-adic field K with residue field k, consider a
residual representation ρ : ΓL → G(k). Ramakrishna’s method requires a “nice” deformation condition for
ρ. If ρ were unramified, the unramified deformation condition would work. The interesting case is when ρ
is ramified: we would like to define a deformation condition of lifts which are “ramified no worse that ρ,” so
the resulting deformation condition is liftable despite the fact that the unrestricted deformation condition
for ρ may not be liftable. To be precise, we require a deformation condition Dρ such that Dρ is liftable and
whose tangent space has dimension (at least) dimkH

0(ΓL, ad0(ρ)).
In the case that G = GLn, the minimally ramified deformation condition defined in [CHT08, §2.4.4]

works. We will generalize this to a minimally ramified deformation condition for symplectic and orthogonal
groups when p > n. Attempting to generalize the argument of [CHT08, §2.4.4] to groups besides GLn leads
to a deformation condition based on parabolics which is not liftable. Instead, inspired by the arguments
of [Tay08, §3] we define a deformation condition for symplectic and orthogonal groups based on deformations
of a nilpotent element of gk = LieGk.

Let us first review the minimally ramified deformation condition introduced for GLn in [CHT08, §2.4.4].
The first step is to reduce to studying certain tamely ramified representations. Recall that Γt

L, the Galois
group of the maximal tamely ramified extension of L, is isomorphic to the semi-direct product

Ẑ n
∏
p′ 6=`

Zp′

where Ẑ is generated by a Frobenius φ for L and the conjugation action by φ on each Zp′ is given by the
p′-adic cyclotomic character. We consider tamely ramified representations which factor through the quotient
Ẑ n Zp (recall p 6= `). Picking a topological generator τ for Zp, the action is explicitly given by

φτφ−1 = qτ

where q is the size of the residue field of L. Note q is a power of `, so it is relatively prime to p. Arguments
in [CHT08] reduce the lifting problem to studying representations of the group Tq := ẐnZp. This reduction
generalizes without surprises to symplectic and orthogonal groups.

The second step is to specify when a lift of ρ : Tq → GLn(k) is “ramified no worse than ρ”. For suitable
“coefficient rings” R, a deformation ρ : Tq → GLn(R) is minimally ramified according to [CHT08] when the
natural k-linear map

ker
(
(ρ(τ)− 1n)i

)
⊗R k → ker

(
(ρ(τ)− 1n)i

)
(1.2.3.1)

is an isomorphism for all i. The deformation condition is analyzed as follows:

• defining Vi = ker
(
(ρ(τ)− 1n)i

)
gives a flag

0 ⊂ Vr ⊂ Vr−1 ⊂ . . . ⊂ V1 ⊂ kn.

This flag determines a parabolic k-subgroup P ⊂ GLn (points which preserve the flag) such that
ρ(τ) ∈ (RuP )(k) and ρ(φ) ∈ P (k);
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• lift P to a parabolic subgroup P of GLn. The deformation functor of such lifts is formally smooth, and
for any minimally ramified deformation ρ over R there is a choice of such P for which ρ(τ) ∈ (RuP )(R)
and ρ(φ) ∈ P (R). Conversely, any ρ with this property is minimally ramified;

• Finally, for the standard block-upper-triangular choice of P , one shows the deformation functor

{(T,Φ) : T ∈ RuP,Φ ∈ P,ΦTΦ−1 = T q, T = ρ(τ),Φ = ρ(φ)}

is formally smooth by building the universal lift over a power series ring: this uses explicit calculations
with block-upper-triangular matrices.

To generalize beyond GLn, we need to replace (1.2.3.1) with a more group-theoretic criterion. The naive
generalization is to associate a parabolic P to ρ and then use the following definition.

Definition 1.2.3.1. For a “coefficient ring” R, say a lift ρ : Tq → G(R) is ramified with respect to P provided
that there exists a parabolic R-subgroup P ⊂ GR lifting P such that ρ(τ) ∈ (RuP )(R) and ρ(φ) ∈ P (R).

This idea does not work. Let us focus on the symplectic case to illustrate what goes wrong.
The first problem is to associate a parabolic subgroup to ρ. Recall that parabolic subgroups of a symplectic

group correspond to isotropic flags 0 ⊂ V1 ⊂ . . . ⊂ Vr ⊂ V ⊥r ⊂ . . . ⊂ V ⊥1 ⊂ k2n. There is no reason that the
flag determined by (1.2.3.1) is isotropic, so we would need some other method of producing a parabolic P
such that ρ(τ) ∈ (RuP )(k). In [BT71], Borel and Tits give a natural way to associate to the unipotent ρ(τ)
a smooth connected unipotent k-subgroup of G. The normalizer of this subgroup is always parabolic and
so gives a candidate for P . However, working out examples in GLn for small n shows that this produces a
different parabolic than the one determined by (1.2.3.1). This raises the natural question of how sensitive
the smoothness of the deformation condition is to the choice of parabolic.

This leads to the second, larger problem: there are examples such that for every parabolic P satisfying
ρ(τ) ∈ (RuP )(k), not all deformations ramified with respect to P are liftable.

Example 1.2.3.2. Take L = Q29 and k = F7. Consider the representation ρ : T29 ' Ẑ n Z7 → GSp4(F7)
defined by

ρ(τ) =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 and ρ(φ) =


1 −1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 .

The deformation condition of lifts ramified relative to any parabolic of GSp4 whose unipotent radical contains
ρ(τ) is not liftable: there are lifts to the dual numbers that do not lift to F7[ε]/(ε3). This is easy to check
with a computer algebra system such as [SAGE], since the existence of lifts can be reduced to a problem in
linear algebra.

This latter problem is a general phenomenon, which we will explain conceptually in terms of algebraic
geometry in §4.4.3.

The correct approach is to define a lift ρ : Tq → G(R) to be minimally ramified if ρ(τ) has “the same
unipotent structure” as ρ(τ). It is more convenient to work with nilpotent elements, using the exponential
and logarithm maps (defined for nilpotent and unipotent elements since p > n). We wish to study lifts of
the nilpotent N = log(ρ(τ)) to N ∈ g that “remain nilpotent of the same nilpotent type as N”.

In Chapter 4, we make this notion of “same nilpotent type” rigorous for classical groups. There are
combinatorial parametrization of nilpotent orbits of algebraic groups over an algebraically closed field, for
example in terms of partitions or root data, which make precise the notion that the values of N ∈ gO in the
special and generic fiber lie in the “same” nilpotent orbit. For each nilpotent orbit σ (classified by purely
combinatorial data, without reference to the field), pick an element Nσ ∈ gO with this property lifting

N ∈ gk. For a coefficient ring R, we define the “pure nilpotents” lifting N to be the Ĝ(R)-conjugates of Nσ.

Example 1.2.3.3. For example, let G = GL3 and

N =

0 1 0
0 0 0
0 0 0


10



Consider the lifts

N1 =

0 1 0
0 0 0
0 0 0

 ∈ g and N2 =

0 1 0
0 0 p
0 0 0

 ∈ g.

Both are nilpotent under the embedding of O into its fraction field K. The images of N1 in gK and gk both
lie in the nilpotent orbit corresponding to the partition 2 + 1, so N1 is an example of the type of nilpotent
lift we want to consider. On the other hand, the image of N2 in gK lies in the nilpotent orbit corresponding
to the partition 3, so we do not want to use it. The pure nilpotents lifting N are Ĝ(R)-conjugates of N1.

We then define a lift ρ : Tq → G(R) to be minimally ramified provided ρ(τ) is the exponential of a
pure nilpotent lifting log ρ(τ) = N . In §4.4, we show that this deformation condition is liftable. The main
technical fact needed to analyze this deformation condition is that the scheme-theoretic centralizer ZG(Nσ)
is smooth over O for Nσ as above. The smoothness of such centralizers over algebraically closed fields is
well-understood, and in §4.2 we study ZG(Nσ) and show that ZG(Nσ) is flat over O and hence smooth:
Lemma 4.2.3.1 gives a criterion for flatness that is easy to verify for classical groups which suffices for our
applications; there are difficulties beyond the classical case due the structure of π0(ZG(Nσ)k) in general.

Remark 1.2.3.4. It is a fortuitous coincidence (for [CHT08]) that for GLn the lifts minimally ramified in
the preceding sense are exactly the lifts ramified with respect to a parabolic subgroup of G. This rests on
the fact that all nilpotent orbits of GLn are Richardson orbits (see §4.4.3 for details).
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Chapter 2

Producing Geometric Deformations

In this chapter, we prove a generalization of Ramakrishna’s lifting technique that applies to a wide class
of reductive Chevalley groups G (Theorem 2.5.3.4). The key result is Proposition 2.5.2.1, a local-to-global
principle for lifting Galois representations: under appropriate conditions, for a finite field k and a number
field K with absolute Galois group ΓK it is possible to lift a global representation ρ : ΓK → G(R/I) through
a square zero extension R → R/I provided it is possible to lift the local representations ρ|Γv for v in a
specific (finite) set of places. This reduces the problem to studying local Galois deformation rings, which we
do in subsequent chapters.

This technique was first used in [Ram99] and [Ram02] to produce geometric deformations for two-
dimensional representations. The method for GL2 was axiomatized by Taylor [Tay03], making it easier
to generalize to other groups. We will generalize the technique to apply to any split connected reductive
group, given as input local deformation conditions satisfying certain axioms; instances of such conditions
are defined and studied in later chapters for symplectic and orthogonal groups. Patrikis has independently
generalized this lifting technique [Pat15, Theorem 6.4]. The approach is the same, but he relies on different
local deformation conditions.

Some background material about algebraic groups is reviewed in §2.1, in particular the notion of a
very good prime and some facts about finite groups of Lie type. In §2.2, we review background on Galois
cohomology and the deformation theory of Galois representations. Next in §2.3 we discuss a technical
condition, bigness, on the residual representation necessary for the method to work, and show that if the
image of ρ contains the k-points of the derived group then these conditions hold provided the characteristic
of k is large enough relative to the Coxeter number of (the root system of) G. We construct an auxiliary local
condition that Ramakrishna’s method needs in §2.4. Finally in §2.5 we generalize Ramakrishna’s method,
providing a local to global principle after allowing the representation to ramify at finitely many additional
places of K subject to this auxiliary condition.

2.1 Preliminaries about Algebraic Groups

This section collects some results about algebraic groups. In particular, we review the notion of a very good
prime and we give a few results about finite groups of Lie type.

2.1.1 Good and Very Good Primes

Let p be a prime, Φ a reduced and irreducible root system, and P = (ZΦ∨)∗ the weight lattice for Φ. Suppose
G is a connected reductive group over a field k.

Definition 2.1.1.1. The prime p is good for Φ provided that ZΦ/ZΦ′ is p-torsion free for all subsets Φ′ ⊂ Φ.
A good prime is very good provided that P/ZΦ′ is p-torsion free for all subsets Φ′ ⊂ Φ. A prime is bad if it
is not good.

Likewise, we say a prime p is good (or very good) for a general reduced root system if it is good (or very
good) for each irreducible component. A prime p is good (or very good) for G provided it is good (or very
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good) for the root system of Gk.
Let {α1, . . . , αr} be a basis of positive roots for Φ. Let

∑
imiαi be the highest root.

Fact 2.1.1.2. The prime p is bad for Φ if and only if there is an i with p|mi.

This is [SS70, §I.4.3].

Example 2.1.1.3. Using the characterization in terms of the highest root, we obtain:

• For type An (n ≥ 1), all primes are good.

• For types Bn (n ≥ 2), Cn (n ≥ 2), or Dn (n ≥ 4), p is good if and only if p 6= 2.

• For types E6, E7, F4 or G2, p is good if and only if p 6= 2, 3.

• For type E8, p is good if and only if p 6= 2, 3, 5.

Furthermore, p is very good if and only if p is good and moreover p - n+ 1 when Φ is of type An due to:

Lemma 2.1.1.4. The prime p is very good for Φ if and only if p is good for Φ and p - #π1(Φ).

Proof. For a subset Φ′ ⊂ Φ, consider the exact sequence

0→ ZΦ

ZΦ′
→ P

ZΦ′
→ P

ZΦ
→ 0.

The right term is the definition of π1(Φ). The middle term is p-torsion free if the left and right terms are,
proving the “only if” statement. Conversely, if p is very good (the middle term is p-torsion free) by choosing
Φ′ = Φ we get p - #π1(Φ).

We record some consequences of p being a very good prime. Let G′ be the derived group of G, g = LieG,
and g′ = LieG′. Denote the center of G by ZG. Suppose that G is k-split.

Lemma 2.1.1.5. If p is very good for G, the order of the fundamental group of G′ and the order of the center
of G′ are prime to p. Furthermore, any central isogeny H → G′ or G′ → H for a connected semisimple
k-group H induces an isomorphism on Lie algebras.

Proof. As p is very good, the central isogeny from the simply connected cover of G′ to the adjoint quotient
of G′ has order prime to p: the degree is the size of the fundamental group of the root system. Thus the
kernel of a central isogeny between G′ and H has order to prime to p, so it is étale and its Lie algebra is
zero.

Lemma 2.1.1.6. Let p be very good for G. Then Lie(ZG) is the center zg of g and moreover g = zg ⊕ g′.

Proof. Consider the adjoint map AdG : G → GL(g). Its scheme theoretic kernel is ZG, so the kernel of
Lie(Adg) : g → gl(g) is LieZG. But Lie(AdG) = adg, the kernel of which is zg. As p is very good, the Lie
algebra g′ maps isomorphically to the Lie algebra of the adjoint quotient G/ZG by Lemma 2.1.1.5. This
gives the decomposition.

2.1.2 Finite Groups of Lie Type

Now suppose k is finite, with q = #k. Continue to assume the characteristic p of k is very good for G. We
record a couple of classical facts from the theory of finite groups of Lie type.

Lemma 2.1.2.1. If G is a split, absolutely simple, connected semisimple group over k, g = LieG is an
absolutely irreducible G(k)-module provided that q > 3.

Proof. The adjoint representation AdG : Gk → GL(g) is an absolutely irreducible representation of algebraic
groups as p is very good [MT11, Theorem 15.20]. Its highest weight is the highest root λ =

∑
imiαi. If

〈λ, α∨i 〉 < q for all αi, then the adjoint representation will be absolutely irreducible as a G(k)-module; this
was originally proven in [Ste63], with a modern proof in [Hum06, §2.12]. The value of 〈λ, α∨i 〉 can be read off
from the affine Dynkin diagram of the root system, as the additional node is the lowest root. In particular,
it is at most 3.
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Lemma 2.1.2.2. Suppose that q > 3. Let G be a split connected semsimple group over k with simply
connected central cover π : G̃→ G. Then [G(k), G(k)] = π(G̃(k)).

Proof. Consider the exact sequence

1→ (kerπ)(k)→ G̃′(k)→ G′(k)→ H1(k, kerπ)

(using fppf H1). We know that G̃′(k) is perfect: G̃′ is a product of absolutely simple semisimple simply
connected groups, and the k-points of all such groups, with a few exceptions ruled out by the assumption q >
3, are perfect [MT11, Theorem 24.11]. Thus π(G̃′(k)) ⊂ [G′(k), G′(k)]. As G′(k)/π(G̃′(k)) ⊂ H1(k, kerπ) is

abelian, we conclude that π(G̃′(k)) = [G′(k), G′(k)].

Remark 2.1.2.3. While G is always perfect as an algebraic group, G(k) need not be perfect. For example,
consider G = PGLn, which is perfect as an algebraic group. One can calculate that [PGLn(k),PGLn(k)] '
SLn(k)/µn(k) which has index gcd(n, q − 1) in PGLn(k).

Now we record and slightly generalize some results about the group cohomology from [CPS75] for G a
split connected semisimple group over k.

Proposition 2.1.2.4. If p 6= 2 is very good for G and q 6= 2, 3, 4, 5, 9 then H1(G(k), g) = 0.

Before we prove this result, we need some preparation. Let ∆ be a set of positive simple roots corre-
sponding to a Borel B ⊂ G containing a split maximal torus T . Denote the unipotent radical of B by U .
Consider V = g as a representation of G(k). Roots α ∈ Φ(G,T ) give homomorphisms αk : T (k)→ k×. We
say that two roots α and β are equivalent over k if kerαk = kerβk. We say that α is equivalent over k to 0
if αk = 1.

Remark 2.1.2.5. This notion is called “Galois equivalence” in [CPS75]. When q 6= 2 (so k× 6= 1), such
equivalences occur only for roots in a common irreducible component of Φ(G,T ), or between a root and zero,
and occur only over small fields [CPS75, Proposition 3.3]: none are possible when q 6= 2, 3, 4, 5, 9.

For the rest of §2.1.2, we assume that p and q = #k are as in Proposition 2.1.2.4.

Lemma 2.1.2.6. We have V B(k) = 0.

Proof. As the characteristic is very good, it suffices to prove this for the simply connected central cover
π : G̃→ G: the Lie algebra is unchanged, and π−1(B) is a Borel subgroup of G̃ containing a split maximal
torus π−1(T ). As G is now simply connected, t := LieT decomposes as

t =
⊕
α∈∆

tα∨

where tα∨ is the coroot line associated to the simple coroot α∨. As q 6= 2, 3, αk : T (k) → k× is non-trivial
for every root α by [CPS75, Proposition 3.1]. Hence V T (k) ⊂ t, so V B(k) ⊂ t.

Let tα = dα∨(x−1∂x|x=1) be the standard basis vector for tα∨ . Consider an element v ∈ t fixed by B(k),
and decompose it as

v =
∑
α∈∆

vαtα

with vα ∈ k. For β ∈ ∆, fix an isomorphism uβ : Ga ' Uβ so eβ = duβ(∂x|x=0). For u = uβ(1) ∈ Uβ(k), we
wish to calculate

Ad(u)(v) =
∑
α∈∆

vα ad(u)tα.

We calculate that for z ∈ Gm,

uα∨(z)u−1 = α∨(z)
(
α∨(z)−1uβ(1)α∨(z)

)
uβ(1)−1

= α∨(z)uβ

(
z−〈β,α

∨〉 − 1
)
.
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Thus we obtain
Ad(u)tα = tα − 〈β, α∨〉 · eβ .

Applying
∑
α∈∆ vα(·) to both sides gives

Ad(u)v = v −

(∑
α∈∆

vα〈β, α∨〉vα

)
eβ .

If v is fixed by Uβ(k), hence by u = uβ(1), it follows that∑
α∈∆

vα〈β, α∨〉 = 0

since eβ ∈ g is non-zero. If this holds for all β ∈ ∆, then the ∆-tuple (vα) ∈ k∆ is in the kernel of the
Cartan matrix over k. But the Cartan matrix is invertible over k as the determinant is a unit in very good
characteristic. (This can be verified by inspecting tables of root systems.) Hence V B(k) = 0.

Now we prove Proposition 2.1.2.4. In the case thatG is simply connected, we may apply [CPS75, Corollary
2.9]: for the adjoint representation V = g of G(k), letting V [α] denote the weight space for αk, it states

dimkH
1(G(k), V ) =

(∑
α∈∆

dimk V [α]

)
− dimk V [0],

as there are no equivalences between distinct roots, nor between roots and 0, because of the restrictions on
q. The weight space for α ∈ ∆ (as representations of T (k)) is therefore the α-root line. Since #∆ = dimT
and LieT = V [0], we obtain that H1(G(k), g) = 0.

For general G, let π : G̃→ G be the simply connected central cover of G. The central k-subgroup scheme
kerπ is finite, of order prime to p as p is very good, and dπ : Lie G̃→ g is an isomorphism. One instance of
the inflation-restriction sequence reads

0→ H1(π(G̃(k)), g)→ H1(G̃(k), g)

As the final term is 0, so is the middle term. Now π(G̃(k)) has index prime to p in G(k) as the index divides
#H1(k, kerα), so the composition

cor ◦ res : H1(G(k), g)→ H1(G(k), g)

is an isomorphism. Since H1(π(G̃(k)), g) = 0, it follows that H1(G(k), g) = 0 as desired. This completes the
proof of Proposition 2.1.2.4.

2.2 Review of Galois Cohomology and Deformations

2.2.1 Results about Galois Cohomology

Let Kv be a p-adic field with normalized valuation v and absolute Galois group ΓKv , and let V be a finite
discrete ΓKv -module.. Let µ∞ denote the Galois module of roots of unity in Kv. Define the (Cartier) dual
of V to be

V ∗ := HomZ(V, µ∞).

As a Galois representation it is a Tate twist of the Q/Z dual of V . There is a natural evaluation pairing
V ⊗ V ∗ → µ∞ as ΓKv -modules. We recall some standard facts about Galois cohomology for local and
global fields (found for example in [NSW08, Chapter VII, VIII]). Let Hi(Kv, V ) := Hi(ΓKv , V ) be the ith
(continuous) Galois cohomology group.

Fact 2.2.1.1 (Local Tate Duality). For i = 0, 1, 2 the cup product gives a non-degenerate pairing

Hi(Kv, V )×H2−i(Kv, V
∗)→ H2(Kv, µ∞) ' Q/Z.
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Fact 2.2.1.2 (Local Euler-Poincaré Characteristic). Let N = ‖#V ‖v (the normalized absolute value, or
equivalently the index of (#V )OKv in OKv). Then

#H0(Kv, V )#H2(Kv, V )

#H1(Kv, V )
=

1

N

Let IKv be the inertia subgroup of ΓKv .

Definition 2.2.1.3. The unramified ith cohomology of V is the group

Hi
nr(Kv, V ) := image

(
Hi(ΓKv/IKv , V

IKv )→ Hi(Kv, V )
)
.

Fact 2.2.1.4. We have H1
nr(Kv, V ) = ker

(
H1(Kv, V )→ H1(IKv , V )

)
and #H1

nr(Kv, V ) = #H0(Kv, V ).

Now let K be a number field with absolute Galois group ΓK , and let S be a finite set of places of K
containing the archimedean places. Let KS be the maximal extension of K unramified outside of S and
ΓS = Gal(KS/K). If v is a place of K, denote the decomposition group at v in ΓK by Γv (well-defined up
to conjugation); here we allow v|∞. For a finite discrete ΓS-module W and v ∈ S, there is a restriction map
resv : Hi(ΓS ,W )→ Hi(Kv,W ) where Hi(Kv,W ) := Hi(Γv,W ).

Definition 2.2.1.5. For a place v ∈ S (allowing v|∞), a local condition N for W at v is a subgroup of
H1(Kv,W ). A global condition NS for W is a collection of local conditions Nv, one for each v ∈ S. The
generalized Selmer group for W with respect to NS is

H1
NS (ΓS ,W ) := {x ∈ H1(ΓS ,W )| resv(x) ∈ Nv for all v ∈ S}.

Given a local condition N at non-archimedean v, one can define a dual local condition N⊥ ⊂ H1(Kv,W
∗):

it is the exact annihilator of N via Tate local duality. There is also a version for achimedean places [NSW08,
Theorem 7.2.17]. Then one defines a dual global condition N⊥S to be the collection {N⊥v } for places v of S.

Remark 2.2.1.6. Let W be a finite discrete ΓK-module that is unramified outside of S. We often think
of a global condition as being a collection of local conditions for every place of K, where for v 6∈ S the
deformation condition is the unramified condition H1

nr(Kv,W ). This allows us to work with ΓK instead of
ΓS , which will be convenient when we want to enlarge S later. If the global condition NS is the unramified
condition outside of S, we will write

H1
NS (K,W ) := {x ∈ H1(K,W )| resv(x) ∈ Nv for all v}.

Unwinding definitions, it follows from Fact 2.2.1.4 that

H1
NS (ΓS ,W ) = H1

NS (K,W ).

This convention behaves well with respect to the notion of dual global conditions because when v - ∞
and #W is a v-unit (as holds for all but finitely many v), the groups H1

nr(Γv,W ) and H1
nr(Γv,W

∗) are exact
annihilators under the Tate-local duality pairing.

The generalized Selmer groups as in Definition 2.2.1.5 fit into a long exact sequence, known as the
Poitou-Tate exact sequence. For us, the relevant part is the following five term sequence.

Fact 2.2.1.7 (Modified Poitou-Tate Exact Sequence). If #W is an S-unit, there is an exact sequence

H1(ΓS ,W )→
⊕
v∈S

H1(Kv,W )/Nv → H1
N⊥S

(K,W ∗)∨ → H2(ΓS ,W )→
⊕
v∈S

H2(Kv,W ).

This gives the following equality due to Wiles [NSW08, Theorem 8.7.9]:

#H1
NS

(K,W )

#H1
N⊥S

(K,W ∗)
=

#H0(K,W )

#H0(K,W ∗)

∏
v∈S

#Nv
#H0(Kv,W )

. (2.2.1.1)

Note that #Nv = #H0(Kv,W ) for the unramified condition at v ∈ S by Fact 2.2.1.4, so the product is
insensitive to enlarging S provided the additional local conditions are the unramified condition.
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2.2.2 Deformations of Galois Representations

Next we recall some facts about the deformation theory for Galois representations: a basic reference is
[Maz97], with the extension to algebraic groups beyond GLn discussed in [Til96].

Let k be a finite field of characteristic p, and consider the category of complete local Noetherian rings
with residue field k, where morphisms are local homomorphisms that induce the identity map on k. Objects
of this category are called coefficient rings. For a coefficient ring O, a coefficient O-algebra is a coefficient
ring which is a O-algebra such that the structure morphism is a map of coefficient rings. Denote the category
of coefficient O-algebras by ĈO, and the full subcategory of Artinian coefficient O-algebras by CO. Note that
all coefficient rings are coefficient W (k)-algebras.

Definition 2.2.2.1. A small surjection of coefficient O-algebras f : A1 → A0 is a surjection such that
ker(f) ·mA1 = 0.

Let Γ be a pro-finite group satisfying the following finiteness property: for every open subgroup Γ0 ⊂ Γ,
there are only finitely many continuous homomorphisms from Γ0 to Z/pZ. This is true for the absolute
Galois group of a local field and for the Galois group of the maximal extension of a number field unramified
outside a finite set of places.

Consider a reductive group scheme G (with connected fibers) over a coefficient ring O with derived group
G′ whose center is smooth over O. Assume that p is very good for Gk (in the sense of Definition 2.1.1.1).

For A ∈ ĈO, define
Ĝ(A) := ker(G(A)→ G(k))

We are interested in deforming a fixed ρ : Γ→ G(k). Let g = LieG and g′ = LieG′.

• Let f : A1 → A0 be a morphism in ĈO and ρ0 : Γ→ G(A0) a continuous homomorphism. A lift of ρ0

to A1 is a continuous homomorphism ρ1 : Γ→ G(A1) such that the following diagram commutes:

Γ
ρ1 //

ρ0

!!

G(A1)

f

��

G(A0)

Define the functor D�
ρ,O : ĈO → Sets by sending a coefficient O-algebra A to the set of lifts of ρ to A.

• With the notation as before, two lifts ρ and ρ′ of ρ to A1 ∈ CO are strictly equivalent if they are
conjugate by an element of Ĝ(A1). A deformation of ρ0 to A1 is a strict equivalence class of lifts.

Define the functor Dρ,O : ĈO → Sets by sending a coefficient O-algebra A to the set of deformations
of ρ to A.

We will drop the subscript O when it is clear from context.

Fact 2.2.2.2. The functor D�
ρ,O is representable. When gΓ

k = Lie(ZG)k, the functor Dρ,O is representable.

Remark 2.2.2.3. The first part is simple, the second is a reformulation of [Til96, Theorem 3.3].

The representing objects are denoted R�
ρ,O and (when it exists) Rρ,O. While we usually care about

deformations, it is technically easier to work with lifts.

Example 2.2.2.4. For G = GLn, a homomorphism ρ : Γ→ G(A) is the data of an A[Γ]-module which is a
free A-module of rank n (on which the Γ action is continuous) together with a basis. Deformations forget
the basis. The deformation functor is representable, for example, when ρ is absolutely irreducible, as by
Schur’s lemma only scalar matrices commute with ρ.

This deformation theory is controlled by Galois cohomology. Let ad(ρ) denote the representation of Γ on
gk via the adjoint representation. We also consider the representation ad0(ρ) of Γ on g′k. By Corollary 2.1.1.6,
as p is very good gk = g′k ⊕ zg, where zg is the Lie algebra of ZG. The condition in Fact 2.2.2.2 is just that
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H0(Γ, ad(ρ)) = zg, or equivalently that H0(Γ, ad0(ρ)) = 0. In general, since p is very good the natural map
Hi(Γ, ad0(ρ))→ Hi(Γ, ad(ρ)) is injective for all i; we often use this without comment.

The degree-1 Galois cohomology groups are related to tangent spaces. When Dρ,O is representable, the
tangent space to Rρ,O can be identified with Dρ,O(k[ε]/ε2). The latter makes sense even when Dρ,O is not
representable. The tangent spaces can be analyzed by the first order exponential map [Til96, §3.5]. For a
smooth O-group scheme G, and a small surjection f : A→ A/I of coefficient rings (I ·mA = 0), smoothness
gives an isomorphism

exp : g⊗k I ' ker(G(A)→ G(A/I)) = ker(Ĝ(A)→ Ĝ(A/I)).

Definition 2.2.2.5. For a smooth O-group scheme G, and a small surjection f : A → A/I of coefficient
rings (I ·mA = 0), the exponential map is the induced map

exp : g⊗k I → Ĝ(A).

This is functorial in the O-group G.

The tangent space of Dρ,O is identified with H1(Γ, ad(ρ)). Under this isomorphism, the cohomology class
of a 1-cocycle τ corresponds to the lift ρ(g) = exp(ετ(g))ρ(g).

Remark 2.2.2.6. For the framed deformation ring R�
ρ,O, the tangent space is identified with the k-vector

space Z1(Γ, ad(ρ)) of (continuous) 1-cocycles of Γ valued in ad(ρ). We also observe that

dimk Z
1(Γ, ad(ρ))− dimkH

1(Γ, ad(ρ)) = dimk B
1(Γ, ad(ρ)) = dimk g− dimkH

0(Γ, ad(ρ))

since the space of coboundaries admits a surjection from ad(ρ) with kernel ad(ρ)Γ. This will be useful when
comparing dimensions of framed and unframed deformation rings that are smooth.

We will want to studying special classes of deformations. We work with the category CO of Artinian
coefficient rings.

Definition 2.2.2.7. A lifting condition is a sub-functor D� ⊂ D�
ρ,O : CO → Sets such that:

1. For any coefficient ring A, D�(A) is closed under strict equivalence.

2. Given a Cartesian diagram in CO
A1 ×A0

A2
π2 //

π1

��

A2

��

A1
// A0

and ρ ∈ D�
ρ,O(A1 ×A0 A2), we have ρ ∈ D�(A1 ×A0 A2) if and only if D�(π1) ◦ ρ ∈ D�(A1) and

D�(π2) ◦ ρ ∈ D�(A2).

As it is closed under strict equivalence, we naturally obtain a deformation condition, a sub-functor D ⊂ Dρ,O.

By Schlessinger’s criterion [Sch68, Theorem 2.11] being a lifting condition is equivalent to the functor D�

being pro-representable. (This is easy to check using that D� is a subfunctor of a representable functor.)
Likewise, the deformation condition D associated to a lifting condition D� is pro-representable provided
that Dρ,O is.

Remark 2.2.2.8. To apply Schlessinger’s criterion, we use the category CO of Artinian coefficient rings.
Often the functor D could equally well be defined on the larger category ĈO. Alternately, we can try to
extend the functor D to ĈO by the definition D(A) = lim←−D(A/mnA). It is sometimes subtle to check that this
latter definition has an “expected” concrete meaning. For example, consider the case of torsion-crystalline
representations: the fact that the inverse limit of torsion crystalline representations is actually a subquotient
of a lattice in a crystalline representation was a conjecture of Fontaine proved by Liu [Liu07].
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The tangent space of a deformation condition D is a k-subspace of H1(Γ, ad(ρ)), and will be denoted by
H1
D(Γ, ad(ρ)). For a small surjection A1 → A0 and ρ ∈ D(A0), the set of deformations of ρ to A1 subject to
D is a H1

D(Γ, ad(ρ))-torsor. This torsor-structure is compatible with the action of the unrestricted tangent
space to Dρ on the space of all deformations of ρ to A1.

Example 2.2.2.9. Let G′ be the derived group of G. The most basic examples of deformation conditions
are the conditions imposed by fixing the lift of the homomorphism Γ → (G/G′)(k). To be precise, for the

quotient map µ : G→ G/G′ =: S, a fixed ν : Γ→ S(O) lifting µ ◦ ρ, and A ∈ ĈO with structure morphism
ı : O → A, we define a deformation condition D0 ⊂ Dρ by

Dν(A) = {ρ ∈ Dρ(A)|Γ→ G(A) : µA ◦ ρ = ı ◦ νA}.

One checks this is a deformation condition. Its tangent space is H1(Γ, ad0(ρ)) since p is very good. We
define D�

ρ similarly. We will use without comment that (G/G′)(A) = G(A)/G′(A) due to Lang’s theorem
since k is finite and G′ is smooth over O with G′k connected.

Another important easy example is the unramified deformation condition for any non-archimedean place
v where ρ is unramified: this consists of lifts that are unramified (respectively, also with a specified choice
of ν). The tangent space is H1

nr(Γv, ad(ρ)) (respectively H1
nr(Γv, ad0(ρ))).

For a small surjection of coefficient O-algebras f : A1 → A0 with kernel I, by using continuous cocycles
we can define an obstruction ob ρ0 ∈ H2(Γ, ad(ρ))⊗ I to lifting.

Fact 2.2.2.10. The representation ρ0 lifts to A1 if and only if ob ρ0 = 0. When a lift exists, the set of lifts
of ρ0 is naturally an H1(Γ, ad(ρ))⊗ I-torsor.

Definition 2.2.2.11. A deformation condition D is locally liftable (over O) if for all small surjections
f : A1 → A0 of coefficient O-algebras the natural map

D(f) : D(A1)→ D(A0)

is surjective.

This holds, for example, if H2(Γ, ad(ρ)) = 0. A geometric way to check local liftability is to show that
the corresponding deformation ring (when it exists) is smooth. Obviously it suffices to check liftability for
lifts instead of deformations, so we can work with the framed deformation ring and avoid representability
issues for Dρ.

Example 2.2.2.12. The unramified deformation condition is liftable: an unramified lift is completely
determined by the image of Frobenius in G(A0), and G is smooth over O.

When attempting to lift with a fixed lift ν of Γ→ (G/G′)(k), the obstruction cocycle will lie in the group
H2(Γ, ad0(ρ)). To see this, recall that the obstruction cocycle is defined by picking a set theoretic lift ρ1

of a given ρ0 : ΓK → G(A0): the 2-cocycle records the failure of ρ1 to be a homomorphism. By choosing
the continuous set-theoretic lift ΓK → G(A1) so that ΓK → (G/G′)(A0) agrees with ν (as we may easily do
since ker ρ0 is open in ΓK), the obstruction cocycle clearly takes values in ad0(ρ).

We now consider global deformation conditions. Let K be a number field, S a finite set of places of K
that contains all the places of K at which ρ are ramified and all archimedean places. As before, let ΓS be the
Galois group of the maximal extension of K unramified outside of S and ΓK be the absolute Galois group
of K.

Definition 2.2.2.13. A global deformation condition DS for ρ : ΓS → G(k) is a collection of local deforma-
tion conditions {Dv}v∈S for ρ|Γv . We say it is locally liftable (over O) if each Dv is locally liftable (over O).
A global deformation of ρ : ΓS → G(k) subject to DS is a deformation ρ : ΓS → G(A) such that ρ|Γv ∈ Dv(A)
for all v ∈ S.

Remark 2.2.2.14. Equivalently, a global deformation condition consists of a collection of local deformation
conditions for every place of K such that Dv is the unramified condition for v 6∈ S, in which case we may
work in terms of deformations of ρ : ΓK → G(k).
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For v ∈ S, let Lv denote the tangent space of the local deformation condition Dv. A global deformation
condition gives a generalized Selmer group. We will be mainly interested in the dual Selmer group

H1
D⊥S

(ΓS , ad(ρ)∗) = {x ∈ H1(ΓS , ad(ρ)∗) : resv(x) ∈ L⊥v for all v ∈ S}. (2.2.2.1)

For Ramakrishna’s method to work, it is crucial that the local tangent spaces be large enough relative
to the local invariants. We say that a global deformation condition satisfies the tangent space inequality if∑

v∈S
dimLv ≥

∑
v∈S

dimH0(Γv, ad0(ρ)). (2.2.2.2)

Remark 2.2.2.15. For later use, we define hiv := dimkH
i(Γv, ad0(ρ)) and h∗,iv := dimkH

i(Γv, ad0(ρ)∗).

2.3 Big Representations

Let O be the ring of integers in a p-adic field with residue field k, and let q = #k. Consider a split connected
reductive group scheme G over O, with derived group G′, and define g and g′ to be the Lie algebras of G
and G′ respectively. Fix a split maximal O-torus T of G. Let K be a number field and χ denote the p-adic
cyclotomic character χ : ΓK → Z×p , with reduction χ : ΓK → F×p .

2.3.1 Big Representations

The natural class of representations ρ : ΓK → G(k) to which Ramakrishna’s method will apply are those
which satisfy the following conditions:

Definition 2.3.1.1. A big representation ρ : ΓK → G(k) is a continuous homomorphism such that

(i) ad0(ρ) is an absolutely irreducible representation of ΓK ;

(ii) letting K(ad0(ρ)) (respectively K(ad0(ρ)∗)) denote the fixed field of the kernel of the action of ΓK on
ad0(ρ) (respectively on ad0(ρ)∗), we have

H1(Gal(K(ad0(ρ))/K), ad0(ρ)) = 0 and H1(Gal(K(ad0(ρ)∗)/K), ad0(ρ)∗) = 0;

(iii) there exists γ ∈ ΓK such that ρ(γ) is regular semisimple with associated maximal torus ZGk(ρ(γ))◦

equal to the split maximal torus Tk, and for which there is a unique root α ∈ Φ(G,T ) satisfying
α(ρ(γ)) = χ(γ) 6= 1. (If dimT = 1, we furthermore require that χ(γ)3 6= 1. This is used only in the
proof of Lemma 2.4.2.3 in cases with G of rank 1.)

Remark 2.3.1.2. In (iii), note that α(ρ(γ)) makes sense because ρ(γ) ∈ T (k), as any semisimple element
g ∈ G(k) satisfies g ∈ ZGk(g)◦.

Remark 2.3.1.3. Note that if we extend k the representation remains big: extending the field does not
change the cohomological vanishing results in the second condition, and the first and third are unaffected
by the extension.

Our goal is to prove a sufficient, easy-to-check condition for a representation to be big. A version of this
argument goes back to [Ram99], and is similar to the independently-worked-out arguments in [Pat15, §6].
The main assumptions which will imply bigness are that the image of ρ contains G′(k) and the representation
ad0(ρ) is absolutely irreducible. For this to work, we will need the following additional assumptions (easily
checkable in practice):

(L1) p is a very good prime for G, q 6= 2, 3, 4, 5, 9, and Q(ζp) ∩K = Q (so [K(ζp) : K] = p− 1);

(L2) K(ad0(ρ)) does not contain ζp (in particular, the cyclic group χ(ΓK(ad0(ρ))) ⊂ F×p has order d > 1);

(L3) there exists a regular semisimple element g ∈ [G′(k), G′(k)] ⊂ G′(k) with ZGk(g) = Tk, and a non-
trivial element x ∈ χ(ΓK(ad0(ρ))) ⊂ F×p such that there is a unique root α ∈ Φ(G,T ) for which α(g) = x.

(If dimT = 1, we furthermore require that χ(g)3 6= 1.)
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We will show these assumptions are automatic for large enough primes when the image of ρ contains
G′(k), and hold for many smaller primes as well. First, we will show these assumption imply bigness.

Proposition 2.3.1.4. Under assumptions (L1), (L2), and (L3), ρ is a big representation provided the image
of ρ contains G′(k) and ad0(ρ) is an absolutely irreducible representation of ΓK .

Remark 2.3.1.5. Patrikis instead uses the condition G′(k′) ⊂ ρ(ΓK) ⊂ Z(k)G(k′) for some subfield k′ ⊂ k.
His proof uses the same method.

We now assume (L1), (L2), and (L3), that G′(k) ⊂ ρ(ΓK), and that ad0(ρ) is an absolutely irreducible
representation of ΓK .

We will prove condition (ii) of Definition 2.3.1.1 holds when G′(k) ⊂ ρ(ΓK). According to Proposi-
tion 2.1.2.4, H1(G′(k), g′k) = 0. We will now relate this to Galois cohomology using the inflation-restriction
sequence. To do so, we need several lemmas.

Lemma 2.3.1.6. We have naturally ρ(ΓK)/(ZG(k) ∩ ρ(ΓK))
∼−→ Gal(K(ad0(ρ))/K).

Proof. Lemma 2.1.1.6 gives a decomposition g = g′ ⊕ zg. The kernel of AdG : G → GL(g) is ZG, and the
action is trivial on zg. Thus the kernel of AdG ◦ρ equals ρ−1(ZG(k)), and is also the kernel of the action of
ΓK on ad0(ρ). The Galois group Gal(K(ad0(ρ))/K) is the quotient.

Lemma 2.3.1.7. The index of G′(k) in G(k) is prime to p.

Proof. We have an exact sequence

1→ G′(k)→ G(k)→ (G/G′)(k)

But G/G′ is a split k-torus, so the number of its k-points is relatively prime to p.

Lemma 2.3.1.8. The index of ΓK(ad0(ρ)∗) in ΓK(ad0(ρ))ΓK(ad0(ρ)∗) is prime to p.

Proof. Elementary group theory shows that the index is equal to the index of ΓK(ad0(ρ)) ∩ ΓK(ad0(ρ)∗) in
ΓK(ad0(ρ)). But this subgroup is the kernel of the cyclotomic character χ : ΓK(ad0(ρ)) → k×. Thus the index
is relatively prime to p.

Now consider the inflation-restriction sequence

0→ H1(ρ(ΓK)/G′(k), ad0(ρ)G
′(k))→ H1(ρ(ΓK), ad0(ρ))→ H1(G′(k), ad0(ρ))

We know the third term is 0 by Proposition 2.1.2.4. The first term is zero as the index of G′(k) in ρ(ΓK) is
prime to p because of Lemma 2.3.1.7 and G′(k) ⊂ ρ(ΓK) ⊂ G(k). This implies that H1(ρ(ΓK), ad0(ρ)) = 0.
Using Lemma 2.3.1.6, another application of the inflation-restriction sequence gives

0→ H1(Gal(K(ad0(ρ))/K), ad0(ρ)ZG(k)∩ρ(ΓK))→ H1(ρ(ΓK), ad0(ρ))

But the right term is zero and ZG(k) acts trivially on ad0(ρ), so we conclude that

H1(Gal(K(ad0(ρ))/K), ad0(ρ)) = 0.

We also claim that H1(Gal(K(ad0(ρ)∗)/K), ad0(ρ)∗) = 0. To prove this, we will use the subgroup

Γ′ := ΓK(ad0(ρ)) · ΓK(ad0(ρ)∗)/ΓK(ad0(ρ)∗) ⊂ ΓK/ΓK(ad0(ρ)∗) =: Γ.

The inflation-restriction sequence begins

0→ H1(Γ/Γ′,
(
ad0(ρ)∗

)Γ′
)→ H1(ΓK/ΓK(ad0(ρ)∗), ad0(ρ)∗)→ H1(Γ′, ad0(ρ)∗).

The action of ΓK(ad0(ρ)) on ad0(ρ)∗ is via the cyclotomic character: by (L2) this character is non-trivial, so(
ad0(ρ)∗

)Γ′
= 0. Thus the first term is 0. The third term is zero because Γ′ is a finite group of order prime

to p (Lemma 2.3.1.8). This gives the desired vanishing, establishing (ii) in Definition 2.3.1.1.
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We finally turn to producing γ ∈ ΓK as in Definition 2.3.1.1(iii). Let L = K(ad0(ρ)) ∩ K(ζp), and
K(ad0(ρ), ζp) be the compositum of K(ad0(ρ)) and K(ζp). By Galois theory, there is a surjection

ΓL � Gal(K(ad0(ρ), ζp)/L) ' Gal(K(ad0(ρ))/L)×Gal(K(ζp)/L). (2.3.1.1)

Furthermore, Gal(K(ζp)/L) ' Gal(K(ad0(ρ), ζp)/K(ad0(ρ))) = χ(ΓK(ad0(ρ))) ⊂ F×p . We also note that

Gal(L/K) is an abelian quotient of Gal(K(ad0(ρ))/K) ' ρ(ΓK)/ (ZG(k) ∩ ρ(ΓK)). This means that

[ρ(ΓK)/ (ZG(k) ∩ ρ(ΓK)) , ρ(ΓK)/ (ZG(k) ∩ ρ(ΓK))] ⊂ Gal(K(ad0(ρ))/L)

and as G′(k) ⊂ ρ(ΓK) we conclude

[G′(k)/ZG′(k), G′(k)/ZG′(k)] ⊂ Gal(K(ad0(ρ))/L).

Given g ∈ [G′(k), G′(k)] and x ∈ χ(ΓK(ad0(ρ))) as in (L3), using (2.3.1.1) we see there exists γ ∈ ΓL ⊂ ΓK
such that χ(γ) = x (so χ(γ)3 6= 1 when dimT = 1) and ρ(γ) = gz for some z ∈ ZG(k) ∩ ρ(ΓK). We are
given that there is a unique root α ∈ Φ(G,T ) such that α(g) = x. We see that ZGk(ρ(γ)) = ZGk(g) = Tk
and α(ρ(γ)) = α(g) = x as desired. This completes the proof of Proposition 2.3.1.4.

2.3.2 Checking the Assumptions

Now assume that G′(k) ⊂ ρ(ΓK) and (L1) holds. We wish to understand when ad0(ρ) is an absolutely

irreducible, and when (L2) and (L3) hold, in terms of the root datum Φ(G,T ). Let π : G̃′ → G′ be the
simply connected central cover.

Lemma 2.3.2.1. If Φ(G,T ) is irreducible, ad0(ρ) is an absolutely irreducible ΓK-representation.

Proof. By assumption G̃′ is absolutely simple. As q > 3, Lemma 2.1.2.1 implies that the adjoint represen-
tation of G̃′(k) on (LieG′)k is absolutely irreducible as p is very good for G. Again using that p is very

good, Lemma 2.1.1.5 implies (Lie G̃′)k ' g′k. As π(G̃′(k)) ⊂ G′(k) ⊂ ρ(ΓK), we conclude that ad0(ρ) is an
absolutely irreducible ΓK-representation.

Remark 2.3.2.2. Patrikis identifies some more precise conditions than absolute irreducibility that work in
Ramakrishna’s method [Pat15, (1), (5), (6bc) of §5]. He then checks that they hold when G is simple. We
have chosen to use absolute irreducibility for convenience.

The kernel of f : ZG × G̃′ → G, being a subgroup of Z
G̃′

, has order prime to p as p is a very good prime
for G.

Lemma 2.3.2.3. If the image of ρ contains G′(k) then # Gal(K(ζp)∩K(ad0(ρ))/K) divides #H1(k, ker f).
In particular, if H1(k, ker f) does not contain any elements of order p− 1 then ζp 6∈ K(ad0(ρ)).

Proof. The final assertion follows from the rest since [K(ζp) : K] = p − 1 by (L1). We will show that the

abelianization of Gal(K(ad0(ρ))/K) is a subquotient ofG(k)/ZG(k)·π(G̃′(k)), and thatG(k)/ZG(k)·π(G̃′(k))
has order dividing #H1(k, ker f).

As G′(k) ⊂ ρ(ΓK), observe that

G′(k)/(G′(k) ∩ ZG(k)) ⊂ ρ(ΓK)/(ρ(ΓK) ∩ ZG(k)) ⊂ G(k)/ZG(k).

By Lemma 2.3.1.6,
ρ(ΓK)/(ρ(ΓK) ∩ ZG(k)) ' Gal(K(ad0(ρ))/K).

Thus we see that Gal(K(ad0(ρ))/K)ab is a sub-quotient of G(k)/ZG(k)[G′(k), G′(k)].
Now consider the map

f : ZG × G̃′ → ZG ×G′ → G

By Lemma 2.1.2.2, [G′(k), G′(k)] = π(G̃′(k)) as q > 3. From the long exact sequence

Z(k)× G̃′(k)→ G(k)→ H1(k, ker f)

we conclude that Gal(K(ad0(ρ))/K)ab is a subquotient of H1(k, ker f).
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In particular, the group H1(k, ker f) is finite and killed by # ker(f), so p− 1 > # ker(f) is sufficient for
(L2). If G′k has root system Φ, we know that # ker(f)|#π1(Φ), so p > #π1(Φ) suffices. Thus (L2) holds
for sufficiently large p for a group G with fixed root datum. In any particular instance, this is easy to make
explicit.

Example 2.3.2.4. Take G = GSp2n. Then G′ = Sp2n is simply connected, and ker f = ZSp2n
= µ2. Thus

any prime bigger than 3 is fine.

Finally, we give a sufficient condition for (L3) to hold. It is far from necessary.
Let g be a generator of F×p , d the order of χ(ΓK(ad0(ρ))), and e = p−1

d = [K(ζp) ∩ K(ad0(ρ)) : K].

Lemma 2.3.2.3 shows that for fixed root system, e divides #H1(k, ker f) which is bounded independent of
p. To be precise, writing ker(f) =

∏
µni , we see

#H1(k, ker f) =
∏
i

gcd(ni, q − 1)
∣∣ ∏ni = # ker f

∣∣ #π1(Φ).

Thus for large enough p we have that d > 4(h−1), where h is the Coxeter number. Recall that upon picking
a basis ∆ of the root system, the height ht(β) of a root β is the the sum of the coefficients when the root is
written in terms of ∆. The Coxeter number h is 1 more than the height of the highest root.

Lemma 2.3.2.5. Suppose dimT 6= 1. Condition (L3) holds when d > 4(h− 1).

Proof. We will work with the simply connected central cover π : G̃′ → G′, with T̃ ′ the split maximal torus
preimage of T ∩ G′ ⊂ G′. Consider the root system Φ = Φ(G̃′, T̃ ′) with chosen basis of positive roots ∆,

and the cocharacter δ ∈ X∗(T̃ ′) which is the sum of the positive coroots of Φ. Take β to be an element of

order d in χ(ΓK(ad0(ρ))) ⊂ F×p ⊂ k×, and let s = δ(β) ∈ G̃′(k). Recall that for αi ∈ ∆, 〈δ, αi〉 = 2. Thus we
calculate that for any root α,

α(s) = β2 ht(α).

In particular, if α is the highest root then we obtain β2(h−1). For any other root α′, 0 < 2 ht(α′) < 2(h− 1)
or −2(h− 1) ≤ 2 ht(α′) < 0 and hence as d > 4(h− 1)

2 ht(α) 6= 2 ht(α′) (mod d) and 2 ht(α′) 6= 0 (mod d).

Thus α′(s) 6= α(s) and α′(s) 6= 1. Therefore we conclude that that s is regular semisimple and α is the

unique root on which the adjoint action on (Lie G̃′)k is given by β2(h−1) ∈ χ(ΓK(ad0(ρ))).

As p is very good, dπk : (Lie G̃′)k → (LieG′)k is an isomorphism. Thus π(s) ∈ π(G̃′(k)) = [G′(k), G′(k)]
(using Lemma 2.1.2.2) has the required properties.

If dimT = 1, a minor modification shows that (L3) holds as long as d > 6. In particular, for fixed root
datum and sufficiently large primes p, (L3) holds.

Remark 2.3.2.6. The above condition is far from sharp. There is no reason that the highest root must be
the unique root α in (L3) where the adjoint action is given by the cyclotomic character.

Example 2.3.2.7. Let G = GLn. Then the Coxeter number is n, and ZG′ = µn. Let e = (n, p − 1), so
H1(k, µn) = Z/eZ. Assumptions (L1)-(L3) hold provided p > max(5, 4(n− 1)e).

For G = Sp2n, the Coxeter number is 2n, and ZG′ = µ2. Then H1(k, µ2) = Z/2Z and the assumptions
hold when p > max(5, 8(2n− 1)). There is a similar bound for orthogonal groups.

2.4 Ramakrishna’s Deformation Condition

Let O be the ring of integers in a p-adic field with residue field k. Consider a split connected reductive
group scheme G over O. Let K be a number field and ρ : ΓK → G(k) be a big representation. Recall that
χ : ΓK → Z×p denotes the cyclotomic character.

In this section, we will generalize a deformation condition that Ramakrishna introduces for GL2, allowing
controlled ramification at certain unramified places. Allowing ramification subject to this condition is a
crucial tool to reduce the size of the dual Selmer group. A similar generalization is carried out in [Pat15, §4.2].
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2.4.1 Constructing the Deformation Condition

As ρ is big, there is a γ ∈ ΓK such that ρ(γ) is regular semisimple. The identity component of ZGk(ρ(γ)) is
Tk, where T was a specified split maximal torus of G. By hypothesis, T is split and there is a unique root
α ∈ Φ(G,T ) such that α(ρ(γ)) = χ(γ). We start by assuming:

(A1) there is a place v of K lying over a rational prime ` such that ρ is unramified at v and ρ(Frobv) is
regular semisimple element. The identity component of ZGk(ρ(Frobv)) is Tk, and there is a unique
root α ∈ Φ(G,T ) such that α(ρ(Frobv)) = χ(Frobv) = χ(γ) 6= 1.

Under this assumption, we will define a deformation condition consisting of certain tamely ramified lifts.
Let Kt

v be the maximal tamely ramified extension of Kv, K
nr
v be the maximal unramified extension, and

Γt
v = Gal(Kt

v/Kv). There is a split exact sequence

1→ Gal(Kt
v/K

nr
v )→ Γt

v → Gal(Knr
v /Kv)→ 1.

Recall that Gal(Knr
v /Kv) is topologically generated by Frobv, while Gal(Kt

v/K
nr
v ) '

∏
p′ 6=` Zp′(1). The

action of Gal(Knr
v /Kv) on Gal(Kt

v/K
nr
v ) is via the prime-to-` cyclotomic character. Concretely, the action

of Frobv is given by multiplication by an integer q = `f(Kv/Q`). For a fixed splitting, we obtain a semidirect
product decomposition

Γt
v ' Gal(Knr

v /Kv) n Gal(Kt
v/K

nr
v ). (2.4.1.1)

Fix a split maximal O-torus T of G reducing to Tk: we identify α ∈ Φ(G,T ) = Φ(Gk, Tk) and form the
usual smooth closed O-subgroups Uα ⊂ G (root group for α) and Hα = T n Uα ⊂ G associated to α and to
{0, α} (see Theorem 5.1.13 and Proposition 5.1.16 of [Con14]).

Definition 2.4.1.1. We assume (A1). For a coefficient O-algebra A, consider a lift ρ : Γt
v → G(A). The lift

ρ satisfies Ramakrishna’s condition relative to T provided that ρ(Frobv) ∈ T (A), α(ρ(Frobv)) = χ(Frobv),
and ρ(Gal(Kt

v/K
nr
v )) ⊂ Uα(A) ⊂ G(A).

Define Ramakrishna’s deformation condition Dram
v (A) to be lifts which are Ĝ(A)-conjugate to one which

satisfies Ramakrishna’s condition relative to T . Denote the tangent space of the deformation functor by
Lram
v .

This condition generalizes the condition for GL2 introduced by Ramakrishna [Ram99, §3]. Note that the
condition can be rephrased as ρ ∈ Dram

v (A) if and only if there exists a choice of split O-torus T lifting Tk
such that ρ satisfies Ramakrishna’s condition relative to T since Ĝ(O) acts transitively on the set of such T
by [Con14, Theorem 3.2.6].

Example 2.4.1.2. Let G = GLn. We may assume that the residual representation, which is unramified,
sends Frobv to a diagonal element. Ramakrishna’s deformation condition consists of lifts such that after
conjugation ρ(Frobv) is diagonal and the the image of Gal(Kt

v/K
nr
v ) consists of elements of the shape

1 ∗ 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1


Conjugation by Frobv is multiplication by q = χ(Frobv) on Gal(Kt

v/K
nr
v ). On the other hand, the action

of ρ(Frobv) on Uα is given by α(ρ(Frobv)). Thus the assumption that α(ρ(Frobv)) = χ(Frobv) is crucial to
allow the component ∗ to be non-zero and produce lifts where ρ(Gal(Kt

v/K
nr
v )) 6= 1.

Lemma 2.4.1.3. Dram
v is a deformation condition.

Proof. Dram
v (A) is certainly closed under strict equivalence. Next, we will check it is subfunctor of the

deformation functor at ρ. Let f : A1 → A0 be a morphism of coefficient O-algebras, and choose ρ1 ∈
Dram
v (A1). This means there is a split maximal torus T defined over O such that ρ(Frobv) ∈ T (A1),

α(ρ(Frobv)) = χ(Frobv), and ρ(Gal(Kt
v/K

nr
v )) ⊂ Uα(A1). The same torus shows that f(ρ) ∈ Dram

v (A0).
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It remains to check condition (2) of Definition 2.2.2.7. Let T be a fixed split O-torus lifting Tk, and
let A1, A2, and A0 be coefficient O-algebras with morphisms f1 : A1 → A0 and f2 : A2 → A0. We can
reduce to the case that f2 is small. It suffices to show that given deformations ρi ∈ D�

ρ (Ai) such that

D�
ρ (f1)(ρ1) = D�

ρ (f2)(ρ2) = ρ0, if ρ1 and ρ2 satisfy Ramakrishna’s lifting condition then so does ρ1 ×ρ0 ρ2.

This means that there are gi ∈ Ĝ(Ai) such that ρgii satisfies Ramakrishna’s condition relative to T . In
particular, the push-forwards of ρg11 and ρg22 to A0 both satisfy Ramakrishna’s condition relative to T , and

letting h = g1g
−1
2 both ρg20 and ρhg20 = (ρg20 )

h
satisfy Ramakrishna’s condition relative to T . We will show

that this implies h ∈ Ĥα(A0). Using the smoothness of this group, we can lift to an element h′ ∈ Ĥα(A2).

But then (g1, hg2) ∈ Ĝ(A1)×Ĝ(A0) Ĝ(A0) = Ĝ(A1 ×A0
A2), and this element conjugates ρ1 ×ρ0 ρ2 to satisfy

Ramakrishna’s condition relative to T .
It remains to prove the following statement: if ρ : Γv → G(R) satisfies Ramakrishna’s condition relative

to T , then
Cρ(R) := {g ∈ Ĝ(R) : ρg(Γv) ⊂ Hα(R)} ⊂ Ĥα(R).

If R = k, this is trivial. In general, argue by induction on the length of R. It suffices to consider a small
morphism R→ R/I and assume the statement for R/I. For g ∈ Cρ(R), induction shows that g ∈ Ĥα(R/I)

hence it suffices to check that exp(x) ∈ Ĥα(R) for all x ∈ g⊗k I for which ρexp(x)(Γv) ⊂ Hα(R). Rewriting,
we see that

exp(x)ρ(Frobv) exp(−x) ∈ Hα(R).

Multiplying on the right by ρ(Frobv)
−1 ∈ Hα(R), we conclude that

x−AdG(ρ(Frobv))x ∈ (LieHα)k ⊗k I.

As ρ(Frobv) is regular semisimple, it acts non-trivially on gβ for all β ∈ Φ(G,T ), forcing x ∈ (LieHα)k ⊗k I
as desired.

Now we will describe the tangent space to the deformation condition. Fix a choice of O-torus T lifting
Tk, and let g := LieGk and t = LieTk. We have a decomposition

ad(ρ) = t⊕
⊕

β∈Φ(G,T )

gβ . (2.4.1.2)

Because ad(ρ) is unramified at v, the Galois action is completely determined by the action of Frobv, which
acts on gβ as β(ρ(Frobv)). This will allow us to compute Galois cohomology at v easily:

Lemma 2.4.1.4. We have dimH0(Γv, ad(ρ)) = dim t and dimH1(Γv, ad(ρ)) = dim t + 1. Furthermore,

H1(Γv, ad(ρ)) = H1(Γv, t)⊕H1(Γv, gα).

Proof. It is straightforward to see that dimH0(Γv, ad(ρ)) = dimH0(Γv, t) = dim t using (2.4.1.2): since
ρ(Frobv) is regular semisimple, its space of fixed vectors in g is t. We claim that dimkH

2(Γv, ad(ρ)) =
dimH2(Γv, gα) = 1. This follows from Fact 2.2.1.1 as the only piece of the decomposition on which Frobv
acts as the cyclotomic character is gα. Then Fact 2.2.1.2 implies that dimkH

1(Γv, ad(ρ)) = dim t + 1 and
gives the decomposition of H1(Γv, ad(ρ)).

There are also some obvious deformations to k[ε]/ε2 of the form ρi = exp(εfi)ρ where fi ∈ Z1(Γv, ad(ρ))
is defined as follows. Choose any non-zero homomorphism f ′0 : Gal(Kt

v/K
nr
v ) → Z/pZ → gα, and define

f0 : Γv → gα via the composition

Γv → Γt
v
π→ Gal(Kt

v/K
nr
v )

f ′0→ gα

where π is the projection determined by the splitting (2.4.1.1). It is straightforward to check this is a cocycle
using that α(ρ(Frobv)) = χ(Frobv). Now choose a basis t1, . . . , tdim t for t such that t1, . . . , tdim t−1 ∈ tα,
where tα is the Lie algebra of the codimension-1 subtorus ker(α)0

red. Define an unramified homomorphism
fi : Γv → Γnr

v → t by sending Frobv to ti: it is clearly a cocycle since ρ(Frobv) ∈ T (k).

Lemma 2.4.1.5. We have dimLram
v = dim t = dimH0(Γv, ad(ρ)). The cocycles f0, f1, . . . , fdim t−1 form a

basis for Lram
v ⊂ H1(Γv, ad(ρ)).

25



Proof. First, we check that the cocycles f0, f1, . . . , fdim t form a basis for H1(Γv, ad(ρ)): by Lemma 2.4.1.4,
it suffices to check they are linearly independent (modulo coboundaries). Note that for any 1-coboundary

cx : g 7→ ad(ρ)(g)(x)− x

with x ∈ g, c(Frobv) has vanishing t-component. This immediately gives that f1, . . . fdim t are linearly
independent modulo coboundaries. Furthermore, by inspection f0 is a nonzero element of H1(Γv, gα). In
light of the decomposition from Lemma 2.4.1.4, we obtain linear independence of f0, f1, . . . , fdim t.

Finally, we consider which of the lifts ρi = exp(fiε)ρ satisfy the deformation condition Dram
v . The re-

quirement is that α(ρi(Frobv)) = χ(Frobv) ∈ k[ε]/(ε2). Now ad(ρ)(Frobv) acts on gα via multiplication by
χ(Frobv) by (A1). Furthermore, ad(exp(fi(Frobv)ε)) = [fi(Frobv),−] on g, and on gα the action is multipli-
cation by Lie(α)(fi(Frobv)). So ρi satisfies Dram

v if and only if fi(Frobv) ∈ tα. We see that f0, f1, . . . , fdim t−1

satisfy this requirement but fdim t does not.

Lemma 2.4.1.6. Dram
v is liftable.

Proof. To see it is liftable, consider trying to lift ρ : Γt
v → G(A/I) to A, where A→ A/I is a small extension.

There is a split maximal torus T of G over O such that ρ factors through T (A/I) n Uα(A/I). Write

ρ(g) = t(g) n uα(x(g))

where t ∈ Hom(Γt
v, T (A/I)), uα : Ga

∼−→ Uα and x ∈ Z1(Γtv, χA/I) because α(Frobv)) = χA/I(Frobv). (Note
that the Galois action on Uα(R/I) = Ga(R/I) = R/I is given by multiplication against the cyclotomic
character χA/I .) To lift ρ, it suffices to continuously lift t and x as a homomorphism and tame 1-cocycle
respectively, as then the combined lift will determine a lift of ρ.

We can easily lift t: it is unramified, so just lift an image of Frobv using the smoothness of the torus. To
lift x, we claim that H1(Γt

v, χA) → H1(Γt
v, χA/I) is surjective. To check this, it suffices to check that the

next piece of the long exact sequence, H2(Γt
v, χI)→ H2(Γt

v, χA), is injective. Since v - p,

H2(Γt
v, χI) = H2(Γv, χI) and H2(Γt

v, χA) = H2(Γv, χA).

Using local duality, the claim about injectivity reduces to the evident surjectivity of Hom(A,Q/Z) →
Hom(I,Q/Z). Thus there is a cocycle x′ ∈ Z1(Γt

v, χA) which reduces to x up to a (tame) 1-coboundary. But
a tame coboundary valued in the unramified χA obviously lifts. Therefore we can lift both t and x, hence
we can produce a homomorphism ρ′ : Γt

v → T (A) n Uα(A) lifting ρ.

Putting this all together, we obtain:

Proposition 2.4.1.7. The deformation condition Dram
v is liftable. The dimension of its tangent space Lram

v

equals dimH0(Γv, ad(ρ)). Any f ∈ Lram
v ⊂ H1(Γv, ad(ρ)) satisfies f(Frobv) ∈ tα.

Proof. Combine Lemma 2.4.1.4, 2.4.1.5, and 2.4.1.6. (The last assertion needs the additional fact, noted in
the proof of Lemma 2.4.1.5, that 1-coboundaries have vanishing tα component.)

Denote the derived group of G by G′, and let S = G/G′ with quotient map µ : G → S.. Suppose
we are given a lift ν of µ ◦ ρ : Γv → S(k). Let Dram,ν

v denote the sub-functor of Dram
v consisting of lifts

ρ : ΓKv → G(A) such that νA = µ ◦ ρ. This is a deformation condition (representable), as the condition
µ ◦ ρ = ν cuts out a closed subscheme of the universal lifting ring for Dram

v .

Corollary 2.4.1.8. Suppose that ν is unramified. Then Dram,ν
v is liftable, and its tangent space has dimen-

sion dimH0(Γv, ad0(ρ)).

Proof. By construction, all the deformations in Dram
v are tame. For a cocycle

f ∈ Z1(Γt
v, ad(ρ)) ⊂ Z1(Γv, ad(ρ))

remember that the associated tame lift is given by ρ(g) = expG(f(g)ε)ρ(g) for g ∈ Γt
v. By functoriality of

exp, we see that
µ ◦ ρ(g) = expS((dµ ◦ f)(g)ε) (µ ◦ ρ) (g).
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But µ ◦ ρ = ν, so ν = µ ◦ ρ provided
exp(dµ(f(g))ε) = 1

for all g ∈ Γt
v. In other words, f must factor through ker dµ = LieG′ = ad0(ρ). As the characteristic is

very good for G, the decomposition ad(ρ) = ad0(ρ)⊕ zg gives a projection πzg : g → zg. The lift ρ satisfies
ν = µ ◦ ρ if and only if πzg ◦ f = 0. A basis for H1(Γv, t) ∩ Lram

v is given by f1, . . . fdim t−1, all of which are
unramified 1-cocycles. All the coboundaries are unramified, so by considering the composition of projections

H1(Γt
v, ad(ρ))→ H1(Γt

v, t) = H1(Γnr
v , t)→ H1(Γt

v, zg)

we see it suffices to check that πzg ◦ f |Γnr
v

= 0 (using the splitting (2.4.1.1)).
Lemma 2.4.1.5 gives an explicit description of Lram

v . The cocycle f0 certainly satisfies πzg ◦ f = 0 as its
image lies in gα. The cocycles f1, . . . , fdim t−1 give a basis for Hom(Γnr

v , tα). As zg is a direct factor of tα, we
see a codimension-dim zg subspace of Lram

v satisfies the deformation condition by projecting to 0 in zg. We
conclude the tangent space has dimension h0(Γv, ad(ρ))− dim zg = h0(Γv, ad0(ρ)).

Now consider a small surjection A1 → A0 with A0 = A1/I (so mA1
I = 0), and a lift ρ0 ∈ Dram,ν,�

v (A0).
To check liftability, we may factor into a sequence of small surjections where I is a 1-dimensional k-vector
space, so it suffices to treat that case. By Lemma 2.4.1.6, there exists a lift ρ1 ∈ Dram,�

v (A1), and which
may be expressed as

ρ1(g) = expG(h(g)⊗ i)ρ0(g)

for some i ∈ I ' k and h ∈ Z1(Γt
v, ad(ρ)). (The cocycle h factors through the tame quotient as all lifts in

Dram
v are tamely ramified.) We will modify h so that πzg ◦ h = 0. To do so, pick a basis t1, . . . tr of zg, and

as in the proof of Lemma 2.4.1.5 consider unramified cocycles cj : Γv → Γnr
v → ad(ρ) defined by

cj(Frobv) = tj .

Let aj ∈ k be such that πzgh(Frobv) =
∑
j ajtj . Then because we already know µ ◦ ρ0 = ν on A0-points, we

see

exp

−∑
j

ajcj(g)⊗ i

 exp(h(g)⊗ i)ρ0(g) = exp

h(g)−
∑
j

ajcj(g)

⊗ i
 ρ0(g) ∈ Dram,ν,�

v (A1)

because we have remarked it suffices to check πzg

(
h(g)−

∑
j ajcj(g)

)
= 0 for g ∈ Γnr

v . Thus we may modify

ρ1 so that it is an element of Dram,ν,�
v (A1), and hence Dram,ν

v is liftable.

2.4.2 Shrinking the Dual Selmer Group

Finally, we will show we can find places of K where (A1) holds, as well as some additional cohomological
conditions that will allow us to shrink the dual Selmer group. Let ρ : ΓK → G(k) be a big representation,
and S a finite set of places containing those above p, the archimedean places, and all places where ρ is
ramified. Let DS be a global deformation condition satisfying the tangent space inequality (2.2.2.2) and for
which H1

D⊥S
(ΓS , ad0(ρ)∗) is non-zero.

Lemma 2.4.2.1. Under this assumption, the group H1
DS (ΓK , ad0(ρ)) is non-zero..

Proof. Let Lv be the local deformation conditions for v ∈ S. The tangent space inequality (2.2.2.2) states
that ∑

v∈S
dimLv ≥

∑
v∈S

dimH0(Γv, ad0(ρ)).

As ρ is big, H0(K, ad0(ρ)) and H0(K, ad0(ρ)∗) are trivial. Then the product formula (2.2.1.1) gives that

dimH1
DS (ΓK , ad0(ρ))− dimH1

D⊥S
(ΓK , ad0(ρ)∗) =

∑
v∈S

(
dimLv − dimH0(Γv, ad0(ρ)

)
≥ 0

As we have assumed H1
D⊥S

(ΓK , ad0(ρ)∗) is non-zero, it follows that H1
DS (ΓK , ad0(ρ)) is non-zero as well.
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Pick any non-zero element ψ ∈ H1
D⊥S

(ΓK , ad0(ρ)∗), and pick a non-zero ξ ∈ H1
DS (ΓK , ad0(ρ)) using the

Lemma. Now let F be the smallest field over K for which ΓF is killed by χ and ad0(ρ); note that F/K is finite
Galois. The absolute Galois group ΓF acts trivially on ad0(ρ) and ad0(ρ)∗, so the respective restrictions of
ξ and ψ to H1(ΓF , ad0(ρ)) and H1(ΓF , ad0(ρ)∗) are just homomorphisms, which we will respectively denote
by ξ′ and ψ′. Let Fξ′ and Fψ′ be the fixed fields of the kernel of ξ′ and ψ′ respectively.

Lemma 2.4.2.2. The elements ξ′ and ψ′ lie in H1(ΓF , ad0(ρ))Gal(F/K) and H1(ΓF , ad0(ρ))Gal(F/K) respec-
tively, and are non-zero. Furthermore Fξ′ and Fψ′ are Galois over K.

Proof. By the bigness assumption, H1(K(ad0(ρ))/K, ad0(ρ)) = 0. The extension F/K(ad0(ρ)) is Galois of
degree prime to p by Lemma 2.3.1.8, so the inflation-restriction sequence gives

0→ H1(Gal(K(ad0(ρ))/K), ad0(ρ))→ H1(Gal(F/K), ad0(ρ))→ H1(Gal(F/K(ad0(ρ)), ad0(ρ)) = 0

Therefore H1(Gal(F/K), ad0(ρ)) = 0. Another application of the inflation-restriction sequence gives

0→ H1(Gal(F/K), ad0(ρ))→ H1(ΓK , ad0(ρ))→ H1(ΓF , ad0(ρ))Gal(F/K)

The first term is zero, so image ξ′ ∈ H1(ΓF , ad0(ρ))Gal(F/K) is non-zero. The same argument applies to the
field K(ad0(ρ)∗) and the module ad0(ρ)∗, showing that ψ′ ∈ H1(ΓF , ad0(ρ))Gal(F/K) is non-zero.

Finally, oberserve that Fξ′ and Fψ′ are Galois over K as the natural ΓK-actions on H1(ΓF , ad0(ρ)) and
H1(ΓF , ad0(ρ)∗) leave ξ′ and ψ′ invariant.

We will also need the following Lemma about the k[ΓK ]-modules ad0(ρ) and ad0(ρ)∗.

Lemma 2.4.2.3. There exist simple Fp[ΓK ]-modules W and W ′ such that ad0(ρ) = W⊕r and ad0(ρ)∗ =

(W ′)⊕r
′

as Fp[ΓK ]-modules. Furthermore, W and W ′ are not isomorphic.

Proof. Let W and W ′ be simple Fp[ΓK ]-submodules of ad0(ρ) and ad0(ρ)∗. The maps k ⊗Fp W → ad0(ρ)

and k⊗FpW
′ → ad0(ρ)∗ are surjective as ad0(ρ) and ad0(ρ)∗ are irreducible over k. Furthermore the sources

are direct sums of copies of W and W ′ respectively (as Fp[ΓK ]-modules). Thus there exist r and r′ for which

ad0(ρ) = W⊕r and ad0(ρ)∗ = (W ′)⊕r
′
. We will consider the eigenspaces of the action of γ on W and W ′,

and deduce that W and W ′ cannot be isomorphic.
The decomposition (2.4.1.2) describes how γ acts on ad0(ρ) and ad0(ρ)∗. It acts trivially on t, and acts

as α(ρ(γ)) = χ(γ) on gα. Furthermore, there is no other root space on which γ acts by χ(γ). Now consider
how γ acts on W : it must have an eigenspace with eigenvalue 1 of dimension at least 1

r dimFp t, and an
eigenspace of eigenvalue χ(λ) of dimension 1

r dimFp gα. (This uses that the eigenvalues lie in Fp: in that

case the eigenspace with eigenvalue λ on ad0(ρ) is a direct sum of r copies of the eigenspace with eigenvalue
λ on W .) On the other hand, by decomposing ad0(ρ)∗ we see that γ acts as χ(γ) on t∗ and the identity
on g∗α, and there is no other root space on which γ acts as the identity. This implies γ acts on W ′ with
an eigenspace of eigenvalue 1 with dimension 1

r′ dimFp g
∗
α and with an eigenspace of eigenvalue χ(γ) with

dimension at least 1
r′ dimFp t. As we know χ(γ) 6= 1, as long as dimk t > 1 = dimk gα, this shows W and W ′

cannot be isomorphic.
If the dimension of the maximal torus is 1, then g′ = sl2. The eigenvalues of γ acting on ad0(ρ) are χ(γ), 1,

and χ(γ)−1, while the eigenvalues of γ acting on ad0(ρ)∗ are 1, χ(γ), and χ(γ)2. Since we assumed that
χ(γ)3 6= 1 when the maximal torus is one-dimensional (Definition 2.3.1.1(iii)), the eigenvalues are distinct
and a similar argument shows W and W ′ are not isomorphic.

We can now find places v where we can define Ramakrishna’s deformation problem; the key tool is the
Chebotarev density theorem.

Proposition 2.4.2.4. There exists a place v 6∈ S such that:

(i) assumption (A1) holds, so we obtain a liftable deformation condition Dram
v whose tangent space Lram

v

has dimension dimH0(Γv, ad(ρ));

(ii) there exists ξ ∈ H1
DS (ΓK , ad0(ρ)) whose restriction to H1(Γv, ad0(ρ)) does not lie in Lram

v ;
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(iii) there exists ψ ∈ H1
D⊥S

(ΓK , ad0(ρ)∗) whose restriction to H1(Γv/Iv, ad0(ρ)∗) is non-zero.

Proof. We will always pick the place v so that (A1) holds. The first step is to find an additional condition
on v so that resv ξ is not in Lram

v . By Proposition 2.4.1.7, it suffices to check that ξ(Frobv) 6∈ tα. We will
find an element g ∈ ΓF such that this holds whenever Frobv ∈ gγΓFξ′ .

Let γ ∈ ΓK be the element provided by Definition 2.3.1.1(iii). We claim there exists g ∈ Gal(Fξ′/F ) such
that ξ(gγ) 6∈ tα. If ξ(γ) 6∈ tα, take g to be the identity. Otherwise, consider the image of the homomorphism
ξ′ : ΓF → ad0(ρ). By Lemma 2.4.2.2 ξ′ is fixed by the action of Gal(F/K), so the span of the image is a
representation of ΓK . But ad0(ρ) is irreducible (Definition 2.3.1.1 (i)), so the image of ξ′ cannot be contained
in tα (as then its span would be a proper sub-representation). Thus, there exists g ∈ Gal(Fξ′/F ) such that
ξ′(g) 6∈ tα. As the adjoint action of g on ad0(ρ) is trivial, we compute that

ξ(gγ) = ξ(g) + ad(ρ(g))ξ(γ) = ξ(g) + ξ(γ) 6∈ tα.

Thus if Frobv ∈ gγΓFξ′ , we see ξ(Frobv) 6∈ tα and hence resv ξ 6∈ Lram
v .

The second step is to find a condition on v so that the image of ψ in H1(Γv/Iv, ad0(ρ)∗) is not zero. Note
that Iv acts trivially on ad0(ρ)∗ since v does lie above p and ρ is unramified outside of S. By definition of
D⊥S , the composite map

H1
D⊥S

(ΓK , ad0(ρ)∗)→ H1(Γv, ad0(ρ)∗)→ H1(Iv, ad0(ρ)∗)

vanishes, so by inflation-restriction we obtain a natural map

H1
D⊥S

(ΓK , ad0(ρ)∗)→ H1(Γv/Iv, ad0(ρ)∗).

Using Fact 2.2.1.4, the dimension of H1(Γv/Iv, ad0(ρ)∗) is the dimension of H0(Γv, ad0(ρ)∗). But as we
are assuming (A1) holds, (2.4.1.2) shows the space where Frobv acts trivially is the one-dimensional g∗α.
We can write down a crossed homomorphism that generates it: the function sending Frobv to a non-zero
x∗α ∈ g∗α ⊂ ad0(ρ)∗. It is not a 1-coboundary: as Frobv acts trivially on g∗α, all 1-coboundaries are zero.
Any non-zero element f ∈ H1(Γv/Iv, ad0(ρ)∗) must be a multiple of this function, so f(Frobv)(xα) will be
non-zero for a fixed non-zero xα ∈ gα ⊂ ad0(ρ). So we just need to arrange that (resv ψ)(Frobv)(xα) 6= 0.

Now we can use the same technique as in the first step. Lemma 2.4.2.2 shows that ψ′ is a non-zero
homomorphism fixed by ΓK . We will find g′ ∈ Gal(Fψ′/F ) such that ψ(g′γ)(xα) 6= 0. If ψ(γ)(xα) 6= 0, take
g′ to be the identity in Gal(Fψ′/F ). Suppose instead that ψ(γ)(xα) = 0. The span of the image of ψ′ is
a non-zero representation of ΓK contained in the irreducible ad0(ρ)∗, so there must exist g′ ∈ Gal(Fψ′/F )
such that ψ′(g′)(xα) 6= 0. Then as g′ acts trivially under the adjoint action (by definition of F ), we compute

ψ(g′γ)(xα) = ψ(g′)(xα) +
(
ad0(ρ)∗(g′))

)
ψ(γ)(xα) = ψ(g′)(xα) 6= 0

In either case, there exists a g′ ∈ Gal(Fψ′/F ) such that ψ(g′γ)(xα) 6= 0.
The final step is to pick the prime v so that all of these conditions hold (to be found via the Chebotarev

density theorem). Let g and g′ denote lifts of g and g′ to ΓF . Consider the subset Σ of ΓS consisting of
elements γ′ such that

1. assumption (A1) holds with γ′ in the role of Frobv there;

2. γ′ ∈ gγΓFξ′ ;

3. γ′ ∈ g′γΓFψ′ .

We must show Σ is non-empty. We claim the first condition follows from the second. As ΓF acts trivially on
ad0(ρ), we know from Lemma 2.3.1.6 that ρ(ΓF ) ⊂ ZG(k)∩ρ(ΓK). In particular, ρ(γ′) is regular semisimple
and ZGk(ρ(γ′))◦ = ZGk(ρ(γ))◦. We chose γ as in Definition 2.3.1.1, so this is the torus Tk. By assumption,
there is a unique root α ∈ Φ(Gk, Tk) for which

α(ρ(γ′)) = α(ρ(γ)) = χ(γ) = χ(γ′)
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using that ZG(k) ⊂ (ker(α))(k) and that ΓF ⊂ ker(χ). So it suffices to consider the second and third
conditions.

Note that Σ is the preimage of its image under ΓS � Gal(L/K) for any finite Galois L/K containing
Fξ′ and Fψ′ . Taking L to be the compositum of Fξ′ and Fψ′ , we obtain an injection

Gal(L/K) ↪→ Gal(Fξ′/K)×Gal(F/K) Gal(Fψ′/K) (2.4.2.1)

We claim that this is an equality, which is to say Fξ′ ∩ Fψ′ = F . We have injections ξ′ and ψ′ from
Gal(Fξ′/F ) and Gal(Fψ′/F ) into ad0(ρ) and ad0(ρ)∗ respectively. For h ∈ ΓK and h′ ∈ Gal(Fψ′/F ) we have
hξ′(hh′h−1) = ξ′(h′) as ξ′ is ΓK-invariant. Furthermore, for a, b ∈ Z and h1, h2 ∈ Gal(Fξ′/F ) we see that

aξ′(h1) + bξ′(h2) = ξ′(ha1h
b
2).

Thus the image of ξ′ is a non-zero Fp[ΓK ]-submodule of ad0(ρ), and so is a direct sum of copies of W from
Lemma 2.4.2.3. As ξ′ is injective, Gal(Fξ′/F ) is isomorphic to a direct sum of copies of W as Fp[ΓK ]-
modules. Likewise, Gal(Fξ′/(Fξ′ ∩ Fψ′)) is a possibly vanishing Fp[ΓK ]-submodule. We conclude that the
ΓK-invariant quotient

Gal(Fξ′/F )/Gal(Fξ′/(Fξ′ ∩ Fψ′)) ' Gal(Fξ′ ∩ Fψ′/F )

is isomorphic to a direct sum of copies of W as a Fp[ΓK ]-module. Similarly, we see that ψ′(Gal(Fψ′/F ))
is an Fp[ΓK ]-module that is isomorphic to a direct sum of copies of W ′, so the quotient Gal(Fξ′ ∩ Fψ′/F )
is also isomorphic to a direct sum of copies of W ′. But as W and W ′ are not isomorphic (Lemma 2.4.2.3),
Gal(Fξ′ ∩ Fψ′/F ) is trivial; i.e. F = Fξ′ ∩ Fψ′ as desired. Thus (2.4.2.1) is an isomorphism and Σ is
non-empty.

Now the Chebotarev density theorem implies there exists a place v outside of S (actually infinitely many)
for which Frobv ∈ Σ. The three conditions imply that

1. assumption (A1) holds, so we can define the condition Dram
v ;

2. resv ξ 6∈ Lram
v ;

3. The image of ψ is non-zero in H1(Γv/Iv, ad0(ρ)∗).

This completes the proof.

With ρ a big representation as before and DS = {Dw}w∈S a deformation condition for ρ satisfying the
tangent space inequality (2.2.2.2), allowing ρ to ramify at a place v as in Proposition 2.4.2.4 according to
Dram
v will decrease the size of the dual Selmer group:

Proposition 2.4.2.5. For T = S ∪ {v}, let DT be the deformation condition whose local components are
Dw for w ∈ S and Dram

v at v. Then

dimH1
DT (ΓK , ad0(ρ)) < dimH1

DS (ΓK , ad0(ρ)).

Furthermore, DT satisfies the tangent space inequality (2.2.2.2).

In the proof, the best perspective is that a deformation condition DS is a collection of local deformation
conditions for all places of K such that it is the unramified deformation condition at those places not in S.
Then H1

DS (ΓK , ad0(ρ)) consists of elements of H1(ΓK , ad0(ρ)) whose restrictions at each place w lie in the
tangent space Lw to the local deformation condition (and likewise for T in place of S).

Proof. We will first analyze what happens if we weaken DS to a condition D′T where there is no restriction
on deformations at v. We wish to show that H1

DS (ΓK , ad0(ρ)) = H1
D′T

(ΓK , ad0(ρ)). The first is certainly a

subset of the second.
Recall that as ρ is big, H0(ΓK , ad0(ρ)) = 0 and H0(ΓK , ad0(ρ)∗) = 0. Then applying (2.2.1.1) to D′T

and using that the calculation of h1
v and h0

v in Lemma 2.4.1.4, we see that

dimH1
D′T

(ΓK , ad0(ρ))− dimH1
D′T
⊥(ΓK , ad0(ρ)∗) =

∑
w∈T

(
dimLw − dimH0(Γw, ad0(ρ))

)
= 1 +

∑
w∈S

(
dimLw − dimH0(Γw, ad0(ρ))

)
.
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Likewise, we see that

dimH1
DS (ΓK , ad0(ρ))− dimH1

DS⊥(ΓK , ad0(ρ)∗) =
∑
w∈S

(
dimLw − dimH0(Γw, ad0(ρ))

)
.

To check H1
DS (ΓK , ad0(ρ)) = H1

D′T
(ΓK , ad0(ρ)), it suffices to show that the difference

dimH1
D′T

(ΓK , ad0(ρ))− dimH1
DS (ΓK , ad0(ρ)) = 1 + dimH1

D′⊥T
(ΓK , ad0(ρ)∗)− dimH1

D⊥S
(ΓK , ad0(ρ)∗)

is non-positive. The distinction between H1
D⊥S

(ΓK , ad0(ρ)∗) and H1
D′⊥T

(ΓK , ad0(ρ)∗) is that the first uses the

condition that the restriction at v lies in H1
nr(Γv, ad0(ρ)∗) while the second uses the condition that it lies in

0 = H1(Γv, ad0(ρ))⊥. The inclusion

dimH1
D′⊥T

(ΓK , ad0(ρ)∗) ⊂ dimH1
D⊥S

(ΓK , ad0(ρ)∗)

is strict because of the element ψ in Proposition 2.4.2.4. Thus H1
DS (ΓK , ad0(ρ)) = H1

D′T
(ΓK , ad0(ρ)).

Now we study the deformation DT we actually care about. In the left exact sequence

0→ H1
DT (ΓK , ad0(ρ))→ H1

D′T
(ΓK , ad0(ρ))→ H1(Γv, ad0(ρ))/Lram

v

the middle term coincides with H1
DS (ΓK , ad(ρ)). The existence of the element ξ in Proposition 2.4.2.4 implies

that
dimH1

DS (ΓK , ad0(ρ)) > dimH1
DT (ΓK , ad0(ρ)).

Finally, the tangent space inequality (2.2.2.2) holds for DT as dimLram
v = h0

v.

Corollary 2.4.2.6. There is a finite set of places T ⊃ S such that the deformation condition DT obtained
by extending DS allowing deformations according to Dram

v for v ∈ T\S satisfies

H1
D⊥T

(ΓK , ad0(ρ)∗) = 0.

Proof. We may assume that H1
D⊥S

(ΓK , ad0(ρ)∗) is non-zero, so Lemma 2.4.2.1 implies H1
DS (ΓK , ad0(ρ)) is

non-zero. By Proposition 2.4.2.4 and Proposition 2.4.2.5, we can choose S1 = S ∪ {v} such that

dimH1
DS1

(ΓK , ad0(ρ)) < dimH1
DS (ΓK , ad0(ρ))

and DS1
satisfies the tangent space inequality (2.2.2.2). Continuing in this way, we eventually reach T ⊃

S such that either H1
D⊥T

(ΓK , ad0(ρ)∗) = 0 (in which case we are done) or H1
DT (ΓK , ad0(ρ)) = 0. By

Lemma 2.4.2.1, the latter implies H1
D⊥T

(ΓK , ad0(ρ)∗) = 0 as well.

2.5 Generalizing Ramakrishna’s Method

In this section, we generalize Ramakrishna’s lifting method to split connected reductive groups G defined
over the ring of integers O in a p-adic field with residue field k. We first recall the notion of odd Galois
representations, which are the class of representations to which the method applies. Then we discuss a local
to global principle for lifting Galois representations subject to a global deformation condition, and finally we
choose the local deformation conditions to make this possible.

2.5.1 Odd Galois Representations

We first recall the notion of a split Cartan involution. Let H be a connected reductive group over an
algebraically closed field k, with Lie algebra h. Denote the Lie algebra of the unipotent radical of a fixed
Borel subgroup of H by u. The following result goes back to Cartan, and in this form is [Yun14, Proposition
2.2].
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Fact 2.5.1.1. For any involution τ ∈ Aut(H), we have dim hτ ≥ dim u. All involutions where equality holds
are conjugate under Had(k).

Such involutions τ of H (or of h) are called split Cartan involutions for H.

Example 2.5.1.2. Let H = GL2 with Had = PGL2 with p 6= 2. A split Cartan involution for Had is

given by conjugation by

(
1 0
0 −1

)
: the fixed points of its action on LieHad = sl2 is the standard Cartan

subalgebra, and hence is one-dimensional. On the other hand, dim u = 1, so it is indeed a split Cartan
involution for Had. However, conjugation by an element of H(k) is never a split Cartan involution for H.
Indeed, conjugation must act trivially on the 1-dimensional LieZH , but conjugation would also induce an
automorphism of the derived group H ′ = SL2. But the fixed points of that automorphism on LieH ′ are also
at least 1-dimensional since sl2 ' psl2 as p 6= 2.

There are split Cartan involutions for H = GL2, but they are not inner automorphisms. For example,
the automorphism given by transpose-inverse is a split Cartan involution for GL2: it fixes

span

(
0 1
−1 0

)
⊂ gl2

Letting W denote the Weyl group, we have the following useful result about the existence of split Cartan
involutions [Pat15, Lemma 4.19].

Fact 2.5.1.3. If −1 belongs to the Weyl group W of H and the co-character δ∨ of Had given by half the
sum of the positive coroots lifts to a cocharacter of H, then H(k) contains an element c such that Ad(c) is
a split Cartan involution of LieH ′. Moreover, such c can be chosen to have order 2.

If −1 6∈W , then H has no inner automorphism that is a Cartan involution.

Example 2.5.1.4. This shows for example that no element of PGLn(k) (or GLn(k)) can induce an inner
automorphism that is a split Cartan involution when n > 2, as in those cases −1 6∈W ' Sn inside GLn(Z).

On the other hand, for groups of type Bn or Cn with n ≥ 2 we have −1 ∈ W . If n ≥ 4 is even, we also
have −1 ∈W for type Dn. For symplectic and orthogonal similitude groups, the center is large enough there
are no problems lifting half the sum of the positive coroots. Thus we can produce a split Cartan involution
by conjugation.

For a real place v of K, let cv ∈ Γv be a complex conjugation (well-defined up to conjugacy). We
follow [Gro] and say that a Galois representation ρ : ΓK → G(k) is odd at v when ad(ρ(cv)) is a split Cartan
involution for Gad (with LieGad = ad0(ρ) since p is very good for G).

Example 2.5.1.5. Let G = GL2 and assume char(k) 6= 2. Conjugation by the matrix

(
1 0
0 −1

)
induces a

split Cartan involution of sl2. Any element of order 2 in GL2(k) with determinant −1 is conjugate to this
matrix (think of the Jordan canonical form), so we recover the usual definition that ρ : ΓK → GL2(k) is odd
at v when det ρ(cv) = −1.

Example 2.5.1.6. There cannot exist odd representations for GLn with n > 2 because of Example 2.5.1.4.
There can exist odd representations for GSp2n when n > 1 and for GOm when m ≥ 5 and m 6≡ 2 (mod 4),
due to Example 2.5.1.4.

2.5.2 Local Lifting Implies Global Lifting

Let DS = {Dv} be a global deformation condition and A1 → A0 a small extension of coefficient O-algebras
with kernel I. Note that I is a k-vector space. Consider a lift ρ0 : ΓS → G(A0) of ρ subject to DS . In
favorable circumstances, we can use the following local-to-global principle to produce lifts to A1

Let G′ be the derived group of G and µ : G → G/G′ the quotient. We assume that the deformation
condition includes the condition of fixing a lift ν : ΓK → (G/G′)(O) of the character µ◦ρ : ΓK → (G/G′)(k).
This means that all of the local deformation conditions have tangent spaces lying in H1(Γv, ad0(ρ)), and the
obstruction cocycles automatically land in H2(Γv, ad0(ρ)) (see Example 2.2.2.9 and Example 2.2.2.12), with
similar statements for global deformation conditions.
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Proposition 2.5.2.1. Provided H1
D⊥S

(ΓS , ad0(ρ)∗) = 0, lifting ρ0 to A1 subject to DS is equivalent to lifting

ρ0|Γv to A1 subject to Dv for all v ∈ S.

Proof. One direction is obvious. Conversely, suppose we have local lifts. The key input is the Poitou-Tate
exact sequence (Fact 2.2.1.7):

H1(ΓS , ad0(ρ))→
⊕
v∈S

H1(Γv, ad0(ρ))/Lv → H1
D⊥S

(ΓS , ad0(ρ)∗)∨ → H2(ΓS , ad0(ρ))→
⊕
v∈S

H2(Γv, ad0(ρ)).

The vanishing of H1
D⊥S

(GS , ad0(ρ)∗) implies that the first map is a surjection and the last an injection.

As ρ0|Γv is liftable for all v ∈ S, the local obstructions to lifting vanish. The global obstruction to lifting
ρ0 to A1, ob(ρ0) ∈ H2(ΓS , ad0(ρ)) ⊗ I, therefore maps to 0 in

⊕
v∈S H

2(Γv, ad0(ρ)) ⊗ I. As this latter
restriction map is injective, there is a lift ρ1 of ρ0 to A1 on ΓS . We wish to show it can be chosen subject
to DS .

The set of all lifts of ρ0|Γv is an H1(Γv, ad0(ρ))⊗ I-torsor. The existence of local lifts means that there
exist φv ∈ H1(Γv, ad0(ρ)) ⊗ I such that φv · ρ0|Γv ∈ Dv(A1). By the surjectivity of the first map in the
sequence, there exists φ ∈ H1(ΓS , ad0(ρ)) ⊗ I such that φ|v agrees with φv up to an element of Lv ⊗ I for
all v ∈ S. As the set of lifts of ρ0|Γv subject to Dv is a Lv ⊗ I-torsor, this implies that (φ · ρ1)|Γv ∈ Dv(A1).
In other words, φ · ρ1 is a lift of ρ0 to A1 satisfying DS .

2.5.3 Choosing Deformation Conditions

Let G′ be the derived group of G and µ : G→ G/G′ be the quotient map. For a fixed lift ν of µ ◦ ρ : ΓK →
(G/G′)(k), the heart of the matter is to choose deformations conditions so the results of §2.5.2 produce a
geometric lift of ρ with µ ◦ ρ = ν. We need:

1. Locally liftable deformation conditions at places above p whose characteristic-zero points are lattices
in crystalline (or semistable representations).

2. Locally liftable deformation conditions at finite places away from p where ρ is ramified.

3. The ability to choose Ramakrishna’s deformation condition (§2.4) at additional finite places away from
p where ρ is unramified in order to find S so that H1

D⊥S
(ΓS , ad0(ρ)∗) = 0.

Remark 2.5.3.1. The importance of the fixed ν is discussed in §2.5.4. The technical consequence is that
deformation conditions that incorporate this fixed lift can be analyzed using the Galois cohomology of ad0(ρ),
rather than of the larger ad(ρ).

It is necessary to extend O and k in order to define some of these deformation conditions: the condition
that ρ is big is unaffected (Remark 2.3.1.3), so we are free to do so. We will find such deformation conditions
when G = GSpm with even m ≥ 4 or G = GO◦m with m ≥ 5. In order to have the necessary oddness
assumption on ρ, in the latter case m 6≡ 2 (mod 4).

Remark 2.5.3.2. As our analysis in this chapter applies to connected reductive groups, we need to use the
connected group GO◦m. It is possible to modify the arguments to apply to some disconnected groups (see the
treatment of L-groups in [Pat15, §9]) but we do not do so here. Given ρ : ΓK → GO◦m(k) ⊂ GOm(k), viewing
it as a representation for the group G = GOm any deformation to a coefficient ring A will automatically
factor through GO◦m(A), so deformation conditions for the larger group GOm naturally give deformation
conditions for GO◦m.

At the places above p, when G = GO◦m or GSpm after extending k we will construct a Fontaine-Laffaille
deformation condition using Fontaine-Laffaille theory in Chapter 3. This requires the assumption that
ν ⊗O[ 1

p ] is crystalline, p is unramified in K, ρ is torsion-crystalline with Hodge-Tate weights in an interval

of length p−2
2 , and that the Fontaine-Laffaille weights for each Zp-embedding of OK into O are pairwise

distinct. The deformation condition will be proved to be liftable, and the dimension of the tangent space
will be h0(Γv, ad0(ρ)) + [Kv : Qp] dimk u, where u is the Lie algebra of the unipotent radical of a Borel
subgroup of G. This generalizes the results for GLn obtained in [CHT08, §2.4.2].
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Remark 2.5.3.3. The restriction that p is unramified in K and that the Hodge-Tate weights of ρ are in
an interval of length p−2

2 is required to use Fontaine-Laffaille theory. Approaches using different flavors of
integral p-adic Hodge theory should be able to remove it (for example, the deformation condition based on
ordinary representations worked out by Patrikis [Pat15, §4.1] does so for a special class of representations).
However, most previous work on studying deformation rings using integral p-adic Hodge theory only gives
results about the deformation ring with p inverted, which does not suffice for our method.

The assumption that the Hodge-Tate weights are pairwise distinct is crucial, as otherwise the expected
dimensions of the local crystalline deformation rings are too small to use in Ramakrishna’s method.

At the places where ρ is ramified, in Chapter 4 we will construct a minimally ramified deformation
condition by studying deformations of nilpotent (or equivalently unipotent) provided p ≥ m . For each
place, this will potentially require a finite extension of k. After such a further extension, this will be a
liftable deformation condition at v with tangent space of dimension h0(Γv, ad0(ρ)) (see Corollary 4.5.3.4).
This generalizes the results for GLn obtained in [CHT08, §2.4.4].

We also need to specify a deformation condition at the archimedean places v: we just require lifts for
which µ ◦ ρ|Γv = ν|Γv . This condition is very simple to arrange, as #Γv ≤ 2. At a complex place, the
dimension of the tangent space is zero and the dimension of the invariants is dimk ad0(ρ). At a real place,
the tangent space is zero when p > 2 and the invariants are the invariants of complex conjugation on ad0(ρ).

In order to construct Ramakrishna’s deformation condition, the tangent space inequality (2.2.2.2) must
be satisfied. Let S be a set of places consisting of primes above p, places where ρ is ramified, and the
archimedean places. When using the local deformation conditions as above at s ∈ S, the inequality (2.2.2.2)
says exactly that

[K : Q] dimk u =
∑
v|p

[Kv : Qp] dimk u ≥
∑
v|∞

h0(Γv, ad0(ρ)) =
∑
v|∞

ad0(ρ)Γv (2.5.3.1)

This is very strong: dim ad0(ρ)Γv ≥ [Kv : R] dimk u by Fact 2.5.1.1, so (2.5.3.1) holds if and only if K is
totally real and ρ is odd at all real places of K.

Assuming K is totally real and ρ is odd and at all real places, we can allow ramification at additional
places to define a deformation condition to which we can apply Proposition 2.5.2.1. In particular, using
Ramakrishna’s deformation condition Dram

v at a collection of new places as in Corollary 2.4.2.6 (again
possibly extending k), we obtain a new deformation condition DT for which H1

D⊥T
(ΓT , ad0(ρ)∗) = 0. Using

Proposition 2.5.2.1, we obtain the desired lifts.
Let us collect together all of our assumptions and record the result. For G = GSpm with even m ≥ 1 or

G = GO◦m with m ≥ 5 and a big representation ρ : ΓK → G(k), fix a lift ν : ΓK → (G/G′)(k) to O of µ ◦ ρ
such that ν ⊗ O[ 1

p ] is Fontaine-Laffaille. We furthermore assume that K is totally real and that ρ is odd

at all real places (which requires m 6≡ 2 (mod 4)). To use the Fontaine-Laffaille condition, we assume that
p is unramified in K and that ρ is Fontaine-Laffaille at all places above p with Fontaine-Laffaille weights
in an interval of length p−2

2 , pairwise distinct for each Qp embedding of K into O[ 1
p ]. In order to use the

minimally ramified deformation condition of §4.5, we require that p ≥ m. We extend O (and k) so that all
of the required deformation conditions may be defined.

Theorem 2.5.3.4. Under these conditions, there is a finite set T of places containing the archimedean
places, the places above p, and the places where ρ is ramified such that there exists a lift ρ : ΓK → G(O)
such that

• µ ◦ ρ = ν.

• ρ is ramified only at places in T

• ρ is Fontaine-Laffaille at all places above p, and hence crystalline.

In particular, ρ is geometric. If we combine this with Proposition 2.3.1.4, we obtain Theorem 1.1.2.2.

Remark 2.5.3.5. Using the local deformation conditions for GLn in [CHT08, §2.4.1] and [CHT08, §2.4.4],
the same argument gives an identical result with G = GLn. But for n > 2 it is impossible to satisfy the
oddness hypothesis. For GL2, this is a variant of [Ram02, Theorem 1b].
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Remark 2.5.3.6. For other groups, the method will produce lifts provided appropriate local conditions
exist. The deformation conditions we used are only available in full strength for symplectic and orthogonal
groups. An alternative deformation condition above p is the ordinary deformation condition [Pat15, §4.1],
available for any G. For ramified primes not above p, §4.4 provides a deformation condition assuming a
certain nilpotent centralizer is smooth and ρ|Γv is tamely ramified of the special type considered in §4.4.

2.5.4 Lifting Representations valued in Tori

We will briefly explain the importance of fixing a lift of ν = µ◦ρ : ΓK → (G/G′)(k). Pragmatically, we do so
in order to use ad0(ρ) instead of the larger ad(ρ) in Proposition 2.5.2.1 and connect with Corollary 2.4.2.6.
This really is necessary however, as the universal deformation ring for ν need not be smooth. In particular,
if we have no control on the homomorphism ΓK → G(R) → (G/G′)(R) induced by lifts of ρ, we might not
be able to lift at each step in Proposition 2.5.2.1 because there would be an obstruction to lifting µ ◦ ρ.

In [Til96, §4], for a split O-torus T ′ in place of G/G′ Tilouine proves that the universal deformation ring

for ν is isomorphic to O[[X∗(T ′)⊗Γab,p
S ]], where Γab,p

S is the maximal abelian pro-p quotient of ΓS . The idea
is as follows. Reduce to the case of T ′ = Gm and consider the Teichmuller lift. All other lifts to a coefficient
ring R differ from this fixed lift by a continuous homomorphism ΓS → 1 + mR, which must factor through
the maximal abelian p-quotient of ΓS . So a lift gives a homomorphism

O[Γab,p
S ]→ R.

Taking into account the topology on O[[Γab,p
S ]], we see that it continuously extends. Conversely, a homo-

morphism from O[[Γab,p
S ]] gives a continuous lift. Thus the universal deformation ring is O[[Γab,p

S ]].

Next, we briefly recall what class field theory tells us about the structure of Γab,p
S . As before, we assume

that S contains all primes above p and the archimedean places. Define

Up,1 = {x ∈ O×K : x ≡ 1 (mod v) for all v|p}

and denote the closure of its image in
∏
v|pO×v by Up,1. The Zp-rank of Up,1 is r1 +r2−1−δ, and Leopoldt’s

conjecture is that δ = 0. Class field theory shows (as sketched in [Til96, §4.2]) that the group Γab,p
S is the

product of a finite p-group and Zr2+1+δ
p . In particular, the universal deformation ring is smooth (a power

series ring) when the finite part of Γab,p
S is trivial. In that situation, we could use deformation conditions

without fixing a lift of ν, but in general we must fix a lift to avoid this issue.

Remark 2.5.4.1. There is always a lift of ν: as G/G′ is split, we can reduce to the case of Gm and compose
with the Teichmuller character k× → O× to produce a lift. However, such a lift will not be crystalline above p
as it has finite (typically ramified) image: crystalline characters are algebraic on inertia [Con14, Proposition
B.4], which means such characters are either unramified or have infinite image. It is not immediately obvious
that ν will lift to characteristic zero in such a way that it is Fontaine-Laffaille at places above p, but such a
condition is an obviously necessary condition for Theorem 2.5.3.4 to hold so we do not further explore this
question here.

It is worth explaining why there is no local obstruction to ν|Γv having a Fontaine-Laffaille lift for v a
place above p. Let κ be the residue field of Kv, and let L be a p-adic field with residue field k which splits K
over Qp. Consider a crystalline character ΓKv → O×L : composing with the local reciprocity homomorphism
and using [Con14, Proposition B.4], on inertia this gives a map f : O×Kv → O

×
L which is induced by a

Qp-homomorphism
RKv/Qp

(Gm)→ RL/Qp
(Gm)

between Weil restrictions.
By adjunction, such homomorphisms are equivalent to L-homomorphisms

RKv/Qp
(Gm)⊗Qp

L→ Gm.

As L splits Kv over Qp, this is a homomorphism∏
τ :Kv↪→L

(Gm)τ → Gm.
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Thus the map f : O×Kv → O
×
L is of the form

x 7→
∏

τ :Kv↪→L
τ(x)nτ . (2.5.4.1)

Fix a Qp-embedding τ of Kv into L and hence an embedding of κ into k: any other embedding of κ differs
by a power of the Frobenius (and recall that Kv/Qp is unramified since we assume p is unramified in K).
By appropriate choice of the exponents nτ ∈ {0, 1, . . . , p− 1}, it is clear that any map of the form

κ× 3 x 7→ xa0+pa1+...+pr−1ar−1 ∈ k×

with r = [k : κ] and 0 ≤ ai < p is the reduction of something of the form (2.5.4.1).
As k× and κ× are cyclic, any character χv : O×Kv → k× is the reduction of a character νv : O×Kv → O

×
L of

the form (2.5.4.1). Thus any νv : ΓKv → k× agrees on inertia with the inertial restriction of the reduction of
a crystalline character. The quotient is an unramified character, which may be lifted using a Teichmuller lift.
Combining these lifts, we obtain a character νv : ΓKv → O×L lifting ν|Γv which is algebraic on inertia, hence
crystalline. The Hodge-Tate weights are the nτ , which may be taken to be in an interval of length p − 1.
In particular, νv is Fontaine-Laffaille. (The statement of Fontaine-Laffaille theory in Chapter 3 require an
interval of length p − 2 to obtain a clean statement: in [FL82] an interval of length p − 1 is fine as long as
an additional technical condition holds: this is satisfied in our case as long as not all of the ai are p− 1.)
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Chapter 3

Fontaine-Laffaille Deformations with
Pairings

Let K be a finite extension of Qp, k a finite field of characteristic p, and G be a split connected reductive
group over the valuation ring O of a p-adic field L with residue field k such that L splits K over Qp. Consider
a residual representation ρ : ΓK → G(k). The methods of Chapter 2 require a nice class of deformations of
ρ. In particular, we need a deformation condition Dρ on the local Galois group ΓK such that:

• Dρ is liftable;

• Dρ is large enough, in the sense that its tangent space has dimension

[K : Qp] dimk u + dimkH
0(ΓK , ad0(ρ))

where u is the Lie algebra of the unipotent radical of a Borel of G;

• Dρ(O) consists of crystalline representations (more precisely, lattices in crystalline representations).

Fontaine-Laffaille theory provides a mechanism to study deformations when p is unramified in K (so
L splits K if and only if k contains the residue field of K) and the representation ρ is torsion-crystalline
with Hodge-Tate weights in an interval of length p − 2. For G = GLn, such a deformation condition was
constructed in [CHT08, §2.4.1] provided that the Fontaine-Laffaille weights for each Qp-embedding K ↪→ L
are pairwise distinct (see Remark 3.1.2.6). We need to adapt those ideas to symplectic and orthogonal
groups under the additional assumption that the Fontaine-Laffaille weights lie in an interval of length p−2

2 .
For symplectic groups and K = Qp, this was addressed in Patrikis’ senior thesis [Pat06]: this chapter is a
mild generalization. Keeping track of the pairing requires knowledge about how Fontaine-Laffaille modules
interact with duality and tensor products, the details of which are recorded in [Pat06]. As this is not readily
available, we will record proofs.

In §3.1 we will review Fontaine-Laffaille theory and how it interacts with tensor products and duality.
The Fontaine-Laffaille deformation condition DFL

ρ will be defined in §3.2: Theorem 3.2.1.2 shows it satisfies
the three properties above needed in Chapter 2.

3.1 Fontaine-Laffaille Theory with Pairings

We begin by establishing some notation and reviewing the key results of Fontaine-Laffaille theory. It pro-
vides a mechanism to relate torsion-crystalline representations to semi-linear algebra data (Fontaine-Laffaille
modules), just as p-adic Hodge theory relates crystalline representations to admissible filtered ϕ-modules. It
was first studied by Fontaine and Laffaille [FL82], who introduced a contravariant functor relating torsion-
crystalline representations and Fontaine-Laffaille modules. For deformation theory, in particular compati-
bility with tensor products, it is necessary to use a covariant version, introduced in [BK90]. The details of
relating this covariant functor to the functor studied by Fontaine and Laffaille that are omitted in [BK90]
are written down in [Con94]. We then studying Fontaine-Laffaille modules with the extra data of a pairing
by analyzing tensor products and duals.
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3.1.1 Covariant Fontaine-Laffaille Theory

Let K = W (k′)[ 1
p ] for a perfect field k′ of characteristic p. Let W = W (k′) and σ : W → W denote the

Frobenius map. Recall that there is an equivalence of categories between Repcris
Qp

(ΓK) (crystalline repre-

sentations of ΓK) and MFϕ,ad
K (admissible filtered ϕ-modules). For a crystalline representation V and an

admissible filtered ϕ-module M , quasi-inverse contravariant functors are given by

D∗cris(V ) = HomQp[ΓK ](V,Bcris) and V ∗cris(M) = HomMFϕK
(M,Bcris).

Fontaine and Laffaille construct a generalization of this functor that applies to Zp[ΓK ]-modules that arise
as subquotients of lattices in crystalline representations, provided the analogue of the Hodge-Tate weights
of the representation lie in an interval of length p− 2. We want a generalization of the covariant functors

Dcris(V ) = (Bcris ⊗Qp
V )ΓK and Vcris(M) = Fil0(Bcris ⊗K M)φ=1.

Our convention will be that the Hodge-Tate weight of the cyclotomic character is −1, which will work well
with these covariant functors.

Definition 3.1.1.1. A torsion-crystalline representation with Hodge-Tate weights in [a, b] is a Zp[ΓK ]-
module T for which there exists a crystalline representation V with Hodge-Tate weights in [a, b] and ΓK-stable
lattices Λ ⊂ Λ′ in V such that Λ′/Λ is isomorphic to T .

The analogue of torsion-crystalline representations on the semilinear algebra side are certain classes of
Fontaine-Laffaille modules:

Definition 3.1.1.2. A Fontaine-Laffaille module is a W -module M together with a decreasing filtration
{M i}i∈Z of M by W -submodules and a family of σ-semilinear maps {ϕiM : M i →M} such that:

• The filtration is separated and exhaustive: M = ∪i∈ZM i and ∩i∈ZM i = 0.

• For m ∈M i+1, p · ϕi+1
M (m) = ϕiM (m).

Morphisms of Fontaine-Laffaille modules f : M → N are W -linear maps such that f(M i) ⊂ N i and
f ◦ ϕiM = ϕiN ◦ f for all i. The category is denoted MFW .

Remark 3.1.1.3. Jumps in the filtration will turn out to correspond Hodge-Tate weights, so the condition
Ma = M and M b+1 = 0 with a ≤ b corresponds to restricting the Hodge-Tate weights to a certain range.
We call the set of jumps in the filtration the Fontaine-Laffaille weights. We will denote the full subcategory

of Fontaine-Laffaille modules with this additional condition by MF
[a,b]
W .

We are interested in torsion Fontaine-Laffaille modules that satisfy a version of an admissibility condition.

Definition 3.1.1.4. Let MFfW,tor denote the full subcategory of MFW consisting of M for which M is of

finite length (as a W -module) and for which
∑
i∈Z ϕ

i(M i) = M . Let MF
f,[a,b]
W,tor denote the full subcategory

with the additional condition that Ma = M and M b+1 = 0.

Fact 3.1.1.5. The category MF
f,[a,b]
W,tor is abelian, with kernel, cokernel, and image formed as in the underlying

category of W -modules. For an object M ∈ MF
f,[a,b]
W,tor , each M i is a direct summand of M as a W -module.

The first statement is [FL82, Proposition 1.8], the second is [Win84, Proposition 1.4.1 (ii)].
We are also interested in a variant that allows non-torsion modules.

Definition 3.1.1.6. A filtered Dieudonné module M is a Fontaine-Laffaille module for which the M i are
direct summands of M as W -modules and for which∑

i∈Z

ϕi(M i) = M.

Let DK denote the full subcategory of MFW consisting of filtered Dieudonné modules M for which Ma = M
and M b+1 = 0 for some 0 ≤ b− a ≤ p− 2.

38



Note that MF
f,[a,b]
W,tor is a full subcategory of DK . There are natural notions of tensor products and duality.

Definition 3.1.1.7. For Fontaine-Laffaille modules M1 and M2, define M1 ⊗M2 to have underlying W -
module M1 ⊗M2, filtration given by (M1 ⊗M2)n =

∑
i+j=nM

i
1 ⊗M

j
2 , and maps ϕnM1⊗M2

induced by the

ϕiM1
and ϕjM2

.

Definition 3.1.1.8. For M ∈ MFfW,tor, define M∗ to be HomW (M,K/W ) with the dual filtration M∗i =

HomW (M/M1−i,K/W ) and with ϕiM∗ characterized for f ∈M∗i and m ∈M j by ϕiM∗(f)(ϕj(m)) = 0 when
j ≥ 1− i and by ϕiM∗(f)(ϕj(m)) = f(p−i−jm) when j < 1− i (in which case −i− j ≥ 0).

Lemma 3.1.1.9. There is a unique (ϕiM∗) satisfying these constraints. Using it, M∗ is an object of MFfW,tor.

Then M 7→M∗ is a contravariant functor from MFfW,tor to itself, and M 'M∗∗ naturally in M .

Proof. Uniqueness is immediate, while existence is checked in [Con94, §7.5]. We will use a similar argument
in Lemma 3.1.3.2 and Lemma 3.1.3.3.

Remark 3.1.1.10. The indexing of the dual filtration is that used in [Fon82, §3.2] and elsewhere. Note

that duality sends MF
f,[a,b]
W,tor to MF

f,[−b,−a]
W,tor .

To connect Fontaine-Laffaille modules and torsion-crystalline representations, we use the period ring
Acris. For our purposes, all that is important is that Acris is a period ring that has an action of ΓK , a ring
endomorphism ϕ (coming from the pth power map) and a filtration {FiliAcris}. In particular, it carries
both an action of ΓK and the structure of a Fontaine-Laffaille module. A convenient reference is [Hat, §2.2],
which reviews Acris for the purposes of constructing the contravariant Fontaine-Laffaille functor. We use it
to define an analogue of Vcris:

Definition 3.1.1.11. For M ∈ MF
f,[2−p,1]
W,tor , define

Tcris(M) := ker
(
1− ϕ0

Acris⊗M : Fil0(Acris ⊗M)→ Acris ⊗M
)
.

Remark 3.1.1.12. A small argument (see [Hat, §2.2]) also shows that

Acris,∞ := Acris ⊗W K/W = lim−→
n

Acris/p
nAcris ∈ MF

f,[0,p−1]
W,tor .

This allows us define a contravariant functor from MF
f,[0,p−1]
W,tor to RepZp(ΓK) by

T ∗cris(M) := HomMFW (M,Acris,∞).

This is well-defined as HomMFW (M,Acris,∞) is Zp-finite (for example, using a contravariant version of
Fact 3.1.1.14(4)). This functor agrees with the functor US considered by Fontaine and Laffaille [Hat, Remark
2.7].

If M ∈ MF
f,[2−p,1]
W,tor is killed by p, then

T ∗cris(M
∗) = HomMFW (M∗, Acris/pAcris)

' ker
(
1− ϕ0

Acris⊗M : Fil0(Acris ⊗M)→ Acris ⊗M
)

= Tcris(M)

which is how Fontaine and Laffaille’s results about T ∗cris imply results about Tcris.

We can extend Tcris to DK by defining an analogue of Tate-twisting:

Definition 3.1.1.13. For M ∈ MF
f,[a,b]
W,tor and an integer s, define M(s) to have the same underlying W -

module with filtration M(s)i = M i−s and maps ϕiM(s) = ϕi−sM .

Tate-twisting allows us to shift Hodge-Tate weights and extend results in the range [2 − p, 1] to any

interval [a, b] where b− a ≤ p− 2. For M ∈ MF
f,[a,b]
W,tor , we define

Tcris(M) = Tcris(M(−(b− 1)))(b− 1)
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Fact 3.1.1.14. We have:

1. The covariant functor Tcris : DK → RepZp [ΓK ] is well-defined, and is exact and fully faithfully.

2. For M ∈ DK , Tcris(M) = lim←−Tcris(M/pnM).

3. The essential image of Tcris : MF
f,[a,b]
W,tor → RepZp [ΓK ] is stable under formation of sub-objects and

quotients.

4. For M ∈ MF
f,[a,b]
W,tor , the length of M as a W -module is equal to the length of Tcris(M) as a Zp-module.

5. For M ∈ DK , the ΓK-representation Tcris(M)[ 1
p ] is crystalline.

6. Any torsion-crystalline Fp[ΓK ]-module V whose Hodge-Tate weights lie in an interval of length p − 2
is in the essential image of Tcris.

Remark 3.1.1.15. While a torsion representation does not have Hodge-Tate weights, according to Defini-
tion 3.1.1.1 the Hodge-Tate weights of a torsion-crystalline representation lie in an interval [a, b] provided
the representation is quotient of ΓK-stable lattices in a crystalline representation with Hodge-Tate weights
in [a, b].

This is a modified version of [BK90, Theorem 4.3]. Additional details of the proof of that theorem are
recorded in [Con94, §7]. The first, fourth, and fifth statements are stated explicitly in [BK90, Theorem
4.3]. The second is proven in [Con94, §7.2]. The claim about the essential image follows from the results
of [Con94, §8.3-9.6]: a formal argument shows that if T ∗cris takes simple objects to simple objects, the essential
image is stable under formation of sub-objects and quotients. The content is that T ∗cris takes simple objects
to simple objects. The formal argument adapts to Tcris, and Remark 3.1.1.12 allows us to deduce that Tcris

takes simple objects to simple objects as all simple objects are automatically killed by p.
For the last statement, we need a fact about T ∗cris.

Fact 3.1.1.16. For r ∈ {0, 1, . . . , p − 2}, the functor T ∗cris induces an anti-equivalence between MF
f,[0,r]
W,tor

and the full subcategory of RepZp(ΓK) consisting of torsion-crystalline ΓK representations with Hodge-Tate
weights in [−r, 0].

Dualizing V and Tate-twisting, we may assume that the Hodge-Tate weights of V
∗

lie in [0, p− 2]. Then

V
∗

= T ∗cris(M) for some M ∈ MF
f,[0,p−2]
W,tor . Remark 3.1.1.12 shows that Tcris(M

∗) = V using double duality
(Lemma 3.1.1.9).

Remark 3.1.1.17. Our convention that the Hodge-Tate weight of the cyclotomic character is −1 makes
the Fontaine-Laffaille weights and Hodge-Tate weights match under Tcris.

3.1.2 Tensor Products and Freeness

We now address two properties of Tcris where it is crucial to be using the covariant functor. Definition 3.1.1.7

defined a tensor product for Fontaine-Laffaille modules. If M1 ∈ MF
f,[a1,b1]
W,tor and M2 ∈ MF

f,[a2,b2]
W,tor , it is

straightforward to verify that M1 ⊗M2 ∈ MF
f,[a1+a2,b1+b2]
W,tor . The functor Tcris is compatible with tensor

products in the following sense:

Fact 3.1.2.1. Suppose that M1, M2, and M1 ⊗M2 each has Fontaine-Laffaille weights in an interval of
length at most p− 2. Then Tcris(M1)⊗Zp Tcris(M2) ' Tcris(M1 ⊗M2).

There is a natural from the left to the right coming from the multiplication of Acris. To check this map is
an isomorphism, one first checks on simple M1 and M2 using Fontaine and Laffaille’s classification of simple
Fontaine-Laffaille modules when the residue field k′ is algebraically closed. This is explained in [Con94, §10.6].
Then one uses a dévissage argument to reduce to the general case, as explained in [Con94, §7.11].
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Remark 3.1.2.2. An analogue of this compatibility is stated in [FL82, Remarques 6.13(b)] for the con-
travariant functor T ∗cris. For T ∗cris, it only makes sense if M1 and M2 are killed by p; in that case

T ∗cris(M1) = HomMFW (M1, , Acris,∞) = HomMFW (M1, Acris/pAcris)

and likewise for M2. Then multiplication on Acris/pAcris gives a natural map T ∗cris(M1) ⊗ T ∗cris(M2) →
T ∗cris(M1⊗M2) which can be checked to be an isomorphism by dévissage. But Acris,∞ is not a ring, so there
is no natural map without a p-torsion hypothesis on M1 and M2. This obstructs an analogue of dévissage
to the p-torsion case for T ∗cris, and explains why it is crucial to work with the covariant functor Tcris.

For M ∈ MF
f,[a,b]
W,tor , if V = Tcris(M) has “extra structure” then so does M . For example, if V were a

deformation of a residual representation over a finite field k, V would be an O = W (k)-module. As Tcris is
covariant and fully faithful, it is immediate that M is naturally an O-module. The actions of Zp on M via
the embeddings into O and W = W (k′) are obviously compatible.

Representations of ΓK defined over a finite extension L of Qp can be viewed as Qp-vector spaces with
the additional action of L. Assume there exists an embedding of K into L over Qp, so L splits K over Qp.
These representations are modules over L⊗Qp

K '
∏
τ :K↪→L Lτ via a⊗b 7→ (aτ(b)). For each Qp-embedding

τ , there is a collection of Hodge-Tate weights.
We will generalize this structure to our setting. Now assume k′ is finite, and more specifically that k′

embeds in k, so O[ 1
p ] splits the finite unramified K over Qp. Hence

O ⊗Zp W '
∏

τ :W↪→O
Oτ

as O-algebras, where τ varies over Zp-embeddings of W into O and W acts on Oτ via τ . We likewise obtain
a decomposition of the O ⊗Zp W -module M as:

M =
⊕

τ :W↪→O
Mτ .

Note that
HomO⊗ZpW

(M,M ′) =
⊕

τ :W↪→O
HomO(Mτ ,M

′
τ ).

Lemma 3.1.2.3. If V is equipped with a ΓK-equivariant O-module structure then for M i
τ := Mτ ∩M i we

have
M i =

⊕
τ :W↪→O

M i
τ

and furthermore the σ-semilinear map ϕiM |Mi
τ

: M i
τ →M factors through Mστ .

Note that στ = τσ.

Proof. It is immediate that M i =
⊕

τ M
i
τ , as the induced action of O on M preserves the filtration. Let

ji : M i
τ → M i be the inclusion, so ji(wm) = τ(w)ji(m) for w ∈ W and m ∈ M i

τ . The fact that ϕiM is
σ-semilinear implies that for m ∈M i

τ and w ∈W ,

στ(w)ϕiM (ji(m)) = ϕiM (τ(w)ji(m)) = ϕiM (ji(wm)).

Lemma 3.1.2.4. The length of M as an O-module equals the length of V as an O-module multiplied by
[K : Qp].

Proof. The length of M as a W -module equals the length of V as a Zp-module by Fact 3.1.1.14(4). The rest is
bookkeeping. The Fp-dimension of O/pO is t = [O[ 1

p ] : Qp], and the k′-dimension of O/pO is s = [O[ 1
p ] : K].

It follows that
s lgO(M) = lgW (M) = lgZp(V ) = t lgO(V ).

Hence lgO(M) = [K : Qp] lgO(V ).
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We can prove a result about freeness when V and M are R-modules for an artinian coefficient O-algebra
R with residue field k:

Lemma 3.1.2.5. We have V is a free R-module if and only if M is a free R-module. When M is a free
R-module, all of the M i

τ are free R-direct summands. All of the Mτ has the same rank.

Proof. A finitely generated R-module N is free if and only if lgO(N) = n lgO(R) for n = dimkN/mRN , as
we see via Nakayama’s lemma applied to a map Rn → N inducing an isomorphism modulo mR. From the
exact sequence of Fontaine-Laffaille modules

0→ mRM →M →M/mRM → 0

and the fact that Tcris is covariant and exact, we see that Tcris(M/mRM) = V/mRV . By Lemma 3.1.2.4, if
dimk V/mRV = n then M/mRM is a k-vector space of dimension [K : Qp]n. Thus to relate R-freeness of M
and V we just need to show that lgO(M) = [K : Qp] lgO(V ), which is Lemma 3.1.2.4.

Now suppose M is a free R-module. By functoriality, the Zp-module direct summands Mτ of M are each
R-submodules, so each Mτ is an R-module direct summand of M . Hence each Mτ is R-free when M is free.
To deduce the same for each M i

τ , we just need that each M i
τ is an R-module summand. By R-freeness of

M , it suffices to show that each M i
τ/mRM

i
τ →M/mRM is injective. Since M i

τ is the “τ -component” of M i

by Lemma 3.1.2.3 it is an R-module summand of M i. Thus it suffices to show that

M i/mRM
i →M/mRM

is injective for all i. But this follows from the abelianness in Fact 3.1.1.5.
To check that all of theMτ have the same rank, by freeness it suffices to check that dimkMτ is independent

of τ . As all Zp-embeddings of the unramified W into O are of the form σiτ for some fixed Zp-embedding τ
and σ has finite order, it suffices to show that

dimkMτ ≥ dimkMστ .

As each M
i

τ is a k-module direct summand of Mτ , Mτ is isomorphic to gr•Mτ . Because ϕi
M

(M
i+1

) = 0,
we obtain a map ∑

i

ϕiMτ
: gr•Mτ →Mστ .

As Fontaine-Laffaille modules satisfy

M =
∑
i

ϕi(M
i
)

the map
∑
i ϕ

i
Mτ

is surjective. This completes the proof.

Remark 3.1.2.6. We get a set of Fontaine-Laffaille weights for each Zp-embedding τ : W ↪→ O. We can
also define the multiplicity of a weight wτ to be the rank of the R-module Mwτ

τ /Mwτ+1
τ . The number of

Fontaine-Laffaille weights, counted with multiplicity, for each embedding is the same. We say the Fontaine-
Laffaille weights with respect to an embedding are distinct if each has multiplicity 1. This is analogous to
the way a Hodge-Tate representation of ΓK over a p-adic field splitting K over Qp has a set of Hodge-Tate
weights for each Qp-embedding of K into that field.

We can now define a notion of a tensor product for Fontaine-Laffaille modules that are also R-modules
for a coefficient ring R over O.

Definition 3.1.2.7. Define M1 ⊗R M2 to be the module M1 ⊗R M2 together with filtration defined by
(M1 ⊗RM2)n =

∑
i+j=nM

i
1 ⊗RM

j
2 and with ϕnM1⊗RM2

defined in the obvious way on the pieces.

Lemma 3.1.2.8. Suppose that M1, M2, and M1 ⊗R M2 are all in MF
f,[a,b]
W,tor with 0 ≤ b − a ≤ p − 2. The

natural map Tcris(M1)⊗R Tcris(M2)→ Tcris(M1 ⊗RM2) is an isomorphism.

42



Proof. We have an exact sequence

0→ J →M1 ⊗M2 →M1 ⊗RM2 → 0

where J is generated by the extra relations imposed by R-bilinearity (beyond W -bilinearity). For r ∈ R,
define µr : M1 ⊗M2 →M1 ⊗M2 by

µr(m1 ⊗m2) = (rm1)⊗m2 −m1 ⊗ (rm2).

Then J =
∑
r∈R Im(µr); this is an object of MF

f,[a,b]
W,tor by Fact 3.1.1.5. We will show that Tcris(J) is the

kernel of Tcris(M1 ⊗M2)→ Tcris(M1)⊗R Tcris(M2).
It suffices to show that if N1 and N2 are sub-objects of M1⊗M2 then Tcris(N1+N2) = Tcris(N1)+Tcris(N2).

Indeed, granting this we would know that

Tcris(J) =
∑
r∈R

Tcris(µr).

But by functoriality Tcris(µr) is the map Tcris(M1)⊗ Tcris(M2)→ Tcris(M1)⊗ Tcris(M2) given by v1 ⊗ v2 7→
rv1 ⊗ v2 − v1 ⊗ rv2, so Tcris(J) is the kernel of Tcris(M1 ⊗M2)→ Tcris(M1)⊗R Tcris(M2) as desired.

To prove that Tcris(N1 +N2) = Tcris(N1) + Tcris(N2), consider the exact sequence

0→ N1 ∩N2 → N1 ⊕N2 → N1 +N2 → 0.

As Tcris preserves direct sums, it suffices to show that

Tcris(N1) ∩ Tcris(N2) = Tcris(N1 ∩N2).

But this follows from the exactness of Tcris and the left exact sequence

0→ N1 ∩N2 → N1 ⊕N2 →M1 ⊗M2

where the second map is (n1, n2) 7→ n1 − n2.

3.1.3 Duality

Let R be a coefficient ring over O and M ∈ MFfW,tor have the structure of a free R-module. Fix L ∈ MFfW,tor

with an R-structure so that for each τ , Lτ is a free R-module of rank 1 with Lsττ = Lτ and Lsτ+1
τ = 0 for

some sτ (the analogue of a character taking values in R×). We will define a dual relative to L akin to Cartier
duality. This will be useful for studying pairings.

Definition 3.1.3.1. For an M as above, define M∨ = HomR⊗ZpW
(M,L) with a filtration given by

FiliM∨ = {ψ ∈ HomR⊗ZpW
(M,L) : ψ(M j) ⊂ Li+j for all j ∈ Z}.

For ψ ∈ FiliM∨, define ϕiM∨(ψ) to be the unique function in HomR⊗ZpW
(M,L) such that

ϕiM∨(ψ)(ϕjM (m)) = ϕi+jL (ψ(m)).

for all m ∈M j and j.

If ϕiM∨ exists, it is unique since the images of the ϕjM ’s span M additively. Likewise, if ϕiM∨ exists
for all i they are automatically σ-semilinear and satisfy pϕi+1

M∨ = ϕiM∨ |Fili+1M∨ . We check ϕiM∨(ψ) is well-
defined in the following lemma. The fact that all of the M i

τ are free R-module direct summands of Mτ (by
Lemma 3.1.2.5) is crucial.

Lemma 3.1.3.2. The function ϕiM∨(ψ) is well-defined, and the filtration can equivalently be described as

FiliM∨ =
⊕

τ :W↪→O
HomR(Mτ/M

1+sτ−i
τ , Lτ ).
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Proof. We first establish the alternate description of FiliM∨. Because

HomR⊗ZpW
(M,L) =

⊕
τ :W↪→O

HomR(Mτ , Lτ ),

and Lsττ = Lτ while Lsτ+1
τ = 0, an element ψτ ∈ HomR(Mτ , Lτ ) satisfies ψτ (M j

τ ) ⊂ Li+jτ if and only if
ψτ (M j

τ ) = 0 whenever i+ j > sτ . This says exactly that ψi factors through Mτ/M
1+sτ−i
τ . Because M1+sτ−i

τ

is an R-module direct summand, hence free with free complement, a morphism Mτ/M
1+sτ−i
τ → Lτ is

equivalent to a ψτ : Mτ → Lτ such that ψτ (M1+sτ−i) = 0. Thus FiliM∨τ = HomR(Mτ/M
1+sτ−i
τ , Lτ ) as

desired.
We will construct ϕiM∨ : FiliM∨ →M∨ using the exact sequence

0→
b⊕

r=a+1

Mr →
b⊕

r=a

Mr →M → 0 (3.1.3.1)

of [FL82, Lemme 1.7]. The first map sends (mr)
r=b
r=a+1 to (pmr−mr+1)r=br=a (with the convention that ma = 0

and mb+1 = 0), and the second map is
∑b
r=a ϕ

i
M . For ψ ∈ FiliM∨, consider the map

φ :

b⊕
r=a

Mr → Lσ

induced by the ϕi+rL ◦ ψ : Mr → Lσ. For (mr)
r=b
r=a+1 in

⊕b
r=a+1M

r, we compute that

φ((mr)
r=b
r=a+1) =

b∑
j=a

ϕi+jL (ψ((pmj −mj+1)))

=

b∑
j=a

pϕi+jL (ψ(mj))−
b∑

j=a

ϕi+jL (ψ(mj+1)).

But ϕi+jL |Li+j+1 = pϕi+j+1
L , so this difference is

b∑
j=a

pϕi+jL (ψ(mj))−
b+1∑

j=a+1

pϕi+jL (ψ(mj))

which vanishes as mb+1 = 0 and ma = 0. Hence φ factors through the quotient M of (3.1.3.1), giving the
desired well-defined map ϕiM∨ .

Lemma 3.1.3.3. The Fontaine-Laffaille module M∨ is an object of MFfW,tor.

Proof. We need to show that
∑
i ϕ

i
M∨(FiliM∨) = M∨. It suffices to show that the inclusion∑

i

ϕiM∨(FiliM∨) ↪→M∨

is an equality. By Nakayama’s lemma, it suffices to show that the reduction modulo mR is surjective.
For an R-module N , let N denote the reduction modulo mR. We may pick free R-modules N i

τ such that
M i
τ = N i

τ ⊕M i+1
τ as each M i

τ is a (free) direct summand of the R-free Mτ that is an R-free direct summand

of M . Because p · ϕi+1
M = ϕiM |Mi+1 , we see ϕiM (M

i

τ ) = ϕiM (N
i

τ ), so

Mστ =
∑
i

ϕiM (N
i

τ ).

By dimension reasons ϕiM |Niτ is injective and the sum is direct. We also know that ϕiL|Lτ = 0 for i < sτ

because p · ϕj+1
L = ϕjL|Lj+1 .
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As Mτ and Lτ are free R-module summands of M and L for all τ , M∨ = M
∨

by Lemma 3.1.3.2. We can

describe an element ψ ∈ FiliM∨ as a collection of ψτ,j ∈
⊕

τ,j HomR(N
j

τ , L
i+j

τ ). But L
i+j

τ is one-dimensional

over k if i + j ≤ sτ , and is zero otherwise. Then for f = ϕiM∨(ψ) and m =
∑
τ,j ϕ

j
M (nτ,j) with nτ,j ∈ N

j

τ ,
by construction we have

f(m) =
∑
τ,j

ϕi+jL (ψ(nτ,j)).

But ϕi+jL (ψ(nτ,j)) is forced to be zero unless i+ j = sτ , in which case it can take on any non-zero value in
Lτ (depending on the choice of ψ). Thus

ϕiM∨(FiliM
∨

) =
⊕
τ

Hom
(
ϕsτ−iM (N

sτ−i
τ ), Lστ

)
.

Summing over i, and using the sum decomposition M =
∑
τ,i ϕ

i
M (N

i

τ ) gives that∑
i

ϕi
M
∨(FiliM

∨
) = Hom(M,L).

This shows the desired surjectivity.

Remark 3.1.3.4. For fixed Zp-embedding τ : W ↪→ O, if the Fontaine-Laffaille weights (Remark 3.1.2.6) of
M with respect to τ are {wτ,i}i then the Fontaine-Laffaille weights of M∨ with respect to τ are {sτ −wτ,i}i.
This is just bookkeeping.

Letting ν be the Galois representation on the free rank-1 R-module corresponding to L, we define the
dual V ∨ = HomR[ΓK ](V,R(ν)) for a discrete ΓK-representation on a finite free R-module V .

Lemma 3.1.3.5. For a morphism f : M → N in MF
f,[a,b]
W,tor with b−a ≤ p−2

2 , there is a natural isomorphism
Tcris(M

∨) ' Tcris(M)∨ and Tcris(f
∨) = Tcris(f)∨.

Proof. We prove this by studying the evaluation pairing M ⊗R M∨ → L. It is straightforward to verify
that this pairing is a morphism of Fontaine-Laffaille modules. Because b− a ≤ p−2

2 , we obtain a pairing of
Galois-modules

Tcris(M)⊗R Tcris(M
∨) = Tcris(M ⊗RM∨)→ Tcris(L) = νR. (3.1.3.2)

We will now prove that this pairing is perfect when R = k. We will do so by inducting on the dimension
of the k-vector space M . The case of dimension 0 is clear. Also, if M 6= 0 the pairing of Fontaine-Laffaille
modules is non-zero (look at the pairing of vector spaces Mτ × Hom(Mτ , Lτ ) → Lτ ). Thus the pairing of
Galois-modules is non-zero if M 6= 0 as Tcris is faithful.

Now we use induction, so we can assume M 6= 0. The annihilator of Tcris(M
∨) is Tcris(M1) for some

f : M1 ↪→ M because the essential image of Tcris is closed under taking sub-objects. We know M1 is a
proper sub-object as the pairing is non-zero. Observe that we may define the dual f∨ : M∨ → M∨1 by
precomposition: it is obviously surjective since we are over a field. For v1 ∈ Tcris(M1) and v2 ∈ Tcris(M

∨),
we must have

0 = 〈v1, f
∨v2〉 = 〈f(v1), v2〉.

But the pairing Tcris(M1) ⊗ Tcris(M
∨
1 ) → Tcris(L) is non-degenerate by induction, and f∨ is surjective, so

this means that v1 = 0. Thus T (M1) and hence M1 are trivial. Over the field k, this ensures the pairing is
perfect.

For the general case, we shall use the basic fact that for a coefficient ring R, if N1 and N2 are free
R-modules of the same rank with an R-bilinear pairing N1 ×N2 → R, the pairing is perfect if the reduction
(modulo mR) N1 ×N2 → k is perfect. Apply this to Tcris(M)× Tcris(M

∨)→ Tcris(L).
The statement Tcris(f

∨) = Tcris(f)∨ is just functoriality.
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3.2 Fontaine-Laffaille Deformation Condition

Let G = GSpr or GOr, and consider a representation ρ : ΓK → G(k) with similitude character ν, where
K = W [ 1

p ] for W = W (k′) with finite k′. Let V be the underlying vector space for ρ using the standard

representation of G. Take O to be the Witt vectors of k, and assume O[ 1
p ] splits K over Qp. Fix a

lift ν : ΓK → O× of ν that is crystalline with Hodge-Tate weights {sτ}τ in an interval of length p − 2,
corresponding to a filtered Dieudonné module L.

We suppose that ρ is torsion-crystalline with Hodge-Tate weights in an interval [a, b] with 0 ≤ b − a ≤
p−2

2 so we can use Fontaine-Laffaille theory. Let M be the corresponding Fontaine-Laffaille module (using
Fact 3.1.1.14(6)), with Fontaine-Laffaille weights {wτ,i}τ,i. In this section we define and study the Fontaine-
Laffaille deformation condition assuming that for each Zp-embedding τ : W ↪→ O the Fontaine-Laffaille
weights are multiplicity-free as in Remark 3.1.2.6 (rank 1 jumps in the filtration).

3.2.1 Definitions and Basic Properties

As V is an k-linear representation of ΓK , M becomes a k′ ⊗Fp k-module and in particular a k-vector space.

Definition 3.2.1.1. For a coefficient ring R over O = W (k), define DFL
ρ (R) to be the collection of lifts

ρ : ΓK → G(R) of ρ with similitude character νR that lie in the essential image of Tcris restricted to the full

subcategory MF
f,[a,b]
W,tor . Such a deformation is called a Fontaine-Laffaille deformation.

We will analyze this deformation condition when the Fontaine-Laffaille weights of ρ are multiplicity-free
for each fixed embedding τ : W ↪→ O (when the jumps in the filtration of each Mτ are 1-dimensional over
k).

Theorem 3.2.1.2. Under the multiplicity-free assumption on Fontaine-Laffaille weights, DFL
ρ is liftable. If

u is the Lie algebra of the unipotent radical of a Borel subgroup of G, the dimension of the tangent space of
DFL
ρ is

[K : Qp] dimk u +H0(ΓK , ad0(ρ)).

If ρ : ΓK → G(O) is an inverse limit of Fontaine-Laffaille deformations of ρ to O/pnO for all n ≥ 1, it is a
lattice in a crystalline representation with the same Fontaine-Laffaille weights as ρ.

The proof of this theorem will occur over the remainder of §3.2. The key pieces are Proposition 3.2.1.7,
Proposition 3.2.2.1, and Proposition 3.2.3.1.

To understand DFL
ρ , we must express the orthogonal or symplectic pairing in the language of Fontaine-

Laffaille modules. For a Galois module V which is a free R-module, recall we defined V ∨ = HomR[ΓK ](V, νR).
For a deformation of ρ to a coefficient ring R, we obtain an R[ΓK ]-module V together with an isomorphism
η : V ' V ∨ coming from the pairing. Let ε = 1 for G = GOr and ε = −1 for G = GSpr. The fact that
〈v, w〉 = ε〈w, v〉 is equivalent to η∗ = εη, where η∗ is the map V ' V ∨∨ → V ∨ induced by double duality.

There is a corresponding Fontaine-Laffaille module M such that Tcris(M) = V , and M is a free R-module
by Lemma 3.1.2.5.

Lemma 3.2.1.3. For a coefficient ring R, suppose V is a lift of V as an R[ΓK ]-module that is finite free
over R, corresponding to a Fontaine-Laffaille module M . An isomorphism of R[ΓK ]-modules

η : V ' V ∨

such that η(v)(w) = εη(w)(v) is equivalent to an R-linear isomorphism of Fontaine-Laffaille modules

γ : M 'M∨

such that γ(m)(n) = εγ(n)(m).

Proof. As the Hodge-Tate weights of ρ lie in an interval of length p−2
2 , Lemma 3.1.2.8 and Lemma 3.1.3.5

hold. In particular, Tcris(M
∨) = Tcris(M)∨. As Tcris is fully faithful in this range, we see that a map η is
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equivalent to a map γ, and one is an isomorphism if and only if the other one is. It remains to check that γ
is symmetric or alternating if and only if η is. Let η∗ and γ∗ denote the isomorphisms respectively given by

V ' V ∨∨ η∨→ V ∨ and M 'M∨∨ γ∨→M∨.

A straightforward check shows that Tcris carries η∗ to γ∗, and hence η = εη∗ if and only if γ = εγ∗.

Lemma 3.2.1.4. An R-linear isomorphism of Fontaine-Laffaille modules γ : M 'M∨ for which γ(m)(n) =
εγ(n)(m) is equivalent to a perfect ε-symmetric R-bilinear pairing 〈·, ·〉 : M ×M → LR satisfying

• 〈M i,M j〉 ⊂ Li+j;

• 〈ϕiM (m), ϕjM (n)〉 = ϕi+jL 〈m,n〉.

Proof. This is just writing out what γ : M → M∨ being a morphism of Fontaine-Laffaille modules means
for the pairing 〈m,n〉 = γ(m)(n).

For γ to preserve the filtration says exactly that

γ(M i) ⊂ FiliM∨ = {ψ ∈ HomR(M,L) : ψ(M j) ⊂ Li+j}.

This is equivalent to 〈M i,M j〉 ⊂ Li+j for all i, j. The compatibility of γ with the ϕ’s says exactly that for
m ∈M i

ϕiM∨(γ(m)) = γ(ϕiM (m)).

Evaluating on any ϕjM (n) ∈M and using the definition of M∨ we see

ϕiM∨(γ(m))(ϕjM (n)) = ϕi+jL (γ(m)(n)) = ϕi+jL (〈m,n〉).

Evaluating γ(ϕiM (m)), we see that

γ(ϕiM (m))(ϕjM (n)) = 〈ϕiM (m), ϕjM (n)〉.

Thus, γ being compatible with ϕ’s is equivalent to 〈ϕiM (m), ϕjM (n)〉 = ϕi+jL (〈m,n〉).

In particular, the pairing V × V → ν gives a perfect pairing 〈·, ·〉M : M ×M → L .

Corollary 3.2.1.5. For a coefficient ring R, a lift ρ ∈ DFL
ρ (R) is equivalent to a Fontaine-Laffaille module

M ∈ MF
f,[a,b]
W,tor that is free as an R-module for which there exists a perfect ε-symmetric R-bilinear pairing

〈·, ·〉 : M ×M → LR satisfying

• 〈M i,M j〉 ⊂ Li+j;

• 〈ϕiM (m), ϕjM (n)〉 = ϕi+jL 〈m,n〉.

such that (M, 〈·, ·〉) reduces to (M, 〈·, ·〉M ).

Proof. This follows by combining the two previous lemmas. Note that the pairing 〈·, ·〉 is automatically
perfect as it lifts the perfect pairing 〈·, ·〉M .

Corollary 3.2.1.6. DFL
ρ is a deformation condition.

Proof. This follows from the fact that for a morphism of coefficient rings R → R′, R′ ⊗R Tcris(M) =

Tcris(R
′ ⊗RM), exactness properties of Tcris on MFfW,tor, and Corollary 3.2.1.5. For example, to check that

DFL
ρ is a sub-functor of Dρ, let R be a coefficient ring and M be the Fontaine-Laffaille module corresponding

to ρ ∈ DFL
ρ (R). Then R′ ⊗R Tcris(M)) lies in the essential image of Tcris, and R′ ⊗R M admits a perfect

ε-symmetric R′-bilinear pairing as in Corollary 3.2.1.5 given by extending the pairing on M . This shows
that ρR′ ∈ DFL

ρ (R′). A similar argument checks Definition 2.2.2.7(2).

It is simple to understand characteristic-zero points of the deformation functor.
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Proposition 3.2.1.7. Suppose we are given a compatible collection of Fontaine-Laffaille deformations ρi :
ΓK → G(Ri), where {Ri} is a co-final system of artinian quotients of the valuation ring R of a finite
extension of O[ 1

p ] with the same residue field as O. Then ρ = lim←− ρi is crystalline (more precisely, a lattice

in a crystalline representation) with indexed tuple of Hodge-Tate weights equal to the corresponding indexed-
tuple of Fontaine-Laffaille weights of ρ.

Proof. It is straightforward to verify that the inverse limit of the Fontaine-Laffaille modules corresponding
to ρi is in DK . Then the Proposition follows from combining Fact 3.1.1.14(2) and (5). Our convention that
the cyclotomic character has Hodge-Tate weight −1 makes the Hodge-Tate weights and Fontaine-Laffaille
weights match (Remark 3.1.1.17).

3.2.2 Liftability

In this section, we analyze liftability by constructing lifts of Fontaine-Laffaille modules. Lifting the underlying
module, filtration, and pairing will be relatively easy. Constructing lifts of the ϕiM compatible with these
choices requires substantial work. Let WFL,τ denote the Fontaine-Laffaille weights of ρ with respect to a
Zp-embedding τ : W ↪→ O, corresponding to the jumps in the filtration of Mτ .

Proposition 3.2.2.1. Under the assumption that the Fontaine-Laffaille weights lie in an interval of length
p−2

2 and are multiplicity-free for each τ : W ↪→ O, the deformation condition DFL
ρ is liftable.

Let ρ : ΓK → G(R) be a Fontaine-Laffaille deformation of ρ. Let M and M be the corresponding
Fontaine-Laffaille modules for ρ and ρ, which decompose as

M =
⊕
τ

Mτ and M =
⊕
τ

Mτ .

Each Mτ is a free R-module by Lemma 3.1.2.5. Recall that there is a filtration {M i
τ} on Mτ given by

R-module direct summands, and that ϕiM (M i
τ ) ⊂ Mστ . In particular, there exist free rank-1 R-modules

N i
τ ⊂ M i

τ such that M i
τ = N i

τ ⊕ M i+1
τ . As the pairing is O-bilinear, the pairings Mτ × Mτ → Lτ are

collectively equivalent to the pairing M ×M → L, so to lift the pairing and check compatibility it suffices
to do so on Mτ . To analyze liftability, we may work with each Mτ separately (since R⊗ZpW =

∏
τ Rτ with

τ varying through Zp-embeddings W ↪→ O → R).
By a basis for Mτ , we mean a basis for it as an R-module. By Lemma 3.1.2.5, the rank of Mτ is r. For

G = GSpr with r even, the standard alternating pairing with respect to a chosen basis is the one given by
the block matrix (

0 I ′r/2
−I ′r/2 0

)
where I ′m denotes the anti-diagonal matrix with 1’s on the diagonal. For G = GOr, the standard symmetric
pairing with respect to the basis is the one given by the matrix I ′r.

Example 3.2.2.2. Take R = k and fix an embedding τ : W ↪→ O. Let w1, . . . , wr be the Fontaine-Laffaille
weights of Mτ , and recall that wi + wr+1−i = sτ because M ' M∨. Pick vi ∈ Mwi

τ − Mwi+1
τ . Since

ϕiM |Mi+1 = pϕi+1
M = 0,

Mστ =
∑
i

ϕi(M i
τ ) = spank ϕ

wi
M (vi).

Note that {ϕwiM (vi)} is a k-basis for Mστ , as the left side has k-dimension r and there are r Fontaine-Laffaille
weights for στ . Furthermore, compatibility with the pairing means that

〈ϕwiM (vi), ϕ
wj
M (vj)〉 = ϕ

wi+wj
L (〈vi, vj〉).

But ϕhL|Lτ = 0 unless h = sτ : for h > sτ this is because Lhτ = 0, while for h < sτ this is because
Lhτ = Lh+1

τ = Lτ and ϕhL|Lh+1
τ

= pϕh+1
L = 0. Thus 〈ϕwiM (vi), ϕ

wj
M (vj)〉 = 0 unless wi +wj = sτ , in which case

the pairing must be non-zero as it is perfect. If i 6= j, by rescaling vi we may arrange for 〈ϕwiM (vi), ϕ
wj
M (vj)〉

to be an arbitrary unit. For G = GSpr or G = GOr with r even this means after rescaling the pairing
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may be taken to be standard with respect to the basis ni = ϕwi(vi) of Mστ . For G = GOr with r odd and
i = [r/2] + 1, defining cτ := 〈ϕwi(vi), ϕwi(vi)〉 ∈ k× and rescaling v1, . . . , vi−1 then brings us to the case that
the pairing is cτ times the standard pairing with respect to the basis ni = ϕwi(vi) of Mστ .

Remark 3.2.2.3. The constant cτ depends on the choice of basis {vi} for Mτ , so in particular is not
independent of τ . This will not cause problems in later arguments.

Remark 3.2.2.4. There is a lot of notation in the following arguments. With τ fixed, we will use vi to
denote elements of Mwi

τ , and mi to denote elements of Mστ . Usually we will have ϕwiM (vi) = mi. If we
want to index by Fontaine-Laffaille weights instead of the integers {1, 2, . . . , r}, we will use v′wi := vi and
m′wi := mi.

Lemma 3.2.2.5. Let w1 < w2 < . . . < wr denote the Fontaine-Laffaille weights of M with respect to τ .
There exists an R-basis m1 . . . ,mr of Mστ such that mi = ϕwiM (vi) where vi is an R-basis for a complement
to Mwi+1

τ in Mwi
τ and such that the pairing 〈·, ·〉 on Mστ is an R×-multiple of the standard pairing with

respect to the basis {mi}.

Proof. Example 3.2.2.2 shows that such a basis vi exists over R/mR: pick a lift vi ∈ N i
τ of vi, and define

mi = ϕwiM (vi). We know that

〈ϕwiM vi, ϕ
wj
M vj〉 = ϕ

wi+wj
L (〈vi, vj〉).

If wi + wj > sτ , this is zero because Lsτ+1
τ = 0. If wi + wj < sτ , this is not a unit as ϕ

wi+wj
L |Lsττ =

psτ−wi−wjϕsτL . If wi + wj = sτ (equivalently, i+ j = r + 1), it is a unit of R as the pairing is perfect.
We will modify the lifts vi and then mi = ϕwiM (vi) accordingly. For 0 ≤ j ≤ r/2 (so j < r + 1 − j), we

will inductively arrange that:

1. for i ≤ j, 〈mi,mh〉 = 0 for h 6= r + 1− i;

2. vi is an R-basis for a complement to Mwi+1
τ in Mwi

τ ;

3. 〈mi,mr+1−i〉 is a unit for all 1 ≤ i ≤ r.

For j = 0, the first condition is vacuous and the other two conditions hold by our choice of lift. Given that
these conditions hold for j − 1 with 1 ≤ j ≤ r, we will show how to modify the vi so that these conditions
hold for j. Let c = 〈mj ,mr+1−j〉 ∈ R×. For j < h < r + 1− j, define

ṽh := vh − 〈mj ,mh〉c−1vr+1−j .

As j 6= r + 1− h, 〈mj ,mh〉 ∈ mR. We compute that

〈mj , ϕ
wh
M ṽh〉 = 〈mj ,mh〉 − 〈mj ,mh〉c−1〈mj ,mr+1−j〉 = 0.

For i < j, as r+ 1− i 6= h, r+ 1− h we know mi is orthogonal to both mh and mr+1−h by the inductive hy-
pothesis and hence 〈mi, ϕ

wh
M ṽh〉 = 0. Thus (1) holds for the R-basis v1, . . . , vj , ṽj+1, . . . , ṽr−j , vr−j+1, . . . , vr.

As ṽh − vh ∈M
wr+1−j
τ , ṽh is still an R-basis for a complement to Mwh+1

τ in Mwh
τ (since wr+1−j > wh as

h < r + 1− j), so (2) holds for this new R-basis of Mτ . Furthermore, we see that

〈ϕwhM ṽh, ϕ
wr+1−h
M ṽr+1−h〉 − 〈mh,mr+1−h〉 ∈ mR.

As 〈mh,mr+1−h〉 is a unit, 〈ϕwhM ṽh, ϕ
wr+1−h
M ṽr+1−h〉 is a unit and (3) holds. Thus we may modify the lifts

vi and then accordingly mi to satisfy the inductive hypothesis.
Take such a basis for j = [r/2]. By (1),

〈mi,mi′〉 = 0

if i+i′ 6= r+1 and one of i or i′ is at most r/2. Otherwise i′ > r+1−i so wi+wi′ > sτ and hence the pairing
is zero automatically. If r is even, rescale v1, . . . , vr/2 so that 〈mi,mr+1−i〉 = 1 for i ≤ r/2 using (3). If r
is odd (so G = GOr), let cτ = 〈v[r/2]+1, v[r/2]+1〉 ∈ R× and rescale v1, . . . , v[r/2] so that 〈mi,mr+1−i〉 = cτ
for 1 ≤ i ≤ [r/2]. In these cases, the pairing with respect to the basis v1, . . . , vr is cτ times the standard
pairing.
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Remark 3.2.2.6. When r is odd (so G = GOr), to choose a basis where the pairing is standard we would
need to rescale v[r/2]+1 by a square root of the unit 〈m[r/2]+1,m[r/2]+1〉. This might not exist in R. Also
note that the orthogonal similitude group GOr is unaffected by a unit scaling of the quadratic form.

Now we begin the proof of Proposition 3.2.2.1. Let R′ � R be a small surjection with kernel I. To lift ρ
to ρ′ : ΓK → G(R′), we can reduce to the case when I is killed by mR and dimk I = 1. Lift the R-module
Mτ together with its pairing 〈·, ·〉 over R′ as follows. Choose the basis {mi} provided by Lemma 3.2.2.5,
with respect to which 〈·, ·〉 is ωτ times the standard pairing for some ωτ ∈ R×. We take M ′στ to be a free
R′-module with basis {ni} reducing to the basis {mi} of Mστ . Lift ωτ to some ω′τ ∈ (R′)× and define a
pairing on M ′τ to be ω′τ times the standard pairing on M ′τ with respect to {ni}. Pick a lift ui ∈ M ′τ of vi,
and define a filtration on M ′τ by

(M ′τ )j = spanR′(ui : wi ≥ j).

We define the module M ′ =
⊕

τ :W↪→OM
′
τ over W ⊗Zp R with filtration (M ′)i =

⊕
τ :W↪→O(M ′τ )i. It is clear

the filtration reduces to the filtration on Mτ . Furthermore, the pairing M ′τ ×M ′τ → Lτ with respect to {ni}
is the standard one.

It remains to produce ϕiM ′ lifting ϕiM . As always, it suffices to lift all of the ϕiMτ
: M i

τ →Mστ separately.

We note that the ϕjM ′τ : M ′jτ → M ′στ are determined by the function ϕj+1
M ′τ

on M ′j+1
τ (via the relation

pϕj+1
M ′τ

= ϕjM ′τ |M ′wj+1
τ

) together with the values ϕwiM ′τ (ui) for wi ∈ WFL,τ . We will define ϕwiM ′τ (ui) for each

wi ∈ WFL,τ to obtain the desired set of maps ϕjM ′ : M ′j →M ′.
It will be more convenient to index via weights, so let n′wi = ni and u′wi = ui. Let us consider defining

ϕwM ′τ (u′w) =
∑

i∈WFL,στ

ciwn
′
i := xw

for ciw to be determined with the obvious restriction that ciw must lift the corresponding coefficient for
ϕwM (v′w). We will study for which choices of {ciw} these maps are compatible with the pairing.

Lemma 3.2.2.7. For any choice of {ciw}, the elements xw form a basis for M ′στ .

Proof. Note that the Fontaine-Laffaille weights of M , M , and M ′ are the same. Consider the map∑
i∈WFL,τ

ϕiM ′τ : M ′iτ →M ′στ .

Quotienting by the maximal ideal of R′, as ϕ′wM is a lift of ϕw
M

we obtain a surjection∑
i∈WFL,τ

ϕi
M

: M
i

τ �Mστ

as Mστ =
∑
i ϕ

i
Mτ

(M
i

τ ). By Nakayama’s lemma, the original map is also a surjection. Thus {xw} spans the

free R-module M ′στ . But #{xw} = rkR′(M
′
στ ) = r, so {xw} is a basis for M ′στ .

The compatibility condition with the pairing is that

〈ϕiM ′τ (x), ϕjM ′τ (y)〉 = ϕi+jLτ
(〈x, y〉) .

Let ε = 1 for GOr and ε = −1 for GSpr with even r. Recall that for a Fontaine-Laffaille weight i ∈ WFLτ ,
we define i∗ to satisfy i + i∗ = sτ , so n′i and n′i∗ pair non-trivially. By linearity and the relations pϕw+1

M ′ =
ϕwM ′ |(M ′)w+1 and 〈x, y〉 = ε〈y, x〉, it suffices to check compatibility with the pairing only when i, j ∈ WFL,

x = n′i and y = n′j and i < j or i = j = i∗ (provided we have arranged that pϕw+1
M ′ = ϕwM ′ |M ′w+1).

Remark 3.2.2.8. The case i = j = i∗ only occurs when the pairing is orthogonal and r is odd, for the
weight of the unique basis vector which pairs with itself giving a unit.
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Of course, there is no reason to expect our initial arbitrary choice of {ciw} to work. Any other choice is
of the form {ciw + δiw} where δi,w ∈ I. The compatibility condition on M ′τ becomes∑

w,w′∈WFL,τ

(ciw + δiw)(cjw′ + δjw′)〈n′w, n′w′〉 = ϕi+jLτ

(
〈n′i, n′j〉

)
.

Expanding and using the fact that I2 = 0, we see that we wish to choose {δiw} so that∑
w,w′∈WFL,τ

(ciwδjw′ + cjw′δiw) 〈n′w, n′w′〉 = ω′τCij

where the constant Cij := (ω′τ )−1
(
ϕi+jLτ

(n′i, n
′
j)−

∑
w,w′∈WFL,τ

ciwcjw′〈n′w, n′w′〉
)

lies in I as ϕiM is compat-

ible with the pairing.
Now we can simplify based on the explicit form of the pairing with respect to the basis {n′w}. As n′w

pairs non-trivially with n′w∗ , for i < j or i = j = i∗ we obtain the relation∑
w≤w∗

(ciwδjw∗ + cjw∗δiw) + ε
∑
w>w∗

(ciwδjw∗ + cjw∗δiw) = Cij . (3.2.2.1)

To show that this system of linear equations has a solution, we shall interpret it as a linear transformation.
It is now convenient to index using {1, 2, 3 . . . , r}. Recall that the Fontaine-Laffaille weights of Mτ are

denoted w1 < w2 < . . . < wr. Let U = I⊕r
2

, and decompose U as
⊕r

i=1 Ui, where the coordinates of

Ui = I⊕r are denoted{δwi,wj}rj=1. Let U ′ = I⊕
r(r−1)

2 +σr , where σr = 1 if there is a w ∈ WFL,τ for which

w = w∗ and 0 otherwise. (So σr is zero unless G = GOr and r is odd.) We may write U ′ =
⊕r−r

i=1 U
′
i ,

where the coordinates of U ′i = I⊕r−i are denoted {Cwiwj}rj=i+1, except if σr = 1 and wi = w∗i . In that case,

instead take U ′i = I⊕r−i+1 with coordinates denoted {Cwiwj}rj=i.
Consider the function T : U → U ′ given by

T ((δwi,wh)ih) =

 ∑
wh≤w∗h

(
cwiwhδwjw∗h + cwjw∗hδwiwh

)
+ ε

∑
wh>w∗h

(
cwiwhδwjw∗h + cwjw∗hδwiwh

)
ij

where the cww′ ∈ R′ matter only through their images in k since mRI = 0. It suffices to show that T is
surjective. As we arranged for I to be 1-dimensional over R/mR = k, this is question of linear algebra over
k upon fixing a k-basis of I.

We will studying particular k-linear maps Ui → U ′i . To simplify notation, let εi = 1 if wi ≤ w∗i and
εi = −1 otherwise.

Lemma 3.2.2.9. Suppose wi 6= w∗i . The linear transformation Ti : Ui → U ′i defined on

(δwiwh)h 7→ (Cwiwj =

r∑
h=1

εhcwjw∗hδwiwh)j

is surjective. It is the composition Ui → U
T→ U ′ → U ′i .

Proof. As I is one-dimensional over R/mR = k, it suffices to study the matrix for this linear transformation
with respect to a fixed k-basis of I. Fix wh′ ∈ WFL,τ . If we take δwiwh = 0 for wh 6= wh′ and δwiwh′ = 1,
the image of {δwiwh}h ∈ Ui under Ti has coordinates Cwiwj = εwh′ cwjw∗h′ . Thus the matrix for Ti is

ε1cwi+1w∗1
ε2cwi+1w∗2

. . . εrcwi+1w∗r
ε1cwi+2w∗1

ε2cwi+2w∗2
. . . εcwi+1w∗r

. . . . . . . . . . . .
ε1cwrw∗1 ε2cwrw∗2 . . . εrcwrw∗r

 .

Multiplying the columns where wi > wi∗ by −1, the columns of this matrix are exactly the coordinates of
xwj with respect to the basis {n′w}w∈WFL,στ

as in Lemma 3.2.2.7 except that the first i rows are removed.
As the {xw} form a basis, the columns of this matrix span U ′i .

The last statement follows from the definition.
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Remark 3.2.2.10. The statement for wi = w∗i is similar. In that case, we must have ε = 1, and we have

Cwiwi = 2
∑
j

cwiw∗j δwiwj .

Extending the definition of Ti in Lemma 3.2.2.9, we again see that the columns of the matrix representing this
transformation are truncated versions of the coordinates of xwj with some signs changed and one coordinate
multiplied by 2. The image of a basis under the transformation multiplying one coordinate by 2 is still a
basis, so again Ti is surjective.

Lemma 3.2.2.11. The composition Tij : Ui → U
T→ U ′ → U ′j is zero whenever i < j.

Informally, this is saying that T is block lower-triangular with diagonal blocks that are surjective.

Proof. The coordinates of Ui are δwiwh . The coordinates of U ′j are Cwjwh for j < h (or j ≤ h if wj = w∗j ).
The formulas for the Cwjwh in the definition of T depend only on wj and wh. In particular, as i < j ≤ h,
these coordinates are always zero on the image of the inclusion Ui → U .

Corollary 3.2.2.12. T is surjective.

Proof. The composition of Ui → U → U ′ → U ′i is exactly Ti, hence surjective. For v ∈ U ′, by descending
induction on i, we will construct ui ∈ Ui so that

T (ui + . . .+ ur)− v ∈ U ′1 ⊕ . . .⊕ U ′i−1

(meaning T (u1 + . . . + ur) = v when i = 1). For i = r, take ur be a preimage under Tr of the component
of v in U ′r. Now suppose we have selected ui+1, . . . ur. Pick a preimage ui ∈ Ui of the projection of
T (ui+1 + . . . ur)− v to U ′i using the surjectivity of Ti. We know that Tij(ui) = 0 for j > i, so

T (ui + . . .+ ur)− v ∈ U1 ⊕ . . .⊕ Ui−1.

For i = 1, we have T (u1 + . . .+ ur) = v as desired.

By Corollary 3.2.2.12, we can choose the {δih} so that the compatibility relations (3.2.2.1) are satisfied.
This defines ϕwM ′τ (n′w), and hence we can extend to a map ϕiM ′ : M ′ →M ′ compatible with the pairing. We
can finish the proof of Proposition 3.2.2.1 as follows.

Given the deformation ρ to a coefficient ring R with associated Fontaine-Laffaille module

M =
⊕

τ :W↪→O
Mτ ,

and a small surjection R′ → R whose kernel I is 1-dimensional over the field R/mR, we have constructed
a free R′-module M ′ together with a filtration {(M ′)i} and maps ϕiM ′ by lifting the Mτ . The filtration
and {ϕiM ′} make M ′ into a Fontaine-Laffaille module. There is an obvious R′ ⊗Zp W -module structure.
The condition M ′ =

∑
i ϕ

i
M ′((M

′)i) follows from Lemma 3.2.2.7. We also constructed a lift of the pairing
M ′ ×M ′ → N , and the filtration and ϕiM ′ are compatible with it (in the sense of Corollary 3.2.1.5) by our
choice of (δih)ih. By Corollary 3.2.1.5 and Lemma 3.1.2.5, Tcris(M

′) gives a representation ρ′ : ΓK → G(R′)
lifting ρ.

3.2.3 Tangent Space

The final step in the proof of Theorem 3.2.1.2 is to analyze the tangent space of DFL
ρ . It is a subspace

LFL
ρ of the tangent space H1(ΓK , ad0(ρ)) of deformations with fixed similitude character ν. We are mainly

interested in its dimension as a vector space over k, and will analyze it by considering deformations ρ of ρ
to the dual numbers k[t]/(t2). Recall that G = GSpr (with even r) or G = GOr; let u be the Lie algebra of
the unipotent radical of a Borel subgroup of G.
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Proposition 3.2.3.1. Under the standing assumption that ρ is torsion-crystalline with pairwise distinct
Fontaine-Laffaille weights for each τ : W ↪→ O contained in an interval of length p−2

2 ,

dimk L
FL
ρ − dimkH

0(ΓK , ad0(ρ)) = [K : Qp] dimk u.

Let V be the Galois module given by ρ, and for a lift ρ of ρ over k[t]/(t2) let V be the corresponding
Galois module. The submodule tV is naturally isomorphic to V , and we have an exact sequence

0→ tV → V → V → 0.

Let M be the Fontaine-Laffaille module corresponding to ρ, with pairing 〈·, ·〉 : M ×M → Lk. We know M
is a k-vector space of dimension r[K : Qp]. Let M be the Fontaine-Laffaille module corresponding to ρ. It
is a free k[t]/(t2)⊗W -module, and fits in an exact sequence

0→ tM →M →M → 0

of Fontaine-Laffaille modules. The map M → tM induced by t : M → M is an isomorphism of Fontaine-
Laffaille modules since it is so on underlying k-vector spaces by k[t]/(t2)-freeness of M . As before, we have
decompositions

M =
⊕

τ :W↪→O
Mτ and M =

⊕
τ :W↪→O

Mτ

from Lemma 3.1.2.3.
Using Lemma 3.2.2.5, pick a basis {vτ,i}ri=1 of the k[t]/(t2)-module Mτ such that vτ,i is a basis for a

k[t]/(t2)-complement to Mwi+1
τ in Mwi

τ and such that the pairing Mστ ×Mστ → Lστ with respect to the
mτ,i := ϕwiM (vτ,i) is ωτ -times of the standard pairing. As 1-units admit square roots, we may assume that
ωτ ∈ k×. Note that {mτ,i} ∪ {tmτ,i} is a basis for Mστ as a k-vector space, and {mτ,i}τ,i is a basis for M
as a k[t]/(t2) module.

Let M0 be the submodule of M spanned by the {vτ,i}τ,i as a k-vector space. We have that tM0 = tM 'M
as vector spaces, and have an obvious decomposition

M0 =
⊕

τ :W↪→O
Mτ,0.

We obtain a filtration on M0 by intersection: M i
τ,0 = M i ∩Mτ,0. We also obtain a pairing M0×M0 → L by

restriction.

Lemma 3.2.3.2. We have that M i
τ = M i

τ,0 ⊗ k[t]/(t2), and hence M i = M i
0 ⊗ k[t]/(t2).

Proof. We know that the k[t]/(t2)-span of vi is a k[t]/(t2)-complement to Mwi+1
τ in Mwi

τ . Hence Mwi
τ /Mwi+1

τ

is isomorphic to the k-span of vi and tvi. As the filtration is automatically split (i.e. M i
τ is a direct summand

of Mτ , and hence M i
τ is a direct summand of M i−1

τ ), this suffices.

Observe that the surjection of Fontaine-Laffaille modules M → M carries M0 isomorphically onto M .
Under the isomorphism of k-vector spaces M0 →M , the pairing on M0 and the pairing on M are identified
because by choice of basis the pairing on M0 is a k×-multiple of the standard pairing. Furthermore, extending
the pairing M0 ×M0 → L by k[t]/(t2)-bilinearity recovers the pairing on M . Using M0 ' M , we can also
define ϕiM0

: M i
0 →M0 to be the lift of ϕi

M
to M i

0. It is compatible with the pairing on M0. Note that it is

not the same as ϕiM |Mi
0
.

Our goal is to describe the set of strict equivalence classes of deformations M of M , so by making these
identifications it remains to study ways to lift ϕi

M
to a map ϕiM0⊗k[t]/(t2) : M i

0 ⊗ k[t]/(t2)→M0 ⊗ k[t]/(t2).

For n, n′ ∈M i
0 we may write

ϕiM (n+ tn′) = ϕiM0
(n) + t(ϕiM0

(n′) + δi(n))

for some σ-semilinear δi : M i
0 →M0 which completely determines ϕiM . It is clear that for n ∈M i+1

0 we have
δi(n) = 0 due to the relation ϕiM0

(n) = pϕi+1
M0

(n) = 0. Thus, δi factors through M i
0/M

i+1
0 , and together the

δi define a σ-semilinear
δ : gr•(M0)→M0.
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Compatibility with the pairing says exactly

〈ϕiM (n+ tn′), ϕjM (m+ tm′)〉 = ϕi+jL (〈n+ tn′,m+ tm′〉)

for n, n′ ∈M i
0 and m,m′ ∈M j

0 and all i and j. Expanding and using the compatibility of the ϕiM0
with the

pairing, we see that it is necessary and sufficient that

〈δi(n), ϕjM0
(m)〉+ 〈ϕiM0

(n), δj(m)〉 = 0 (3.2.3.1)

for n ∈ M i
0 and m ∈ M j

0 and all i and j. As M =
∑
i ϕ

i
M

(M
i
) and we defined ϕiM0

to lift ϕi
M

, it follows

that M0 =
∑
i ϕ

i
M0

(M i
0). Furthermore, we have an isomorphism ϕ : gr•M0 →M0. This allows us to rewrite

(3.2.3.1) as
〈δ′ϕ(n), ϕ(m)〉+ 〈ϕ(n), δ′ϕ(m)〉 = 0

where δ′ is the k-linear composition of ϕ−1 with δ. In other words,

〈δ′x, y〉+ 〈x, δ′y〉 = 0

for all x, y ∈M0. Note that δ′ is compatible with the filtration, the pairing, and the k⊗W -module structure.
Denote the collection of all such δ′ by Endk⊗W (M0, 〈·, ·〉): it is isomorphic to spr(k ⊗W ) or sor(k ⊗W ),
which have dimension [K : Qp](dimG− 1) over k.

Lemma 3.2.3.3. For such a choice of δ′, we obtain a Fontaine-Laffaille module M ∈ MFfW,tor together with
a pairing M ×M → L as in Corollary 3.2.1.5.

Proof. This is just bookkeeping. First, observe that
∑
i ϕ

i
M (M i) is a k[t]/(t2)-module containing ϕiM0

(M i
0) =

M0. Thus it is M . It is immediate that the pairing is compatible with the filtration. We chose δ′ so that
the pairing is compatible with the ϕiM .

Of course, different δ′ may give isomorphic deformations of M . Suppose that we are given δ and γ such
that the Fontaine-Laffaille modules they create are strictly equivalent as deformations of M . We have shown
that the underlying module, pairing, and filtration can be identified with the fixed data M = M0⊗k[t]/(t2),
〈·, ·〉⊗ k[t]/(t2), and M i

0⊗ k[t]/(t2) so that the isomorphism reduces to the identity modulo t (by strictness).
This means there exists an isomorphism α : M0 → M0 compatible with the pairing, filtration, and module
structure such that

(1 + tα)
(
ϕiM0

(n) + t(ϕiM0
(n′) + δi(n))

)
= ϕiM0

(n) + t(ϕiM0
(α(n) + n′) + γi(n)).

Simplifying, this is the condition that

γi(n)− δi(n) = α(ϕiM0
(n))− ϕiM0

(α(n)).

In other words, δ, γ ∈ End(M0, 〈·, ·〉) define the same deformation if and only if γi − δi is of the form
α ◦ ϕiM0

− ϕiM0
◦ α for all i and some k ⊗W -linear α : M0 → M0 that is compatible with the filtration,

pairing, and module structures. Under the identification of Endk⊗W (M0, 〈·, ·〉) with the Lie algebra of a
symplectic or orthogonal group valued in k ⊗ W , these are the elements in the Lie algebra of the Borel
subgroup corresponding to the filtration. (The assumption that the Fontaine-Laffaille weights for each τ are
pairwise distinct is what makes it a Borel subgroup.) This has dimension [K : Qp](dimB − 1) as a k-vector
space, where B is a Borel subgroup of G.

Finally, we must understand when α and β satisfy

α ◦ ϕiM0
− ϕiM0

◦ α = β ◦ ϕiM0
− ϕiM0

◦ β.

This happens exactly when α − β commutes with the ϕiM0
(as well as being compatible with the filtration,

pairing, and module structure). In other words, α−β ∈ EndMFW (M0, 〈·, ·〉). But under Tcris, this is identified
with endomorphisms of ρ preserving the pairing (not just up to a similitude factor), and in particular has
dimension dimkH

0(ΓK , ad0(ρ)).
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We can express this analysis as the exact sequence

0→ EndMFW (M0, 〈·, ·〉)→ Fil0 (Endk⊗W (M0, 〈·, ·〉))→ Endk⊗W (M0, 〈·, ·〉)→ DFL
ρ (k[t]/(t2))→ 0.

In particular, we see that the space of deformations of ρ to k[t]/(t2) has dimension

[K : Qp](dimG− 1)− [K : Qp[(dimB− 1) + dimkH
0(ΓK , ad0(ρ)) = [K : Qp] dimk u+ dimkH

0(ΓK , ad0(ρ))

(since the Borel subgroup of the derived group of G has codimension-1 in a Borel subgroup of G). This
completes the proof of Proposition 3.2.3.1.
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Chapter 4

Minimally Ramified Deformations

Let ` 6= p be primes and L be a finite extension of Q`. For a split connected reductive group G over the
valuation ring O of a p-adic field K with residue field k, consider a residual representation ρ : ΓL → G(k).
The methods of Chapter 2 require a nice class of deformations of ρ. If ρ were unramified, the unramified
deformation condition (Example 2.2.2.9) would often work for our purposes. The interesting case is when ρ
is ramified: we would like to define a deformation condition that “restricts the ramification” of lifts of ρ so
the resulting deformation condition is liftable, despite the fact that the unrestricted deformation condition
for ρ may not be liftable. To be precise, we require a deformation condition Dρ such that Dρ is liftable
and has tangent space with dimension (at least) dimkH

0(ΓL, ad0(ρ)). We will obtain such a deformation
condition after making an étale local extension of O, which is harmless for our application.

In the case that G = GLm, the minimally ramified deformation condition defined in [CHT08, §2.4.4]
works. We will generalize this to a minimally ramified deformation condition for symplectic and orthogonal
similitude groups on m-dimensional spaces when p ≥ m. The key inspiration comes from the arguments
of [Tay08, §3], where a similar deformation condition for GLm is analyzed by studying deformations of
a nilpotent element of gk = LieGk. In §4.1, we review facts about nilpotent orbits over algebraically
closed fields of very good characteristic and find “nice” integral representatives N for such orbits. In §4.2,
we study the centralizer scheme ZG(N) over O and show that it is smooth. We can reduce checking O-
smoothness to the problem of finding elements g ∈ ZG(N)(O) such that gk lies in any specified component
of ZGk(Nk)/ZGk(Nk)◦. Then in §4.3 we define the notion of a “pure nilpotent” deforming Nk and study the
space of such deformations. Finally in §4.4 and §4.5 we define the minimally ramified deformation condition
using our study of nilpotents, first for a special class of tamely ramified representations and then in general.

The “minimally ramified” deformation condition is defined only for symplectic and orthogonal similitude
groups, essentially because of an argument used in §4.5 to reduce the study of general representations to a
special class of tamely ramified representations. We have adapted the argument of [CHT08, §2.4.4] to keep
track of a symmetric or alternating pairing, so this is genuinely specific to symplectic or orthogonal groups.
The arguments in earlier sections are phrased in such a way as to easily generalize to any split connected
reductive O-group G, given certain general facts about nilpotent orbits and centralizers of nilpotent elements.
In particular, we use the following:

(N1) for every nilpotent orbit of G(k) in gk, there exists N ∈ g such that both NK ∈ gK and Nk ∈ gk “lie
in that nilpotent orbit” (using the combinatorial parametrization of nilpotent orbits discussed in §4.1
to relate nilpotent orbits in gk and gK) and such that ZGk(Nk) and ZGK (NK) are smooth;

(N2) for a suitable such N ∈ g and every component of ZGk(Nk) there exists g ∈ ZG(N)(O) such that gk
lies in that component (which will imply the flatness and hence smoothness of the scheme-theoretic
centralizer ZG(N) over O);

(N3) for tame ρ and a tame inertial generator τ , there is a way to pass between a nice class of deformations
of Nk = ρ(τ) and deformations of ρ as made precise in §4.4. In particular, this uses the exponential
map (4.4.1.1) to convert between nilpotents and unipotents, as well as elements Φ ∈ G(O) such that
adG(Φ)N = qN for some specified q ∈ Z.
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We will check all of these assumptions for GLm, GSpm, and GOm when p ≥ m, which suffices for our
applications. It would be of interest to give uniform proofs, or at least to verify them for the exceptional
groups (where there are just finitely many nilpotent orbits to check).

4.1 Representatives for Nilpotent Orbits

4.1.1 Algebraically Closed Fields

In this subsection, we let k be algebraically closed of characteristic p ≥ 0 and take G to be a connected
reductive group over k with p good for G. (By convention, characteristic zero is good for all G.) Let
g = LieG. For a nilpotent N ∈ g, the orbit ON of N under G can be defined as the locally closed (reduced)
image of the orbit map through N . It is a smooth locally closed subscheme of g by the closed orbit lemma,
and is called a nilpotent orbit (for G). As G is connected, this orbit is irreducible. Let ZG(N) be the
scheme-theoretic centralizer of a nilpotent N , representing the functor

R 7→ {g ∈ G(R) : AdG(g)NR = NR}

for k-algebras R.
In good characteristic, the finite number of nilpotent orbits can be described by the Bala-Carter method

as we review below. (More information can be found in [Jan04, §4], and a uniform proof without case-
checking in small characteristic is due to Premet [Pre03].) To state this, we need to define some terminology.
Let H be a connected reductive k-group with p good for H, and h = LieH.

• A nilpotent N ∈ h is a distinguished nilpotent if each torus contained in ZH(N) is contained in the
center of H.

• For a parabolic P ⊂ H with unipotent radical U , the Richardson orbit associated to P is the unique
nilpotent orbit of H with dense intersection with LieU . Its intersection with LieP is a single orbit
under P .

• A parabolic subgroup P ⊂ H with unipotent radical U is a distinguished parabolic if dimP/U =
dimU/D(U).

Bala and Carter classified nilpotent orbits when the characteristic is good. One can check that if p is
good for G, it will also be good for any Levi factor of a parabolic subgroup of G.

Fact 4.1.1.1. If p is a good prime for G, the nilpotent orbits for G are in bijection with G(k)-conjugacy
classes of pairs (L,P ) where L is a Levi factor of a parabolic subgroup of G and P is a distinguished parabolic
of L. The nilpotent orbit for G associated to (L,P ) is the unique one meeting Lie(P ) in its Richardson orbit
for L.

Example 4.1.1.2. For G = GLn, conjugacy classes of parabolic subgroups of GLn are indexed by partitions
n = n1 +. . .+nr, with a Levi subgroup given by the product GLn1

× . . .×GLnr for the associated “standard”
parabolic subgroup. The only distinguished parabolic subgroups of GLni are the Borel subgroups. Taking
into account conjugation, we conclude that conjugacy classes of nilpotents are in bijection with partitions of
n. A representative for each orbit is given by a block matrix in Jordan canonical form with eigenvalues zero
and blocks of size n1, . . . , nr. This is worked out in detail in [Jan04, §4.1,4.4,4.8]. The nilpotent orbits are
the same for SLn [Jan04, §1.2].

The Bala-Carter data C for G is the set of G(k)-conjugacy classes of pairs (L,P ) as above. It turns out
C is independent of k in the sense that it can be described completely in terms of the root datum of G as
follows. All Levi subgroups L of a parabolic k-subgroup Q of G are a single Ru,k(Q)-orbit, so in Fact 4.1.1.1
we may restrict to one Q per G(k)-conjugacy class and one L per Q. We may pick L so that it contains a
(split) maximal torus T . After conjugation by L(k), the distinguished parabolic subgroup P ⊂ L may be
assumed to contain T as well. But we know that parabolic subgroups Q of G containing T are in bijection
with parabolic subsets of Φ(G,T ) via Q 7→ Φ(Q,T ), so the possible Levi factors L of Q containing T are
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described just in terms of the root datum. Likewise, parabolic subgroups P of L containing T are in bijection
with parabolic subsets of Φ(L, T ). If we can characterize the condition that P is distinguished just in terms
of the root data, this would mean that the Bala-Carter data can be described solely in terms of the root
data and so is completely combinatorial.

We do so by constructing a grading on the Lie algebra of a parabolic P . Pick a Borel subgroup B ⊂ G
satisfying T ⊂ B ⊂ P . Let t = Lie(T ) and ∆ ⊂ Φ = Φ(L, T ) be the set of positive simple roots determined
by B. There is a unique subset I ⊂ ∆ such that P = BWIB where WI is the subset of the Weyl group
generated by reflections with respect to roots in I. Define a group homomorphism f : ZΦ ⊂ Z∆ → Z by
specifying that on the basis ∆ we have

f(α) =

{
2 α ∈ ∆− I,
0 α ∈ I.

This function gives a grading on l = Lie(L):

l(i) =
⊕
f(α)=i

lα and l(0) =

 ⊕
f(α)=0

lα

⊕ t

(sums indexed by α ∈ Φ). With respect to this grading,

LieP =
⊕
i≥0

l(i) and LieU =
⊕
i>0

l(i).

The condition that P is distinguished is equivalent to the condition that

dim l(0) = dim l(2) + dimZL

by [Car85, Corollary 5.8.3] as p is good for L. But this condition depends only on the root datum. Thus the
Bala-Carter data for G can be described in a manner independent of the choice of algebraically closed field.

Definition 4.1.1.3. For σ ∈ C, let Oσ ⊂ g (or Ok,σ if it is necessary to specify the field) be the corresponding
nilpotent orbit.

From the classification of nilpotent orbits over algebraically closed fields, it is known that the correspond-
ing nilpotent orbits in characteristic zero and characteristic p have the same dimension.

Example 4.1.1.4. Let G = GLn over an algebraically closed field k. For a partition n = n1 +n2 + . . .+nr,
define di(σ) inductively by d0(σ) = 0 and di(σ) = di−1(σ) + #{j : nj ≥ i}. The orbit closure Oσ consists of
nilpotents N ∈ g such that the (n+ 1− di(σ))× (n+ 1− di(σ)) minors of N i vanish for all i = 1, . . . , n.

Remark 4.1.1.5. We consider connected reductive groups, but natural groups like On are disconnected.
The nilpotent orbits of On and SOn are different but closely related; as explained in [Jan04, §1.12], the only
change is that certain pairs of orbits for SOn may become a single On-orbit.

4.1.2 Representatives of Nilpotent Orbits

Now return the case when G is a split reductive group scheme with connected fibers over a complete discrete
valuation ring O with g = LieG. Let k be the residue field of characteristic p > 0. Assume p is very good
for Gk. For σ ∈ C, we seek elements

Nσ ∈ g such that (Nσ)k ∈ Ok,σ and (Nσ)K ∈ OK,σ. (4.1.2.1)

In the case G = GLn, we will see that the standard representatives in G(O) for nilpotent orbits in Jordan
canonical form satisfy this condition. We will also explicitly describe such Nσ for symplectic and orthogonal
groups, as we will need this concrete description to analyze the centralizer ZG(N) as an O-scheme.
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Remark 4.1.2.1. In general, one can build such an Nσ using the root system as follows. Let T be a split
maximal torus of G. Pick a pair (L,P ) consisting of a Levi factor L of a parabolic O-subgroup of G and a
fiber-wise distinguished parabolic O-subgroup P of L corresponding to σ such that T ⊂ P . For any subset
J ⊂ Φ(L, T ), consider the element

NJ :=
∑
α∈J

Nα ∈ g

where Nα is anO-basis for the root line gα ⊂ g. For any σ = (L,P ), according to [SS70, III.4.29] there is some
subset J of a positive system of roots in Φ(G,T ) with |J | < dim(T ) for which NJ lies in Ok,σ and OK,σ. (The
method used to prove [SS70, III.4.29] requires a stronger condition on p, as the Jacobson-Morozov theorem
is used in the analysis of nilpotent orbits presented in [SS70]. There should be no difficulty in removing this
assumption, but we don’t treat this as our final results only apply to symplectic and orthogonal groups, for
which we make direct constructions below.)

For GLn, it is easy to describe an Nσ as in (4.1.2.1) in terms of the root data via Jordan canonical form:

Example 4.1.2.2. Let G = GLn with nilpotent orbit corresponding to the partition n1 +n2 + . . .+nr = n.
For the diagonal torus T and standard upper triangular Borel subgroup B, let ei be the character extracting
the ith diagonal entry of the torus. The positive simple roots in Φ(G,T ) with respect to B are {αi = ei−ei+1 :
i = 1, . . . , n− 1}. For a partition n = n1 + . . .+ nr, the corresponding nilpotent orbit as in Example 4.1.1.2
corresponds to the standard upper triangular Borel subgroup BL of L = GLn1

×GLn2
× . . . × GLnr . Now

Φ(L, T ) contains as its set ∆L of simple roots with respect to BL those ei − ei+1 with i 6= n1, n1 + n2, . . . nr
(in other words, i and i+ 1 lie in the “same block”). We consider

N =
∑
α∈∆L

Nα

where Nα is a basis element for the root line gα. Identifying gk with End(kn), Nk is the nilpotent matrix in
Jordan canonical form whose blocks (in order) are of sizes n1, n2, . . . , nr. Thus, N satisfies (4.1.2.1).

For symplectic and orthogonal groups, explicitly describing the nilpotents constructed from Bala-Carter
data is more complicated. We will sketch the approach, but not carry out the details because it turns out to be
more convenient to construct and analyze representatives in these cases using a partition-based classification
rather than via Bala-Carter data; this approach gives additional information about the centralizers that will
be needed in §4.2.2.

Example 4.1.2.3. Consider the groups Spm with m = 2n, or SOm with m = 2n or m = 2n+1 (so [m2 ] = n)
and assume p 6= 2 and n ≥ 2. We will first describe the Levi subgroups of parabolic subgroups [Jan04, §4.5].
Choose an integer 0 < n0 ≤ m with n0 ≡ m (mod 2). In the orthogonal case, assume that n0 6= 2. Choose
a partition 2d1 + 2d2 + . . .+ 2dr ≥ 0 of m− n0 into even parts. Choose a partition

{1, . . . , n} = S0

∐
S1

∐
. . .
∐

Sr

where |Si| = di for 1 ≤ i ≤ r and hence |S0| = [n0/2]. For 1 ≤ i ≤ r, let Si = Si ∪ (n+ Si). If m is even, let
S0 = S0∪ (n+Si), while if m is odd let S0 = S0∪ (n+Si)∪{0}. Clearly {Si} is a partition of {1, 2, . . . , 2n}
if m = 2n and of {0, 1, 2, . . . , 2n} if m = 2n+ 1.

Let {vi} be the standard basis km. Define Wi = spanj∈Si vj , W i = spanj∈Si vn+j , and Vi = spanj∈Si vj .
This gives an orthogonal direct sum decomposition

V0 ⊕ V1 ⊕ V2 . . .⊕ Vr = km

with respect to the standard pairings. For 1 ≤ i ≤ r, we have Vi = Wi ⊕ W i with subspaces Wi and
W i in perfect duality via the chosen standard pairing, and an automorphism of Wi covariantly induces
an automorphism of W i via “dual-inverse”, giving an inclusion of GL(Wi) inside SO(Vi) or Sp(Vi). The
subgroup

L = Sp(V0)×GL(W1)× . . .×GL(Wr)
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is a Levi subgroup of a parabolic subgroup in Spm. The subgroup

L = SO(V0)×GL(W1)× . . .×GL(Wr)

is a Levi subgroup of a parabolic subgroup in SOm. Up to conjugation, all Levi subgroups of parabolic
subgroups arise in this way [Jan04, §4.5].

A distinguished parabolic subgroup of L is a direct product of distinguished parabolic subgroups of Sp(V0)
or SO(V0) and each of the GL(Wi). There is a unique conjugacy class of distinguished parabolic subgroups
in GL(Wi), namely the Borel subgroups. The conjugacy classes of distinguished parabolic subgroups in
G0 = Sp(V0) or SO(V0) are described in the tables of [Car85, §5.9]. There are several classes, and it will be
much more convenient to describe them using an approach based on partitions.

Now we provide partition-based classifications for symplectic and orthogonal groups, similar to the clas-
sification for GLm we have already seen in Example 4.1.1.2. We will use them to construct elements as in
(4.1.2.1). Let G = Spm with m = 2n, or G = Om with m = 2n or m = 2n+ 1. As usual, we assume n ≥ 2.
Recall that Spm and Om are defined using standard pairings on a free O-module M of rank m. For m = 2n,
the standard alternating pairing ϕstd on Om is the one given by the block matrix(

0 I ′n
−I ′n 0

)
,

where I ′n denotes the anti-diagonal matrix with 1’s on the diagonal. The standard symmetric pairing ϕstd

on Om is the one given by the matrix I ′m.

Remark 4.1.2.4. We chose to work with Om instead of SOm, as the classification is cleaner for Om. The
nilpotent orbits are almost the same for SOm, except that certain nilpotent orbits of Om (the ones where
the partition contains only even parts) split into two SOm-orbits [Jan04, Proposition 1.12] (conjugation by
an element of Om with determinant −1 carries one such orbit into the other).

Definition 4.1.2.5. Let σ denote a partition m = m1 +m2 + . . .+mr of m. It is admissible if

• every even mi appears an even number of times when G = Om ;

• every odd mi appears an even number of times when G = Spm.

The admissible partitions of m are in bijection with nilpotent orbits of Spm or Om over an algebraically
closed field [Jan04, Theorem 1.6]. The corresponding orbit is the intersection of g ⊂ glm with the GLm-orbit
corresponding to that partition of m. Note that GLm-orbit representatives in Jordan canonical form need
not lie in g.

We will construct nilpotents together with a pairing, and then show how to relate the constructed pairing
to the standard pairings used to define G. Let ε = 1 in the case of Om, and ε = −1 in the case of Spm.

Definition 4.1.2.6. Let d ≥ 2 be an integer. Define M(d) = Od, with basis v1, . . . vd and a perfect
symmetric or alternating pairing ϕd such that

ϕd(vi, vj) =

{
(−1)i, i+ j = d+ 1

0, otherwise

(alternating for even d, symmetric for odd d). Define a nilpotent Xd ∈ End(M(d)) by Xdvi = vi−1 for
1 < i ≤ d and Xdv1 = 0.

Similarly, define M(d, d) = O2d with basis v1, . . . vd, v
′
1, . . . , v

′
d and a perfect symmetric or alternating

pairing ϕd,d by extending

ϕd,d(vi, vj) = ϕd,d(v
′
i, v
′
j) = 0 and ϕd,d(vi, v

′
j) =

{
(−1)i, i+ j = d+ 1

0, otherwise

Define a nilpotent Xd,d ∈ End(M(d, d)) by Xd,dvi = vi−1 and Xd,dv
′
i = v′i−1 for 1 < i ≤ d, and Xd,dv1 =

Xd,dv
′
1 = 0.
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It is straightforward to verify the pairings are perfect and that Xd and Xd,d are skew with respect
to the corresponding pairing. The pairing ϕd,d can be symmetric or alternating. Given an admissible
partition σ : m = m1 + m2 + . . . + mr, we will construct a free O-module of rank m with a symmetric or
alternating pairing respectively and a nilpotent endomorphism respecting that pairing such that the Jordan
block structure of nilpotent endomorphism on the geometric special fiber over SpecO is given by σ. Let
ni(σ) = #{j : mj = i}.

• If G = Om then ni(σ) is even for even i, so we can define

Mσ =
⊕
i odd

M(i)⊕ni(σ) ⊕
⊕
i even

M(i, i)⊕ni(σ)/2.

• If G = Spm then ni(σ) is even for odd i, so we can define

Mσ =
⊕
i odd

M(i, i)⊕ni(σ)/2 ⊕
⊕
i even

M(i)⊕ni(σ).

Let ϕσ and Xσ denote the pairing and nilpotent endomorphism defined by the pairing and nilpotent en-
domorphism on each piece using Definition 4.1.2.6. In all cases, Mσ is a free O-module of rank m. For
each σ, let Gσ be the automorphism scheme Aut(Mσ, ϕσ), so for an algebraically closed field F over O we
have an isomorphism (Gσ)F ' GF well-defined up to G(F )-conjugation by using F -linear isomorphisms
(Mσ, ϕσ) ' (Fm, ϕstd). Thus, the element Xσ ∈ LieGσ goes over to a G(F )-orbit in gF .

Let e1, e2, . . . em be the standard basis for Om. The elements ei and em+1−i pair non-trivially under the
standard pairing. When m = 2n + 1, en+1 pairs non-trivially with itself under the standard pairing. We
now relate the standard pairings to the pairings ϕσ.

Lemma 4.1.2.7. For all admissible partitions of m, the specializations of the Xσ at geometric points ξ of
SpecO constitute a set of representatives for the nilpotent orbits of Gξ.

Proof. The set of admissible partitions of m is in bijection with the set of nilpotent orbits over any alge-
braically closed field [Jan04, Theorem 1.6]. The Xσ we constructed are integral versions of the representatives
constructed in [Jan04, §1.7].

Proposition 4.1.2.8. Suppose that
√
−1,
√

2 ∈ O×. Then ϕσ is equivalent to the standard pairing over O.
There exists an O-basis {vi} of Mσ with respect to which the pairing is given by ϕσ and Xσ satisfies the
condition in (4.1.2.1).

Proof. The standard pairings are very similar to ϕσ. In the case of Spm, each basis vector pairs trivially
against all but one other basis vector, with which it pairs as ±1. So after reordering the basis, ϕσ is the
standard pairing. The case of Om is slightly more complicated. Let σ : m = m1 + m2 + . . . + mr be an
admissible partition. The construction of Mσ and ϕσ gives a basis {vi,j} where 1 ≤ i ≤ r and 1 ≤ j ≤ mi.
From the construction of ϕσ, we see that vi,j pairs trivially against all basis vectors except for vi,mi+1−j .
So as long as 2j 6= mi + 1, we obtain a pair of basis vectors which are orthogonal to all others and which
pair to ±1. For each odd mi, the vector vi,(mi+1)/2 pairs non-trivially with itself. The standard pairing with
respect to the basis ei has such a vector only when m = 2n+ 1 and then only for one ei.

We must change the basis over O so that ϕσ becomes the standard symmetric pairing. Let v = vi,(mi+1)/2

and v′ = vj,(mj+1)/2 be two distinct vectors which pair non-trivially with themselves. In particular, ϕσ(v, v) =

(−1)(mi+1)/2 := η and ϕσ(v′, v′) = (−1)(mj+1)/2 := η′. Define

w =

√
ηv −

√
−η′v′

√
2

and w′ =

√
ηv +

√
−η′v′

√
2

.

Then we see that ϕσ(w,w) = 0 = ϕσ(w′, w′) and ϕσ(w,w′) = 1. Making this change of variable over O
(which requires

√
−1,
√

2 ∈ O×), we have reduced the number of basis vectors which pair non-trivially with
themselves by two, and produced a new pair of basis vectors orthogonal to the others and which pair to 1.
By induction, we may therefore pick a basis v′1, . . . , v

′
m for which at most one basis vector pairs non-trivially

with itself under ϕσ. After re-ordering, we may further assume that ϕσ(v′i, v
′
j) = 0 unless i+ j = m+ 1, in

which case ϕσ(v′i, v
′
j) = ±1. Suppose j = m+1− i. If i 6= j, by scaling v′i we may assume that ϕσ(v′i, v

′
j) = 1.

If i = j, we already know that ϕσ(v′i, v
′
j) = 1. With respect to this basis, ϕσ is the standard pairing.
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4.2 Smoothness of Centralizers of Pure Nilpotents

Keeping the notation of §4.1.2, we next study the centralizer ZG(Nσ) in more detail where Nσ ∈ g is an
element satisfying (4.1.2.1). In particular, this centralizer will be shown to be smooth when G is symplectic
or orthogonal. We first review the known theory over fields, and then develop and apply a technique to
deduce smoothness over O (i.e. O-flatness) from the known smoothness in the field case.

4.2.1 Centralizers over Fields

In this section, let k be an algebraically closed field, G be a connected reductive group over k, and N a
nilpotent element of g = LieG. As the formation of the scheme-theoretic centralizer commutes with base
change, smoothness results for ZG(N) over k will imply such results over general fields (not necessarily
algebraically closed).

The group scheme ZG(N) is the fiber over 0 ∈ g of the composition

G
AdG−→ GL(g)

T 7→TN−N−→ g.

Hence LieZG(N) is the kernel of

g
adg−→ End(g)

T 7→TN−→ g

which is the Lie algebra centralizer zg(N). Recall that ON denotes the smooth locally closed orbit G.N ⊂ g.

Lemma 4.2.1.1. The following are equivalent:

1. The centralizer ZG(N) is smooth.

2. The map ad(N) : Te(G)→ TN (ON ) is surjective.

3. The orbit map µN : G→ ON is smooth.

Proof. The tangent space of ZG(N) at e is the kernel of dµN : Te(G) → TN (ON ), so ZG(N) is smooth
if and only if this kernel has the same dimension as ZG(N). As G and ON are smooth and we have
dimG−dimZG(N) = dimON , dimension considerations force dµN to be surjective when ZG(N) is smooth.
Thus (1) implies (2). To check that a morphism between smooth schemes is smooth, it suffices to check
the map is surjective on tangent spaces. We need only check at the identity because of translations, so (2)
implies (3). As ZG(N) is the fiber over N ∈ ON , (3) implies (1).

Remark 4.2.1.2. In references using the language of varieties rather than schemes (such as [Jan04]), ZG(N)
is usually defined to be reduced (via its geometric points) and hence smooth, so the content of the analogue
of Lemma 4.2.1.1 in such references is that the variety ZG(N) has Lie algebra zg(N); saying exactly that
this variety agrees with the scheme-theoretic centralizer.

In a wide range of situations, all nilpotent centralizers are smooth. A direct calculation shows that this
holds for G = GLn (see [Jan04, §2.3]), and a criterion of Richardson leverages this to many other cases:

Proposition 4.2.1.3. Suppose G is a smooth closed subgroup of GL(V ) and there exist a subspace W ⊂ gl(V )
such that gl(V ) = g⊕W and [g,W ] ⊂W . Then ZG(N) is smooth for any nilpotent N ∈ g.

Proof. Let ÕN be the orbit of N under GL(V ) in gl(V ), and ON the orbit of N under G. We know that

TN (ÕN ) = [gl(V ), N ] by Lemma 4.2.1.1(2) and the known smoothness of the centralizer for GL(V ). The
decomposition gl(V ) = g⊕W then implies that

TN (ÕN ) = [g, N ] + [W,N ].

But [W,N ] ⊂ W , so TN (ÕN ) ∩ g ⊂ [g, N ] ⊂ TN (ON ). On the other hand, TN (ON ) is obviously inside

TN (ÕN ) and g. This implies that
[g, N ] = TN (ON ).

Then Lemma 4.2.1.1(2) gives smoothness.
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The criterion in Proposition 4.2.1.3 automatically holds in characteristic 0 if G is reductive, because g
has a complement as a g-representation in gl(V ); of course, this is not interesting because the smoothness
conclusion holds for all group schemes of finite type over a field of characteristic zero. In characteristic p > 0,
the criterion in Proposition 4.2.1.3 can checked in many cases [Jan04, §2.6], such as:

• for SLn when p - n using the embedding SL(V ) ↪→ GL(V ) and taking W = k · idV ;

• for a simple adjoint exceptional groups G when p is good for G;

• for SO(V, ϕ) or Sp(V, ϕ) when p 6= 2 using the natural embeddings into GL(V ) and taking W = {f ∈
gl(V ) : f∗ = f}.

(Here the non-degenerate pairing ϕ defines an adjoint f∗ for any f ∈ gl(V ) = End(V ) via the requirement
ϕ(fv, w) = ϕ(v, f∗w).)

The same techniques work to prove the same result GSp2n and GOn; there does not appear to be a
reference in the literature, so we now give a proof. Let V be a vector space over k with non-degenerate
bilinear form ϕ : V × V → k that is symmetric or alternating. Suppose p 6= 2.

Proposition 4.2.1.4. If p - dim(V ), the group G = GO(V, ϕ) (respectively G = GSp(V, ϕ) ) with the natural
inclusion into GL(V ) admits a decomposition

gl(V ) = g⊕M

with [g,M ] ⊂M , so the G-centralizer of any nilpotent N ∈ g is smooth.

Proof. Let’s recall why tr(f∗) = tr(f) for any f ∈ gl(V ) = End(V ). Fix a basis of V Representing the
pairing ϕ as an (invertible) matrix J and letting A and A∗ be the matrices for f and f∗, the identity
ϕ(fv, w) = ϕ(v, f∗w) says

vTATJw = vTJA∗w

for all v, w ∈ V . This implies that A∗ = J−1ATJ , which has the same trace as A.
We can express the Lie algebra as g = {f ∈ gl(V ) : f + f∗ ∈ k · Id}. As p - dim(V ), we can define a

complement to the scalar matrices by requiring the trace to be 0: define

M = {f ∈ gl(V ) : tr(f) = 0 and f = f∗}.

For f ∈ g, define λf ∈ k by f + f∗ = λf Id. We compute that

g ∩M = {f ∈ gl(V ) : 2f = λf Id and tr(f) = 0} = {0}.

On the other hand, g +M = V : the scalar matrices are in g (G is a similitude group) and if tr(f) = 0 then
f−f∗

2 ∈ g and f+f∗

2 ∈M . Thus we have a decomposition

gl(V ) = g⊕M.

For f ∈ g and g ∈M , we compute that tr([f, g]) = 0 and

(fg − gf)∗ = g∗f∗ − f∗g∗ = g(−f + λf Id)− (−f + λf Id)g = fg − gf.

Therefore [g,M ] ⊂M as desired. We now apply Proposition 4.2.1.3.

Remark 4.2.1.5. When ZG(N) is smooth over k and p is good for G, the dimension of the centralizer
is independent of k (given the combinatorial classification of the G-orbit of N). This is apparent as the
classification of nilpotent orbits and their dimensions are independent of k.

Remark 4.2.1.6. Additional analysis gives a broader criterion: ZG(N) is smooth for a connected reductive
group G provided the derived group G′ is simply connected, p is good for G, and there exists a G-invariant
non-degenerate bilinear form on g [Jan04, §2.9].
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4.2.2 Centralizers in Classical Cases

For later use, we now explicitly describe the centralizer ZG(N) for symplectic and orthogonal groups over an
algebraically closed field k of characteristic p 6= 2 and for suitable N . Let G = Om or G = Spm with m ≥ 4,
acting on M = km preserving the standard pairing ϕ. Choose ε = 1 in the case of Om and ε = −1 in the
case of Spm. Let σ be an admissible partition m = m1 + . . .+mr. We will work with (Mσ = Om, ϕσ, Xσ) as
defined above Lemma 4.1.2.7, so Aut(Mσ, ϕσ)k ' G. Write X to denote the nilpotent (Xσ)k with σ fixed,
and M to denote (Mσ)k = km. We know there exist vectors v1, . . . , vr ∈M such that

v1, Xv1, . . . , X
m1−1v1, v2, Xv2, . . . , X

mr−1vr

is a basis for M . Furthermore, Xdivi = 0 for i = 1, . . . r, and the pairing between basis elements is given
as near the start of the proof of Proposition 4.1.2.8. In particular, each vi pairs non-trivially with only one
other basis vector Xdi−1vi∗ , for some i∗ ∈ {1, . . . , r}. (This is completely spelled out in [Jan04, §1.11].)

To understand the G-centralizer of X, we construct an associated grading of V as in [Jan04, §3.3,3.4].
This is motivated by the Jacobson-Morosov theory of sl2-triples over a field of sufficiently large characteristic,
but for symplectic and orthogonal groups it is constructed by hand in characteristic p 6= 2 below.

Remark 4.2.2.1. Every nilpotent X gives a filtration of V defined by Fili = ker(Xi). For GLn, this is
a good filtration and is used in [CHT08] to define the minimally ramified deformation condition for GLn.
However, this filtration need not be isotropic with respect to the pairing, so we will construct a nicer grading
associated to X.

Remark 4.2.2.2. The motivation for the grading to be associated to X comes from the Jacobson-Morosov
theorem. Let g be the Lie algebra of a reductive group G over an algebraically closed field of characteristic
p, where either p = 0 or p > 3(h− 1) where h is the Coxeter number of G. An sl2-triple is triple of non-zero
elements H,X, Y ∈ g such that

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H.

(They span a subalgebra isomorphic to sl2). The Jacobson-Morosov theorem says every non-zero nilpotent
X can be extended to a sl2-triple. The advantage is that we understand the representation theory of sl2
in characteristic zero: the irreducible representations are the representation on Ld = Symdk2. In positive
characteristic there are differences from the characteristic zero case in dimension greater than p, but the
assumption that p > 3(h − 1) ensures that these problems are not relevant for our purposes. Viewing the
adjoint representation as a representation of sl2, it decomposes as a direct sum. On a summand Ld, X
and Y act as raising and lowering operators, and H has eigenvalues d, d − 2, . . . ,−d. The one-dimensional
eigenspaces of H give a grading on the Lie algebra: the ith graded piece is

{g ∈ g : H.g = i · g}.

Definition 4.2.2.3. Let M(s) be the span of Xjvi for all i and j such that s = 2j + 1 − di. We set
M (s) =

⊕
t≥sM(t), and also define N(s) to be the span of {vi : vi ∈M(s)}.

Example 4.2.2.4. Take G = O8 and σ to be the admissible partition 1 + 2 + 2 + 3. There are vectors
v1, v2, v3, v4 ∈ k8 = M such that

v1, v2, Xv2, v3, Xv3, v4, Xv4, X
2v4

form a basis for M . Then M(−2) = Spank(v4), M(−1) = Spank(v2, v3), M(0) = Spank(v1, Xv4), M(1) =
Spank(Xv2, Xv3), and M(2) = Spank(X2v4). Furthermore, N(0) = Spank(v1), N(−1) = Spank(v2, v3),
and N(−2) = Spank(v4). The nilpotent X raises the degree by 2, and N(s) plays the role of a space of
“lowest-weight vectors” inside M(s) with respect to the operator X.

We now record some elementary properties of the preceding construction; all are routine to check, and
may be found in [Jan04, §3.4]. We have that M =

⊕
sM(s), and

vi ∈M(−(di − 1)), Xvi ∈M(−(di − 1) + 2), . . . , Xdi−1vr ∈M(dr − 1).

Furthermore, we know XM(s) ⊂M(s+ 2) and M(s) = XM(s− 2)⊕N(s) for s ≤ 0.
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The dimension of M(s) is ms(σ) := {j : dj − 1 ≥ |s|}. The dimension of N(s) equals ns(σ) :=
ms+1(σ) − ms(σ). Furthermore, the pairing ϕ interacts well with the grading: a computation with basis
elements gives that

ϕ(M(s),M(t)) 6= 0 =⇒ s+ t = 0.

In particular, (M (r))⊥ = M (−r).
The above grading on M corresponds to the one-parameter subgroup λ : Gm → G for which the action

of t ∈ Gm on M(s) is given by scaling by ts. The dynamic method (see [CGP15, §2.1, Proposition 2.2.9])
associates to λ a parabolic subgroup PG(λ) with Levi ZG(λ). Define CX and UX to be the scheme-theoretic
intersections

CX = ZG(X) ∩ ZG(λ) = {g ∈ ZG(X) : gM(i) = M(i) for all i}
UX = ZG(X) ∩ UG(λ) = {g ∈ ZG(X) : (g − 1)M (i) ⊂M (i+1) for all i}.

Fact 4.2.2.5. The group-scheme ZG(X) is a semi-direct product of CX and the smooth connected unipotent
subgroup UX .

This is [Jan04, Proposition 3.12]. The existence of λ and this decomposition is not specific to symplectic
and orthogonal groups [Jan04, Proposition 5.10].

We finally give a concrete description of CX . We first define a pairing on N(s). Recall that the space
N(s) of “lowest weight vectors” in M(s) has basis {vi : 1− di = s}. We define a pairing on N(s) by

ψs(v, w) = ϕ(v,X1−sw).

A direct calculation shows that ψs is non-degenerate and that ψs is symmetric if (−1)1−s = −ε and is
alternating if (−1)1−s = ε [Jan04, §3.7].

A point of CX preserves the grading on M , and since it commutes with “raising operator” X its action
on M is determined by its action on the space N(s) of “lowest weight vectors” in M(s), the following fact
is no surprise.

Fact 4.2.2.6. There is an isomorphism of algebraic groups

CX '
∏
s≤−1

Aut(N(s), ψs)

This is [Jan04, §3.8 Proposition 2, 3].

Example 4.2.2.7. Let G = Spm. Unraveling when ψs is symmetric or alternating, we see that

CX '
∏

s≤−1;s even

O(N(s), ψs)×
∏

s≤−1;s odd

Sp(N(s), ψs).

The symplectic factors are connected, while the orthogonal factors have two connected components. The
connected components of ZG(X) are the same as those for CX by Fact 4.2.2.5. There are 2t of them, where
t is the number of even s for which N(s) 6= 0.

Example 4.2.2.8. Let G = Om. We likewise see that

CX '
∏

s≤−1;s odd

O(N(s), ψs)×
∏

s≤−1;s even

Sp(N(s), ψs).

The connected components of ZG(X) are the same as those for CX by Fact 4.2.2.5. There are 2t of them,
where t is the number of odd s for which N(s) 6= 0.

Now suppose that G = SOm. The elements X we considered in this section are representatives for some
of the nilpotent orbits of SOm. The group CX has the same structure as for G = Om, except we require that
the overall determinant be 1; this has 2t−1 connected components. Though SOm has more nilpotent orbits
than Om, according to Remark 4.1.2.4 their representatives are conjugate by an element of Om(k)−SOm(k)
to the representatives constructed in Proposition 4.1.2.8. But such a transformation is just a change of basis
preserving the pairing, so our analysis in this section applies. Thus, we have an explicit description of the
component group of ZG(X) in the SOm case as well.
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Remark 4.2.2.9. Assume
√
−1,
√

2 ∈ O×. By using the element Nσ ∈ g constructed in Proposition 4.1.2.8
(which came with the data of a basis {v′i} for a free O-module M of rank m), much of the discussion in this
section continues to hold if we work over O: in particular, there is no problem defining the grading M(s)
or cocharacter λ : Gm → G over O. Furthermore, the dynamic construction in [CGP15, §2.2] is carried out
over rings.

Suppose q is a square in O×. For use in the proof of Proposition 4.4.2.3, we need the existence of an
element Φ ∈ G(O) such that adG(Φ)Nσ = qNσ. If α2 = q, taking Φ = λ(α) would work: Φ would scale
N j
σvi ∈M(s) by αs, and Nσ increases the degree by 2.

This Φ is a version for symplectic and orthogonal groups of the diagonal matrix denoted Φ(σ, a, q) whose
diagonal entries are increasing powers of q used in [Tay08, §2.3]. There it is checked that adG(Φ(σ, a, q))Nσ =
qNσ where Nσ is the nilpotent representative in Jordan canonical form considered in Example 4.1.2.2 for
the partition σ of m.

4.2.3 Checking Flatness over a Dedekind Base

We want to analyze smoothness of centralizers in the relative setting (especially over SpecO). If ZG(Nσ)→
SpecO is flat and the special and generic fibers are smooth then ZG(N) is smooth over O. The following
lemma gives a way to check that a morphism to a Dedekind scheme is flat.

Lemma 4.2.3.1. Let f : X → S be finite type for a connected Dedekind scheme S. Then f is flat provided
the following all hold:

1. for each s ∈ S, Xs is reduced and non-empty;

2. for each s ∈ S, Xs is equidimensional with dimension independent of s;

3. there are sections {σi ∈ X(S)} to f such that for every irreducible component of a fiber above a closed
point, there is a section σi which meets the fiber only in that component.

Remark 4.2.3.2. This lemma is a modification of [GY03, Proposition 6.1] to allow several connected
components in the fibers.

Proof. It suffices to prove the result when S = Spec(A) for A a discrete valuation ring with uniformizer π.
Let Xη be the generic fiber and Xs the special fiber. Consider the schematic closure ı : X ′ ↪→ X of the
generic fiber. The scheme X ′ is flat over Spec(A) since flatness is equivalent to being torsion-free over a
discrete valuation ring, and there is an exact sequence

0→ J → OX → ı∗OX′ → 0 (4.2.3.1)

where J is a coherent sheaf killed by a power of π. We will show that ı is an isomorphism by analyzing the
special fiber.

First, we claim that the dimension of each irreducible component on the special fiber of X ′ is the same
as the dimension of the equidimensional X ′η = Xη. We will get this from flatness of X ′. The generic fiber
of X ′ is Xη, which is equidimensional and non-empty by hypothesis. Furthermore, X ′ is the union of the
closures Zi of the reduced irreducible components Xη,i of Xη, and each Zi is A-flat with integral η-fiber,
hence integral. We just need to analyze the dimension of irreducible components of (Zi)s when (Zi)s 6= ∅.
Since Zi is integral, we can apply [Mat89, Theorem 15.1, 15.5] to such Zi to conclude that the dimension of
each irreducible component of the special fiber of X ′ is the same as the dimension of the generic fiber.

Observe that the sections σi factor through the closed subscheme X ′ ⊂ X, as we can check this on the
generic fiber since X ′ is A-flat. Thus, X ′ meets every irreducible component of Xs away from the other
irreducible components of Xs, and so we would have that |X ′s| = |Xs| if X ′s is equidimensional of the same
dimension as the equidimensional Xs. We have shown the dimension of any irreducible component in X ′s is
the same dimension as the common dimension of irreducible components of the generic fiber Xη of X ′. By
hypothesis, the dimension of any irreducible component of the generic fiber of X is the same as the dimension
of any irreducible component of the special fiber of X. Thus the dimension of any irreducible component
of X ′s is the same as the dimension of each irreducible component of Xs, giving that |X ′s| = |Xs|. As Xs is
reduced, this forces ıs : X ′s ↪→ Xs to be an isomorphism.
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Now tensoring (4.2.3.1) with the residue field of A gives an exact sequence

0→ J/πJ → OX,s → ı∗OX′,s → 0

because OX′ is A-flat. Therefore J/πJ = 0. Hence J = πJ = π2J = . . . = πnJ = 0 for n large, so X = X ′

is flat over A.

Corollary 4.2.3.3. In the situation of the lemma, if the fibers are also smooth then X is smooth.

Proof. For a flat morphism of finite type between Noetherian schemes, smoothness of all fibers is equivalent
to smoothness of the morphism.

4.2.4 Smooth Centralizers

We now return the case when G is a split reductive group scheme with connected fibers over a discrete
valuation ring O with uniformizer π and residue field k of very good characteristic p > 0. Let T ⊂ G be a
fiber-wise maximal split O-torus, and G′ denote the derived group of G over O. Denote the field of fractions
of O by K, and set g := LieG. Suppose we are given N = Nσ ∈ g, an integral representative for the
nilpotent orbit on geometric fibers corresponding to σ ∈ C as in (4.1.2.1). Proposition 4.1.2.8 provides such
N in symplectic and orthogonal cases when

√
−1,
√

2 ∈ O×. We wish to show that the ZG(N) is smooth
over O in many situations. An obviously necessary condition is that

ZGK (NK) and ZGk(Nk) are smooth. (4.2.4.1)

Remark 4.2.4.1. Some assumption on N is essential. Otherwise NK and Nk can lie in “different” nilpotent
orbits (in terms of the combinatorial characteristic-free classification of geometric orbits), and so ZGK (NK)
and ZGk(Nk) could have different dimensions, in which case ZG(N) cannot be O-flat. An example of this is
the element N2 in Example 1.2.3.3.

Corollary 4.2.3.3 gives an approach to proving smoothness. It suffices to produce a finite set of elements
of ZG(N)(O) collectively meeting each connected component of each geometric fiber of ZG(N) over SpecO
provided that (4.2.4.1) holds. Note that we may first make a local flat extension of O, as it suffices to check
flatness after such an extension. In particular, we may reduce to the case that k is algebraically closed.

In this section, we will establish the following result:

Proposition 4.2.4.2. Suppose that all the irreducible factors of the root system Φ(G,T ) are of classical type,
and
√
−1,
√

2 ∈ O×. Construct N ∈ g′ = LieG′ by decomposing g′ according to the irreducible components of
Φ(G,T ) and using the integral representatives provided by Proposition 4.1.2.8 for symplectic and orthogonal
factors (types B, C, and D) and Example 4.1.2.2 for sln (type A). Suppose that the fibers of ZG(N) over
SpecO are smooth. Then ZG(N) is smooth over SpecO.

Remark 4.2.4.3. In particular, this gives smoothness for G equal to GSp2n (n ≥ 2) and GOm (m ≥ 4)
using Proposition 4.2.1.4.

The main step of the proof of Proposition 4.2.4.2 is to establish that the scheme-theoretic centralizer
ZG(N) is O-flat. First, some preliminaries. We may and do assume that O is Henselian (or even complete)
by scalar extension. For N ∈ g, we define

A(N) = (ZGk(Nk)/ZGk(Nk)◦) (k) = ZGk(Nk)(k)/ZGk(Nk)◦(k),

and study when the following holds:

each element of A(N) arises from some s ∈ ZG(N)(O). (4.2.4.2)

This is very easy for GLn:

Example 4.2.4.4. Consider the nilpotent orbits of GLn as in Example 4.1.1.2, with representatives given
in Example 4.1.2.2. But ZGk(Nk) is connected for every nilpotent orbit [Jan04, Proposition 3.10], so the
identity section shows (4.2.4.2) holds.
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Let π : G̃′ → G′ be the simply connected central cover of the derived group G′ over O. As p is very
good, G̃′ and G′ have isomorphic Lie algebras via π and LieG′ is a direct factor of LieG with complement
Lie(ZG), so we may abuse notation and view N as an element of all of these Lie algebras over O.

Let S ⊂ T be the (split) maximal central torus in G. Consider the isogeny S × G̃′ → G. As S acts
trivially on N , we see that S × Z

G̃′
(N) is the preimage of ZG′(N) under this isogeny. As p is very good for

G, we obtain finite étale surjections

Z
G̃′

(N)→ ZG′(N) and S × Z
G̃′

(N)→ ZG(N)

over O.

Lemma 4.2.4.5. The condition (4.2.4.2) holds for G̃′ if and only if (4.2.4.2) holds for G.

Proof. Assume G̃′ satisfies (4.2.4.2). Pick a connected component of C of ZGk(Nk). The preimage of C
under S × Z

G̃′
(N)→ ZG(N) is a union of k-fiber components of the form Sk × C ′ where C ′ is a connected

component of Z
G̃′k

(Nk). By assumption, there exists s ∈ Z
G̃′

(N)(O) meeting any such C ′. The image of

(1, s) is a point of ZG(N)(O) meeting C.
Conversely, assume G satisfies (4.2.4.2). Pick a connected component C ′ of Z

G̃′k
(Nk). Under S ×

Z
G̃′

(N) → ZG(N), Sk × C ′ maps onto a connected component C of ZGk(Nk). By assumption, there exists
s ∈ ZG(N)(O) such sk ∈ C. As k is algebraically closed, there is s′k ∈ (S × Z

G̃′
(N))(k) lifting sk and lying

in C ′. As S×Z
G̃′

(N)→ ZG(N) is a finite étale cover and O is Henselian, there exists s′ ∈ (S×Z
G̃′

(N))(O)
lifting s and reducing to s′k.

Lemma 4.2.4.5 allows us to reduce to the case when G is semisimple and simply connected. In such a
situation, G =

∏
j Gj with Gj having irreducible root system (and p very good for each Gj) and likewise

T =
∏
j Tj for split maximal O-tori Tj ⊂ Gj . The element N was defined by decomposing the Lie algebra,

so we obtain a decomposition N =
∑
j Nj such that Nj ∈ gj and ZG(N) =

∏
j ZGj (Nj).

Lemma 4.2.4.6. If G =
∏
iGi and (4.2.4.2) holds for each Gi, it holds for G.

Proof. The component group of a product is the product of the component groups over an algebraically
closed field.

Lemma 4.2.4.6 allows us to reduce to a semisimple, simply connected G with irreducible root system. We
can now check types An, Bn, Cn, and Dn using previous work, and use Lemma 4.2.4.5 to reduce the cases
that are traditionally studied:

1. For type An, take G = GLn and use Example 4.2.4.4.

2. For type Cn with n ≥ 2, use Example 4.2.2.7 and Proposition 4.1.2.8 for Sp2n. Note that the repre-
sentatives constructed are obviously integral.

3. For type Bn with n ≥ 2 or Dn with n ≥ 4, use Example 4.2.2.8 and Proposition 4.1.2.8 for SO2n+1

and SO2n respectively. (Recall that D3 = A3 and D2 = A1 ×A1.)

We now prove Proposition 4.2.4.2.

Proof. We are given that ZGk(Nk) and ZGK (NK) are smooth. By the classification of nilpotent orbits over
algebraically closed fields, the dimension of the orbit only depends on the combinatorial classification for
the orbit in very good characteristic and in characteristic 0, so these fibers are equidimensional of the same
dimension. By Corollary 4.2.3.3, it suffices to find s ∈ ZG(N)(O) meeting each desired connected component
of ZGk(Nk).

Using Lemmas 4.2.4.5 and 4.2.4.6, it suffices to do so for the irreducible root systems An, Bn (n ≥ 2),
Cn (n ≥ 2), and Dn (n ≥ 4). We have done so above.
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The above argument worked for classical groups, which is our main application. However, we will briefly
discuss some possible approaches to producing a finite set of O-points collectively meeting all components of
the geometric special fiber of a centralizer in general. Let G be a split reductive O-group with split maximal
O-torus T , and let N = Nσ ∈ gO be the element constructed in terms of root data as in Remark 4.1.2.1.
Lemmas 4.2.4.5 and 4.2.4.6 show that to make “enough” points in ZG(N)(O) we can reduce to the simple
and simply connected case if we so choose.

As all split reductive groups descend as such to Z, and the description of N in terms of the root datum
shows it is compatibly defined over Z, we may assume that the residue field k is Fp for the purposes of
checking (4.2.4.2).

Proposition 4.2.4.7. Suppose G is semisimple and simply connected and O is Henselian. For any sk ∈
ZGk(N)(k) ∩ T (k), there exists s ∈ ZG(N)(O) lifting sk.

Remark 4.2.4.8. Before proving Proposition 4.2.4.7, we record a general observation. A representative
sk ∈ ZGk(Nk) for a coset of A(N) may always be chosen to be semisimple. A proof for the analogous
assertion for centralizers of unipotent elements in G is given in [MS03, Corollary 13]; the proof easily adapts
to nilpotents in the Lie algebra, or we can invoke the Springer isomorphism to translate between unipotents
and nilpotents in very good characteristic. However, it is not always the case that such a component group
representative can be chosen in a single maximal torus T as sk varies. Indeed, if it could then the component
group A(N) would be commutative since T is commutative, but some nilpotent orbits in exceptional groups
have centralizer with a non-abelian component group. When all representatives can be chosen in a single T ,
then by Proposition 4.2.4.7 we could verify (4.2.4.2).

Proof. Let Φ = Φ(G,T ) and ∆ be a basis for a set Φ+ of positive roots. By hypothesis, we may represent
N as N =

∑
β∈J Nβ where Nβ is an O-basis for the root line gβ and J ⊂ Φ+. As G is simply connected,

the simple coroots span the cocharacter lattice, so we may write

sk =
∏
α∈∆

α∨(tα)

for some tα ∈ Gm(k) = k×. As sk ∈ ZGk(Nk), the action of sk on Nβ is trivial for each β ∈ J , so for all
β ∈ J ∏

α

t〈β,α
∨〉

α = 1.

As we have used the existence of Chevalley groups over Z to reduce to the case k = Fp, all of the tα are of
finite order. Thus we pick a root of unity tk ∈ k× such that each tα is a power of tk. Let the order of tk be

m, which we know is prime to p. Choose n′α so that t
n′α
k = tα. Then we know for all β ∈ J

t
∑
α n
′
α〈β,α

∨〉
k = 1.

In other words,
∑
α n
′
α〈β, α∨〉 ≡ 0 (mod m).

Now pick a lift t ∈ O× of tk that is an mth root of unity (as we may do since p - m and O is Henselian).
The element

s :=
∏
α∈∆

α∨(t)n
′
α ∈ T (O)

also lies in ZG(N)(O) because for any β ∈ J

t
∑
α n
′
α〈β,α

∨〉 = 1

(as this mth root of unity in O× has trivial reduction in k×). This says that s acts trivially on Nβ for any
β ∈ J .

We now review a description of the component groups A(N) = ZGk(Nk)/ZGk(Nk)◦ over an algebraically
closed field k and sketch an approach that reduces the question of whether (4.2.4.2) holds for the exceptional
groups to extensive case-checking.
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For a connected reductive group H of over an algebraically closed field F of very good characteristic,
there is a classification of the possibilities of the component group of a centralizer ZH(X) for nilpotent
X ∈ Lie(H)(F ). The classification uses the notion of a pseudo-Levi subgroup, which is a subgroup of the
form ZH(s)◦ for a semisimple s ∈ H(F ). This classification will be in terms of triples (L, sZ◦(F ), X) where L
is a pseudo-Levi subgroup of H, Z is the center of L, sZ◦(F ) is a coset of Z◦(F ) such that L = ZH(sZ◦(F ))◦,
and X is a distinguished unipotent in Lie(L) (recall that being distinguished means that every maximal torus
contained in ZH(X) is contained in the center of H).

Fact 4.2.4.9. There is a bijection between H(F )-conjugacy classes of triples (L, sZ◦(F ), X) as above and
H(F )-conjugacy classes of pairs (X,C) where X is a distinguished nilpotent in Lie(H) and C is a conjugacy
class of (ZH(X)/ZH(X)◦) (F ), taking the class of (L, sZ◦(F ), X) to the class of (X, [s]).

This is the main theorem of [MS03]. There it is stated for unipotent elements of H(F ), but in very good
characteristic the Springer isomorphism identifies the unipotent and nilpotent varieties. For simple groups
of adjoint type, an alternate proof is given in [Pre03, Theorem 2].

Example 4.2.4.10. Let us give an explicit construction of pseudo-Levi subgroups when the root system of H
is irreducible. Pick a maximal torus T ⊂ H, and let Φ = Φ(H,T ) be the root system. Let ∆ = {α1, . . . , αr}
be a basis of a system of positive roots, and I = {1, 2, . . . , r}. Let α̃ =

∑
i∈I niαi be the highest root. Define

α0 = −α̃, n0 = 1, and I0 = I ∪ {0}. For a proper subset J ⊂ I0, let ΦJ the set of all roots of the form∑
i∈J aiαi. The subgroup LJ of H generated by T and the root groups Uα for α ∈ ΦJ is a pseudo-Levi

subgroup, and all pseudo-Levi subgroups are conjugate to one of this form [MS03, Propositions 30, 32].
Consider the case H = GL4 with diagonal torus T and upper triangular Borel subgroup B. The pair

(B, T ) determines a basis of positive simple roots {α1, α2, α3}. The other positive roots are α1 +α2, α1 +α3,
and the highest root α̃ = α1 + α2 + α3. Suppose J ⊂ {1, 2, 3}. Then LJ is a Levi factor of a parabolic
subgroup of H. For example, if J = {1} then LJ is generated by T , Uα1 and U−α1 ; this LJ is the identity
component of the centralizer of a diagonal element of the form

s =


λ1 1 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3


with pairwise distinct λ1, λ2, λ3 ∈ k×, and is also a Levi factor of the parabolic subgroup of block upper
triangular matrices with blocks of size 2, 1 and 1. A distinguished nilpotent element in the Lie algebra of
LJ is

X =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


and the centralizer of X is connected (as is always the case for GLn). The pair (LJ , X) corresponds to the
pair (X, [s]), where s lies in the identity component of the centralizer of X

If 0 ∈ J , the pseudo-Levi LJ may be less familiar. Consider J ′ = {0, 1}. Then LJ′ is generated by T ,
Uα1

, Uα1+α2+α3
, Uα2+α3

, U−α1−α2−α3
, U−α1

, and U−α2−α3
, and it is also the identity component of the

centralizer of a diagonal element s′ of the form

s′ =


λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ1


with pairwise distinct λ1, λ2 ∈ k×. Alternately, LJ′ is a Levi factor of the parabolic subgroup determined
by the flag 0 ⊂ span(e1, e2, e4) ⊂ F 4 (where {e1, e2, e3, e4} is the standard basis of F 4).

Remark 4.2.4.11. In our example, when 0 ∈ J we saw that LJ is a Levi factor of a parabolic subgroup
of H. This is not true in general. In fact, a pseudo-Levi subgroup is a Levi factor of a parabolic subgroup
if and only if the pair (L,X) corresponds to (X, [1]) [Pre03, Theorem 3.7]. But ZH(X) has more than one
connected component in general.
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We now return to the relative situation over O, and remember that we have extended (O, k) so that k is
algebraically closed.

Lemma 4.2.4.12. Suppose that for every conjugacy class of A(N), there exists an element s ∈ ZG(N)(O)
such that sZGk(Nk)◦ lies in that conjugacy class. Then for every coset in A(N) there exists an element
s ∈ ZG(N)(O) representing that coset.

Proof. Consider the subset
Σ = {sZGk(Nk)◦ : s ∈ ZG(N)(O)} ⊂ A(N)

It is certainly a subgroup, and it meets every conjugacy class of the finite group A(N). Consider the
decomposition A(N) = ∪g∈A(N)/Σ gΣg−1. Each gΣg−1 contains the identity, so by comparing sizes we see
that A(N) = Σ.

Thus it would suffice to show that for each triple (Lk, skZ
◦
k , Nk) produced in Fact 4.2.4.9 (applied to Gk

over k in the role of H and F ), sk is the reduction of an element s ∈ G(O) which acts trivially on N . We
may conjugate so that sk ∈ T (k), in which case Tk ⊂ Lk. Doing so changes Nk, so we no longer have an
explicit description of N in terms of root data. Without such a description, it is not clear how to lift sk
using cocharacters as in Proposition 4.2.4.7.

We may conjugate so that Lk is of the form LJ which contains Tk. The k-group LJ is reductive [MS03,
Lemma 14], and p is good for LJ [MS03, Proposition 16]. The nilpotent Nk lies in a nilpotent orbit for LJ ,

so as in Remark 4.1.2.1 it is LJ(k)-conjugate to some nilpotent N
′

which can be expressed in terms of the

roots of Φ(LJ , Tk). In particular, N
′

has a natural lift N ′ to G(O). However, it is not clear that N ′ and the
original N are G(O)-conjugate. Both are described in terms of roots of Φ(G,T ), so for the finite number of
nilpotent orbits in exceptional groups this assertion could be attacked by (unpleasant) case-checking. As sk
belongs to Tk and N ′ is described in terms of Φ(G,T ), Proposition 4.2.4.7 would then lift sk. Of course, a
uniform approach would be preferable.

Remark 4.2.4.13. McNinch analyzes the centralizer of an “equidimensional nilpotent” in [McN08]. An
equidimensional nilpotent is an element N ∈ g such that NK is nilpotent and the dimension of the special
and generic fibers of ZG(N) are the same. [McN08, §5.2] claims that such ZG(N) are O-smooth because the
fibers are smooth of the same dimension. This deduction is incorrect : it relies on [McN08, 2.3.2] which uses
the wrong definition of an equidimensional morphism and thereby incorrectly applies [SGA1, Exp. II, Prop
2.3].

According to [SGA1, Exp. II, Prop 2.3] (or see [EGAIV3, §13.3, 14.4.6, 15.2.3]), for a Noetherian scheme
Y , a morphism f : X → Y locally of finite type, and points x ∈ X and y = f(x) with Oy normal, f is
smooth at x if and only if f is equidimensional at x and f−1(y) is smooth over k(y) at x. But by definition
in [EGAIV3, 13.3.2], an equidimensional morphism is more than just a morphism all of whose fibers are of
the same dimension (the condition checked in [McN08, 2.3.2]): a locally finite type morphism f is called
equidimensional of dimension d at x ∈ X when there exists an open neighborhood U of x such that for every
irreducible component Z of U through x, f(Z) is dense in some irreducible component of Y containing y
and for all x′ ∈ U the fiber f−1(f(x′)) ∩ U has all irreducible components of dimension d.

This is much stronger than the fibers simply being of the same dimension. To see the importance of the
extra conditions, consider a discrete valuation ring O with field of fractions K and residue field k, and the
morphism from X, the disjoint union of SpecK and Spec k, to Y = SpecO. The fibers are of the same
dimension (zero) and smooth but the morphism is not flat. This morphism is also not equidimensional at
Spec k: the only irreducible component of X containing Spec k is the point itself, with image the closed point
of SpecO. This is not dense in SpecO, the only irreducible component of the only open set containing the
closed point of SpecO.

The smoothness of centralizers of an equidimensional pure nilpotent is important to proving the main
results of [McN08]. In particular, the results in §6 and §7 in [McN08] crucially rely on the smoothness
of the centralizers of such nilpotents, leaving a gap in the proof of Theorem B in [McN08] concerning the
component group of centralizers. The method we have discussed here reverses this, understanding the
geometric component group well enough to produce sufficiently many O-valued points in order to deduce
smoothness of the centralizer in classical cases in very good characteristic via Lemma 4.2.3.1.
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4.3 Deformations of Nilpotent Elements

As before, let O be a discrete valuation ring with residue field k of characteristic p > 0, and let G be a split
reductive group scheme over O (with connected fibers) such that p is very good for G. Let g = LieG. For a
nilpotent element N ∈ gk, we define the notion of a pure nilpotent lift of N in g and study the space of such
lifts.

4.3.1 Pure Nilpotent Lifts

Let N ∈ gk be a nilpotent with Bala-Carter data σ ∈ C. Suppose there exists Nσ ∈ g lifting N such that
(Nσ)K ∈ OK,σ and ZG(Nσ) is smooth over O. We will define the notion of a “pure nilpotent” N ∈ g lifting

N with NK nilpotent.

Remark 4.3.1.1. For classical groups, Proposition 4.2.4.2 shows that for any nilpotent N ∈ gk, there exists
N ′σ ∈ g such that (N ′σ)k ∈ Ok,σ, ZG(N ′σ) is O-smooth, and such that (N ′σ)k and N are G(k)-conjugate. Thus

(N ′σ)k and N are conjugate by g ∈ G(k′) for some finite extension k′/k. Lift g to an element g ∈ G(O′)
for a Henselian discrete valuation ring local over O and having residue field k′. The element gN ′σg

−1 ∈ gO′

reduces to Nk′ and has the required properties. So the above hypothesis is satisfied for classical groups after
a finite flat local extension of O.

Definition 4.3.1.2. Define the functor NilN : ĈO → Sets by

NilN (R) = {N ∈ gR|AdG(g)(Nσ) = N for some g ∈ Ĝ(R), Nk = N}.

Call these N ∈ NilN (R) the pure nilpotents lifting N .

This is obviously a subfunctor of the formal neighborhood of N in the affine space g over O attached to
g. The key to analyzing NilN is that ZGR(N) is smooth over R since ZG(Nσ) is O-smooth and (Nσ)R is in

the G-orbit of N . To ease notation below, we shall write gNg−1 rather than AdG(g)(N) for g ∈ Ĝ(R).

Lemma 4.3.1.3. The functor NilN is pro-representable.

Proof. We will use Schlessinger’s criterion to check pro-representability. As NilN is a subfunctor of the formal
neighborhood of the scheme g at N , the only condition to check is the analogue of Definition 2.2.2.7(2): given
a Cartesian diagram in CO

R1 ×R0 R2
π2 //

π1

��

R2

��

R1
// R0

and Ni ∈ NilN (Ri) such that N1 and N2 reduce to N0, we want to check that N1×N2 ∈ NilN (R1×R0
R2). By

definition, there exists g1 ∈ Ĝ(R1) and g2 ∈ Ĝ(R2) such that N1 = g1Nσg
−1
1 and N2 = g2Nσg

−1
2 . Consider

the element g1g
−1
2 ∈ Ĝ(R0). Observe that

g1g
−1
2 Nσg2g

−1
1 = g1N0g

−1
1 = Nσ ∈ gR0

.

In particular, g1g
−1
2 ∈ ZG(Nσ)(R0). The extension R2 → R0 has nilpotent kernel, so as ZG(Nσ) is smooth

over O there exists h ∈ ZG(Nσ)(R2) lifting g1g
−1
2 . The element

(g1, hg2) ∈ R1 ×R0 R2

conjugates N1 ×N2 to Nσ. Hence N1 ×N2 ∈ NilN (R1 ×R0 R2).

Lemma 4.3.1.4. The functor NilN is formally smooth, in the sense that for a small surjection R2 → R1 of
coefficient O-algebras the map

NilN (R2)→ NilN (R1)

is surjective. Moreover, NilN has relative dimension dimGk − dimZGk(Nk) over O.
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Proof. Given N ∈ NilN (R1), there exists g ∈ Ĝ(R1) such that gNg−1 = Nσ. As G is smooth over O, we

may find g′ ∈ Ĝ(R2) lifting g. Then (g′)−1Nσg
′ is a lift of N to R2. From its definition, the tangent space to

NilN is gk/zg(Nk), so the formally smooth NilN has relative dimension dimGk − dimZGk(Nk) since ZG(N)
is O-smooth.

Now suppose that A is a complete local Noetherian O-algebra with residue field k.

Lemma 4.3.1.5. The inverse limit lim←−NilN (A/mnA) equals {N ∈ gA : N = gNσg
−1 for some g ∈ G(A)}.

Proof. It is immediate that the second is a subset of the first. On the other hand, suppose we had compatible
elements Ni ∈ NilN (A/miA) such that Ni is Ĝ(A/miA)-conjugate to Nσ.

By induction, we will show there exists gi ∈ Ĝ(A/miA) such that Ni = giNσg
−1
i and gi reduces to

gi−1. The base case i = 1 is just the assertion that (Nσ)k equals N1. Given gi ∈ Ĝ(A/miA), we know

there is some element g′i+1 ∈ Ĝ(A/mi+1
A ) such that Ni = g′i+1Nσ(g′i+1)−1. The element (g′i+1)−1gi lies in

ZG(Nσ)(A/miA). As ZG(Nσ) is smooth over O, we may lift to produce an element g̃ ∈ ZG(Nσ)(A/mi+1
A ) for

which Ni = g′i+1g̃Nσ(g′i+1g̃)−1 and such that g′i+1g̃ reduces to gi ∈ Ĝ(A/miA). This completes the induction.

Finally let g ∈ Ĝ(A) be the limit of the gi and observe gNσg
−1 is the limit of the Ni.

Remark 4.3.1.6. If we had defined NilN on the larger category ĈO in the obvious way, Lemma 4.3.1.5
would say that NilN is continuous.

Remark 4.3.1.7. One could define a scheme-theoretic “nilpotent cone” over O as the vanishing locus of
the ideal of non-constant homogeneous G-invariant polynomials on g. The arguments in this section could
be rephrased as constructing a formal scheme of pure nilpotents inside the formal neighborhood of N in
g. A natural question is whether there is a broader notion of pure nilpotents that gives a locally closed
subscheme of the scheme-theoretic nilpotent cone. For instance, for N,N ′ ∈ g, if their images in gK and
gk are nilpotent in orbits with the same combinatorial parameters, are N and N ′ conjugate under G over a
discrete valuation ring local over O?

When G = GLn, this has been explored by Taylor in the course of constructing local deformation condi-
tions [Tay08, Lemma 2.5]. The method uses the explicit description of the orbit closures in Example 4.1.1.4
to define an analogue over O. It would be interesting to find a way to do the same for a general split
connected reductive group.

4.4 The Minimally Ramified Deformation Condition for Tamely
Ramified Representations

In this section, we will generalize the minimally ramified deformation condition introduced in [CHT08, §2.4.4]
for GLn to symplectic and orthogonal groups. We also explain why another more immediate notion based
on parabolic subgroups, giving the same deformation condition for GLn, is not liftable in general (even for
GSp4).

Let G be either GSpm or GOm (or GLm to recover the results of [CHT08, §2.4.4]) over the ring of integers
O in a p-adic field with uniformizer π and residue field k of characteristic p > 0 with m ≥ 4. As always, we
assume that p is very good for Gk (i.e. p 6= 2). Let g = Lie(G).

4.4.1 Passing between Unipotents and Nilpotents

As in §4.3.1, we work with a pure nilpotent Nσ ∈ g for which ZG(Nσ) is O-smooth, (Nσ)K ∈ OK,σ, and

(Nσ)k ∈ Ok,σ. Define N := (Nσ)k. We studied deformations of N in §4.3.1, but will ultimately want to
analyze deformations of Galois representations which take on unipotent values at certain elements of a local
Galois group. Thus, we need a way to pass between unipotent and nilpotent elements. For classical groups,
we can use a truncated version of the exponential and logarithm maps:
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Fact 4.4.1.1. Suppose that p ≥ m and that R is an O-algebra. If A ∈ Matm(R) has characteristic polynomial
xm then

exp(A) := 1 +A+A2/2 + . . .+Am−1/(m− 1)!

has characteristic polynomial (x− 1)m. If B ∈ Matm(R) has characteristic polynomial (x− 1)m then

log(B) := (B − 1)− (B − 1)2/2 + . . .+ (−1)m(B − 1)m−1/(m− 1)

has characteristic polynomial xm. Furthermore for C ∈ GLm(R) we have exp(CAC−1) = C exp(A)C−1,
log(CBC−1) = C log(B)C−1, log(exp(A)) = A, exp(log(B)) = B, exp(qA) = exp(A)q, and log(Bq) =
q log(B) for any integer q.

This is [Tay08, Lemma 2.4]. The key idea is that because all the higher powers of A and B − 1 vanish
and all of the denominators appearing are invertible as p ≥ m, we can deduce these facts from results about
the exponential and logarithm in characteristic zero.

Suppose J is the matrix for a perfect symmetric or alternating pairing over R.

Corollary 4.4.1.2. For A and B as in Fact 4.4.1.1 with exp(A) = B, ATJ + JA = 0 if and only if
BTJB = J .

Proof. Directly from the definitions we see that exp(AT ) = exp(A)T . Observe that exp(JAJ−1) = JBJ−1

and exp(−AT ) = (BT )−1. Thus JAJ−1 = −AT if and only if (BT )−1 = JBJ−1.

We shall use this exponential map to convert pure nilpotents into unipotent elements. Let R be a
coefficient ring over O. By Definition 4.3.1.2, any pure nilpotent N ∈ NilN (R) is G(R)-conjugate to Nσ, so
it has characteristic polynomial xm. Denoting the derived group of G by G′, any element of g nilpotent in
gk lies in g′ = LieG′ (if G = GSpm for example, this means that NJ + JN = 0, not just NJ + JN = λJ for
some λ ∈ O). Thus, Corollary 4.4.1.2 shows that exp(N) ∈ G(R). This gives an exponential map

exp : NilN → G (4.4.1.1)

such that for g ∈ Ĝ(R), N ∈ NilN (R), and q ∈ Z we have exp(qN) = exp(N)q and g exp(N)g−1 =
exp(AdG(g)N).

Remark 4.4.1.3. This is a realization over O of a special case of the Springer isomorphism identifying
the nilpotent and unipotent varieties in very good characteristic. For later purposes, we will use that the
identification to be compatible with the multiplication in the sense that exp(qA) = exp(A)q. In the case of
GLm, a Springer isomorphism that works in any characteristic is given by X → 1 +X for nilpotent X, but
this is not compatible with multiplication.

Remark 4.4.1.4. Let G be a split reductive O-group with U the unipotent radical of a parabolic O-
subgroup P of G. Let r be the nilpotence class of UK (the smallest integer for which xr = 1 for all
x ∈ UK) and suppose that p > r. According to [Sei00, §5] (following [Ser94]), there is an exponential
isomorphism expU : LieU → U defined over O. Making LieU into an O-group using the Hausdorff formula,
this exponential is a map of O-groups, so expU (qN) = expU (N)q for N ∈ LieU and q ∈ Z.

When p is larger than the Coxeter number of G, this provides an approach to converting pure nilpotents
N ∈ NilN (R) into elements of G(R). Having to select a U in order to define the exponential map adds
complexity; as we only need results for the classical groups, we do not purse this here.

4.4.2 Minimally Ramified Deformations

Assume the residue field k of O is finite of characteristic p, with O complete. Now suppose L is a finite
extension of Q` (with ` 6= p), and denote its absolute Galois group by ΓL. Consider a representation
ρ : ΓL → G(k). We wish to define a (large) smooth deformation condition for ρ generalizing the minimally
ramified deformation condition for GLn defined in [CHT08, §2.4.4]. In this section we do so for a special
class of tamely ramified representations. This requires making an étale local extension of O, which will be
harmless for our purposes.
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Recall that Γt
L, the Galois group of the maximal tamely ramified extension of L, is isomorphic to the

semi-direct product

Ẑ n
∏
p′ 6=`

Zp′

where Ẑ is generated by a Frobenius φ and the conjugation action by φ on the direct product is given by the
cyclotomic character. We consider representations of Γt

L which factor through the quotient ẐnZp. Picking
a topological generator τ for Zp, the action is explicitly given by

φτφ−1 = qτ

where q is the size of the residue field of L. Note q is a power of `, so it is relatively prime to p. This leads
us to study representations of the group Tq = Ẑ n Zp.

Let ρ : Tq → G(k) be a representation. Informally, the deformation condition will be lifts ρ : Tq → G(R)
such that ρ(τ) lies in the “same” unipotent orbit as ρ(τ). To make this meaningful over an infinitesimal
thickening of k, we shall use the notion of pure nilpotents as in Definition 4.3.1.2 since unipotence and
unipotent orbits are not good notions when not over a field.

First, let us check that ρ(τ) ∈ G(k) actually is unipotent. This element decomposes as a commuting
product of semi-simple and unipotent elements of G(k). The order of a semi-simple element in G(k) is prime
to p, while by continuity there is an r ≥ 0 such that τp

r ∈ ker(ρ). Thus ρ(τ) is unipotent. In particular,
log(ρ(τ)) = N is nilpotent, and by Remark 4.3.1.1 after making an étale local extension of O we may
assume that there exists a pure nilpotent Nσ ∈ g lifting N for which ZG(Nσ) is smooth. Making a further
extension if necessary, we may also assume that the unit q ∈ O× is a square. We obtain an exponential map
exp : NilN → G as in (4.4.1.1).

Definition 4.4.2.1. For a coefficient ring R over O, a continuous lift ρ : Tq → G(R) of ρ is minimally
ramified if ρ(τ) = exp(N) for some N ∈ NilN (R).

Example 4.4.2.2. Take G = GLn. Then X 7→ 1n +X gives an identification of nilpotents and unipotents.
Up to conjugacy, over algebraically closed fields parabolic subgroups correspond to partitions of n and every
nilpotent orbit is the Richardson orbit of such a parabolic. Let ρ(τ)− 1n =: N correspond to the partition
σ = n1 + n2 + . . .+ nr. By Example 4.1.2.2, the lift Nσ of N is conjugate to a block nilpotent matrix with
blocks of size n1, n2, . . . , nr. The points N ∈ NilN (R) are the Ĝ(R)-conjugates of Nσ. It is clear (since
p > n) that if ρ(τ) ∈ NilN (R) then

ker(ρ(τ)− 1n)i ⊗R k → ker(ρ(τ)− 1n)i (4.4.2.1)

is an isomorphism for all i. Conversely, repeated applications of [CHT08, Lemma 2.4.15] show that any ρ(τ)

satisfying this collection of isomorphism conditions is Ĝ(R)-conjugate to Nσ. Thus the minimally ramified
deformation condition for GLn defined in [CHT08] agrees with our definition. Note that the identification
X 7→ 1n + X does not satisfy qX → (1 + X)q, so it will not work in our argument. The proof of [CHT08,
Lemma 2.4.19] uses a different method for which this non-homomorphic identification suffices.

Our goal is to show that the functor of minimally ramified lifts is pro-representable over O and that the
representing object Rm.r.�

ρ is formally smooth over O.

Proposition 4.4.2.3. Under our assumptions on G, the local deformation ring Rm.r.�
ρ is formally smooth

over O of relative dimension dimGk.

Proof. Let Φ = ρ(φ) ∈ G(k) and let ĜΦ be the formal completion of G at Φ. Using the relation

ρ(φ)ρ(τ)ρ(φ)−1 = ρ(τ)q,

we deduce that ΦN Φ
−1

= qN . Therefore we study the functor MN on ĈO defined by

MN (R) = {(Φ, N) : N ∈ NilN (R), Φ ∈ ĜΦ(R), ΦNΦ−1 = qN} ⊂ NilN (R)× ĜΦ(R).
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Any such lift (Φ, N) to a coefficient ring R determines a homomorphism Tq → G(R) lifting ρ via φ 7→ Φ and
τ 7→ exp(N), and it is continuous because exp(N) is unipotent. We will analyze MN through the composition

MN → NilN → Spf O.

First, observe that MN → NilN is relatively representable as “ΦN = qNΦ” is a formal closed condition on

points Φ of (ĜΦ)R for each N ∈ NilN (R).
From Lemma 4.3.1.4, we know that NilN is formally smooth over O, and the universal nilpotent is gNσg

−1

for some g ∈ Ĝ(NilN ). To check formal smoothness of the map MN → NilN , it therefore suffices to check
the formal smoothness of the fiber of MN over the O-point Nσ of NilN .

We have written down Φσ ∈ G(O) satisfying ΦσNσΦ−1
σ = qNσ in Remark 4.2.2.9. Observe that Φ Φ

−1

σ ∈
ZG(Nσ)(k). By smoothness, we may lift Φ Φ

−1

σ to an element s ∈ ZG(Nσ)(O). Then sΦσ reduces to Φ and
satisfies (sΦσ)Nσ(sΦσ)−1 = qNσ, so the fiber of MN over Nσ has an O-point. The relative dimension of

the formally smooth NilN is dimGk − dimZGk(N) by Lemma 4.3.1.4, and MN → NilN is a ẐG(Nσ)-torsor
since it has an O-point over Nσ. As ZG(Nσ) is smooth it follows that MN is formally smooth over Spf O of
relative dimension dimGk.

Example 4.4.2.4. This recovers [CHT08, Lemma 2.4.19] in the case G = GLn.

Let S be the (torus) quotient of G by its derived group G′, and µ : G → S the quotient map. For use
elsewhere, we now study a variant where we fix a lift ν : Tq → S(O) of µ ◦ ρ : Tq → S(k):

Corollary 4.4.2.5. The deformation condition of minimally ramified lifts ρ : Tq → G(R) satisfying µ◦ρ = ν

is a liftable deformation condition. The framed deformation ring Rm.r.,ν,�
ρ is of relative dimension dimGk−1.

Proof. The quotient torus S = G/G′ is split of rank 1, so the subscheme Rm.r.,ν,�
ρ ⊂ Rm.r.�

ρ is the vanishing

of locus of a single function. As Rm.r.�
ρ is formally smooth over O with relative dimension dimGk, it suffices

to check that the “reduced” tangent space of Rm.r.,ν,�
ρ over k is a proper subspace of the “reduced” tangent

space of Rm.r.�
ρ .

Let Z be the maximal central torus of G. On the level of Lie algebras, we know that LieG splits over O
as a direct sum of LieG′ and LieS ' LieZ as p is very good for G. We can modify a lift ρ0 over R = k[ε]/(ε2)
by multiplying against an unramified non-trivial character Tq → Z(R) with trivial reduction, changing µ◦ρ0.

Thus the “reduced” tangent space of Rm.r.,ν,�
ρ is a proper subspace of that of Rm.r.�

ρ

4.4.3 Deformation Conditions Based on Parabolic Subgroups

The use of nilpotent orbits is not the only approach to defining a minimally ramified deformation condition.
As discussed in §1.2.3, the method used to prove [CHT08, Lemma 2.4.19] suggests a generalization from
GLn to other groups G based on deformations lying in certain parabolic subgroups of G. This deformation
condition is not smooth for algebraic groups beyond GLn, so it does not work in Ramakrishna’s method. In
this section we give a conceptual explanation for this phenomenon.

Let P ⊂ G be a parabolic O-subgroup. The Richardson orbit for Pk intersects (LieP )k in a dense open
set which is a single geometric orbit under Pk. Suppose that ρ(τ) is the exponential of a k-point N in the
Richardson orbit, and consider deformations ρ : Tq → G(O) of ρ ramified with respect to P in the sense that
ρ(τ) ∈ P (compare with Definition 1.2.3.1). This requires specifying a lift of N that lies in LieP . One could
hope that such lifts would automatically be G(O)-conjugate to the fixed lift Nσ defined in Proposition 4.1.2.8,
reminiscent of the definition we gave for NilN , a situation in which the associated (framed) deformation ring
is smooth.

We now show that often smoothness fails if N does not lie in the Richardson orbit of Pk. Lifts of N
can “change nilpotent type” yet still lie in a parabolic lifting Pk, such as the example of the standard Borel
subgroup in GL3 with

N =

0 1 0
0 0 p
0 0 0

 lifting N =

0 1 0
0 0 0
0 0 0


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In particular, we easily obtain non-pure nilpotents. This is very bad: the nilpotent orbits over a field are
smooth but the nilpotent cone is not smooth, so the deformation problem of deforming with respect to P
should not be smooth because “it sees multiple orbits”. Furthermore, by working with lifts to O even if we
could lift ρ(τ) appropriately, there would still be problems lifting the image of φ because the centralizer of a
non-pure nilpotent is not smooth over O (the special and generic fiber typically have different dimensions).
So it is crucial to choose a parabolic such that N lies in the Richardson orbit of Pk.

For GLn, all nilpotent orbits are Richardson orbits. This is not true in general. In particular, we
should not expect the deformation condition of being ramified with respect to a parabolic to be liftable.
Example 1.2.3.2 illustrates this phenomenon for GSp4, which we now revisit in a more conceptual manner.

Example 4.4.3.1. Take G = GSp4. Parabolic subgroups correspond to isotropic flags. Up to conjugacy,
these subgroups are G (the trivial parabolic) and stabilizers of the flags

0 ⊂ Span(v1) ⊂ Span(v1, v2) ⊂ Span(v1, v2, v3) ⊂ k4,

0 ⊂ Span(v1) ⊂ Span(v1, v2, v3) ⊂k4, 0 ⊂ Span(v1, v2) ⊂ k4

where {v1, v2, v2, v4} is the standard basis of k4. Their Richardson orbits correspond to the respective
nilpotent orbits indexed by the partitions 1 + 1 + 1 + 1, 4, 4, and 2 + 2. In particular, the same Richardson
orbit is associated to two of these. There is one more partition of 4 with odd numbers appearing an even
number of times: 2 + 1 + 1. This is a nilpotent orbit that is not a Richardson orbit; for the representation
in Example 1.2.3.2, log(ρ(τ)) is in this nilpotent orbit.

4.5 Minimally Ramified Deformations of Symplectic and Orthog-
onal Groups

We continue the notation of the previous section. We have defined the minimally ramified deformation
condition for representations factoring through the quotient Tq = Ẑ n Zp of the tame Galois group Γt

L at a
place away from p. In this section, we will adapt the matrix-theoretic methods in [CHT08, §2.4.4], making
use of more conceptual module-theoretic arguments, to define the minimally ramified deformation condition
for any representation when G = GSpm or G = GOm. (Minor variants of this method work for Spm and
SOm, and the original method of [CHT08, §2.4.4] works for GLm.) We naturally embed G into GL(M) for
a free O-module M of rank m, and let V denote the reduction of M , a vector space over the residue field k.

We consider a representation ρ : ΓL → G(k) ⊂ GL(V )(k) which may be wildly ramified (with L an `-adic
field for ` 6= p). We will define a deformation condition for ρ in terms of the minimally ramified deformation
condition for certain associated tamely ramified representations, after possibly extending O. In §4.5.1, we
analyze ρ as being built out of two pieces of data: representations of a closed normal subgroup ΛL of ΓL
whose pro-order is prime to p, and tamely ramified representations of ΓL/ΛL. The representation theory of
ΛL is manageable since its pro-order is prime to p, and representations of ΓL/ΛL can be understood using
the results of the previous section.

4.5.1 Decomposing Representations

We begin with a few preliminaries about representations over rings. Let Λ′ be a profinite group and R be an
Artinian coefficient ring with residue field k. If Λ′ has pro-order prime to p, the representation theory over
k is nice: every finite-dimensional continuous representation is a direct sum of irreducibles, and every such
representation is projective over k[Λ] for any finite discrete quotient Λ of Λ′ through which the representation
factors. We are also interested in corresponding statements over an Artinian coefficient ring R.

Fact 4.5.1.1. Suppose the pro-order of Λ′ is prime to p. Let P and P ′ be R[Λ′]-modules that are finitely
generated over R with continuous action of Λ′, and F be a k[Λ′]-module that is finite dimensional over k
with continuous action of Λ′. Let Λ be a finite discrete quotient of Λ′ through which the Λ′-actions on P ,
P ′, and F factor.

1. If P is free as an R-module, it is projective as a R[Λ]-module.
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2. If P and P ′ are projective over R[Λ], they are isomorphic if and only if P and P ′ are isomorphic.

3. There exists a projective R[Λ]-module (unique up to isomorphism) whose reduction is F .

These statements are special cases of results in [Ser77, §14.4]. We now record two lemmas which do not
need the assumption that the pro-order of Λ′ is prime to p.

Lemma 4.5.1.2. Let P and P ′ be R[Λ′]-modules, finitely generated over R with continuous action of Λ′

factoring through a finite discrete quotient Λ of Λ′. Assume P and P ′ are R[Λ]-projective. The natural map
gives an isomorphism

HomΛ′(P, P
′)⊗R k → HomΛ′(P , P ′).

Proof. We may replace HomΛ′ with HomΛ. Note that mP ′ = m⊗RP ′, so HomΛ(P,mP ′) = HomΛ(P, P ′)⊗Rm
as P and P ′ are R[Λ]-projective. Then apply HomΛ(P,−) to the exact sequence 0→ mP ′ → P ′ → P ′/mP ′ →
0.

Lemma 4.5.1.3. Let Λ be a finite group and let M and M ′ be finite R[Λ]-modules whose reductions M and

M
′

are non-isomorphic irreducible k[Λ]-modules. Then HomR[Λ](M,M ′) = 0.

Proof. Filter M ′ by the composition series {miM ′}, and consider the surjection

mi/mi+1 ⊗M ′ � miM ′/mi+1M ′.

The action of Λ on mi/mi+1 ⊗M ′ is solely on the irreducible M
′
, so as a k[Λ]-module miM ′/mi+1M ′ is

isomorphic to a direct sum of copies of M
′
. Thus

HomR[Λ](M,miM ′/mi+1M ′) = Homk[Λ](M,miM ′/mi+1M ′) = 0

as M and M
′

are non-isomorphic k[Λ]-modules.
By descending induction on i, we shall show that

HomR[Λ](M,miM ′) = 0.

For large i, miM ′ = 0. Consider the exact sequence

0→ mi+1M ′ → miM ′ → miM ′/mi+1M ′ → 0.

Applying HomR[Λ](M,−), we obtain a left exact sequence

0→ HomR[Λ](M,mi+1M ′)→ HomR[Λ](M,miM ′)→ HomR[Λ](M,miM ′/mi+1M ′)

The left term is 0 by induction, and the right term is 0 by the above calculation. This completes the
induction.

Given ρ : ΓL → G(k) ⊂ GL(V )(k) and a lift ρ : ΓL → G(R) ⊂ GL(M)(R) for some R ∈ CO, we now turn
to decomposing the R[ΓL]-module M . Let IL ⊂ ΓL be the inertia group, and pick a surjection IL → Zp.
Define ΛL to be the kernel of this surjection (normal in ΓL). This is a pro-finite group with pro-order prime
to p, and is independent of the choice of surjection. Define the quotient

TL := ΓL/ΛL,

which is a quotient of the tamely ramified Galois group Γt
L and of the form Tq = ẐnZp as in §4.4. We wish to

compatibly decompose V and M as ΛL-modules and then understand the action of ΓL on the decomposition.
We first make a finite extension of k (and hence of O) so that all of the (finitely many) irreducible

representations of ΛL over k occuring in V are absolutely irreducible over k.
Because ΛL has order prime to p, ResΓL

ΛL
(V ) is completely reducible and we can write

ResΓL
ΛL

(V ) =
⊕
τ

Vτ
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where τ runs through the set Σ of isomorphism classes of irreducible representations of ΛL over k occuring
in V , and each Vτ is the τ -isotypic component. We will obtain an analogous decomposition for M .

Let Γ be a finite discrete quotient of ΓL through which ρ factors, and let Λ be the image of ΛL in
Γ. Using Fact 4.5.1.1(3) we can lift τ to a projective R[Λ]-module τ̃ unique up to isomorphism. We will
eventually want this lift to have additional properties (see §4.5.2), but this is not yet necessary. We set
Wτ := HomΛL(τ̃ ,M) and consider the natural morphism⊕

τ

τ̃ ⊗RWτ →M.

Note that M is R[Λ]-projective by Fact 4.5.1.1(1).

Lemma 4.5.1.4. This map is an isomorphism of R[ΛL]-modules.

Proof. It suffices to check it is an isomorphism of R[Λ]-modules. When R = k, we know EndΛ(τ) = k as
we extended k so that all of the irreducible representations of Λ over k occurring inside V are absolutely
irreducible. Splitting up V as a direct sum of irreducibles, we obtain the desired isomorphism.

In the general case, the map is an isomorphism after reducing modulo m (use Lemma 4.5.1.2). Thus
by Nakayama’s lemma it is surjective. Since M is R-projective, the formation of the kernel commutes with
reduction modulo m. Thus, again using Nakayama’s lemma the kernel is zero.

We define Mτ to be the image of τ̃⊗RHomΛL(τ̃ ,M) in M . It is the largest R[ΛL]-direct summand whose
reduction is a direct sum of copies of τ .

We next seek to understand the action of ΓL on this canonical decomposition of M . For g ∈ ΓL, consider
the R[ΛL]-module gMτ : it is a direct summand of M over R whose reduction is a direct sum of copies of
the representation τg defined by τg(h) = τ(g−1hg) for h ∈ ΛL. Thus we see that gMτ = Mτg inside M , and
ΓL permutes the Mτ ’s. The orbits corresponds to sets of conjugate representations.

Consider the stabilizer of Vτ :

ΓL,τ = {g ∈ ΓL : gVτ = Vτ inside V } = {g ∈ ΓL : τg ' τ} ⊂ ΓL

with corresponding image

Γτ = {g ∈ Γ : gVτ = Vτ inside V } = {g ∈ Γ : τg ' τ} ⊂ Γ.

Then the k-span of the members of the ΓL-orbit of Vτ is exactly the representation IndΓL
ΓL,τ

Vτ = IndΓ
Γτ Vτ .

Letting [τ ] denote the set of R[ΛL]-isomorphism classes of Λ-representations ΓL-conjugate to τ , by taking
into account the action of Γτ the isomorphism in Lemma 4.5.1.4 becomes an isomorphism of R[ΓL]-modules

M =
⊕
[τ ]

IndΓL
ΓL,τ

Mτ (4.5.1.1)

using one representative τ per ΓL-conjugacy class [τ ].
For orthogonal or symplectic representations, this decomposition interacts with duality. Denote the

similitude character by µ, and let ν := µ ◦ ρ : ΓL → k×. Let N be a free O-module of rank 1 on which ΓL
acts by a specified continuous O×-valued lift ν of ν, and let N be its reduction modulo m. For an O-module
M , define M∨ = HomO(M,N) with the evident ΓL-action. The perfect pairing gives an isomorphism of
R[ΓL]-modules M 'M∨. In particular,

M∨τ 'Mτ∗

for some irreducible representation τ∗ of ΛL occuring in V . Note that τ∗ ' τ∨ as k[ΛL]-modules. There are
three cases:

• Case 1: τ is not conjugate to τ∗;

• Case 2: τ is isomorphic to τ∗;

• Case 3: τ is conjugate to τ∗ but not isomorphic.
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In the second case, we claim that the isomorphism of k[ΛL]-modules ı : τ ' τ∨ gives a sign-symmetric
perfect pairing on τ . Note that Wτ = HomΛ(τ, V ) ' HomΛ(τ∨, V ∨) ' W∨τ as Vτ ' V ∨τ . This isomorphism
ϕτ defines a pairing 〈, 〉Wτ

on Wτ via

〈w1, w2〉Wτ := ϕτ (w1)(w2).

Let ψ : V → V ∨ be the isomorphism given by m 7→ 〈m,−〉V , and define 〈v1, v2〉τ := ı(v1)(v2) for v1, v2 ∈ τ .
We have a commutative diagram

τ ⊗Wτ
id⊗ϕτ //

��

τ ⊗W∨τ
ı⊗id

// τ∨ ⊗W∨τ

��

Vτ
ψ

// V ∨τ

The commutativity says that for elementary tensors mi = vi ⊗ wi ∈ Vτ = τ ⊗Wτ we have

〈m1,m2〉M = ψ(m1)(m2) = (ı(v1)⊗ ϕτ (w1)) (v2 ⊗ w2) = ı(v1)(v2) · ϕτ (w1)(w2) = 〈v1, v2〉τ 〈w1, w2〉Wτ .
(4.5.1.2)

Lemma 4.5.1.5. The pairing 〈, 〉τ is a sign-symmetric.

Proof. Suppose there exists v ∈ τ such that ı(v)(v) 6= 0. For w1, w2 ∈Wτ , (4.5.1.2) gives

ı(v)(v)ϕτ (w1)(w2) = 〈v ⊗ w1, v ⊗ w2〉V = ε〈v ⊗ w2, v ⊗ w1〉V = εı(v)(v)ϕτ (w2)(w1).

Canceling ı(v)(v), we conclude that 〈w1, w2〉Wτ
= ε〈w2, w1〉Wτ

. Using (4.5.1.2), we conclude that

εı(v2)(v1) · ϕτ (w2)(w1) = ε〈m2,m1〉V = 〈m1,m2〉V = ı(v1)(v2) · ϕτ (w1)(w2) = εı(v1)(v2) · ϕτ (w2)(w1).

Choosing w1 and w2 with 〈w2, w1〉Wτ
6= 0 (possible as 〈, 〉V is perfect), we conclude that 〈v1, v2〉τ̃ = 〈v2, v1〉τ̃ .

Otherwise ı(v)(v) = 0 for all v ∈ τ , in which case 〈, 〉τ̃ is alternating.

In §4.5.2 we will see that the action of ΛL on the module underlying τ̃ can be extended to an action of
ΓL,τ factoring through Γτ . Therefore, Wτ = HomΛL(τ̃ ,M) is naturally a representation of TL,τ := ΓL,τ/ΛL,
and of Tτ := Γτ/Λ (a finite quotient of TL,τ ). In §4.5.3, we will use the minimally ramified deformation
condition of §4.4 to specify which deformations Wτ are allowed. Together with the decomposition (4.5.1.1)⊕

[τ ]

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )→M

this defines a deformation condition for ρ. Some care is needed to ensure compatibility with the pairing on
M , which will require breaking into cases in the next sections.

4.5.2 Extension of Representations

We continue the notation of the previous section, where τ is an absolutely irreducible representation of ΛL
over k. We need to lift this to a representation over O and extend it to a representation of ΓL,τ . We will
have to do something extra for the representation to be compatible with a pairing, depending on how τ and
τ∗ are related.

In Case 1, we ignore the pairing. The results of [CHT08, §2.4.4] let us pick a O[ΓL,τ ]-module τ̃ that is
a free O-module and reduces to τ . In this case, τ̃∨ is a free O-module reducing to τ∗.

In Case 2, from Lemma 4.5.1.5 it follows that τ is a symplectic or orthogonal representation. We will
adapt the GLn-technique of [CHT08] to produce a symplectic or orthogonal extension τ̃ . Letting n = dim τ ,
the representation τ gives a homomorphism τ : ΛL → G(k) where G is GSpn or GOn.

First, we claim that there is a continuous lift τ̃ : ΛL → G(W (k)): without the pairing, this would
be Fact 4.5.1.1(3). To also take into account the pairing, consider deformation theory for the residual
representation τ . This is a smooth deformation condition as H2(ΛL, ad τ) = 0: ΛL has pro-order prime
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to p and ad τ has order a power of p. Therefore the desired lift exists. It is unique (up to conjugations
which preserve τ) because the tangent space is zero dimensional as H1(ΛL, ad τ) = 0. By considering
representations of the group ΛL/ ker(τ), we may and do assume arrange that ker(τ̃) = ker(τ) as subgroups
of ΛL.

Remark 4.5.2.1. For g ∈ ΓL,τ , the isomorphism of k[ΛL]-modules τg ' τ lifts to an isomorphism τ̃g ' τ̃
of O[ΛL]-modules by uniqueness. Thus ΓL,τ = {g ∈ ΓL : τ̃g ' τ̃}.

We will now show how to continuously extend τ̃ to ΓL,τ . The first step in constructing the extension is
to understand the structure of ΓL,τ and IL ∩ ΓL,τ , where IL is the inertia group.

Recall that TL = ΓL/ΛL is the semi-direct product of Ẑ and Zp, where Ẑ is generated by a lift of
Frobenius φ and Zp is generated by an element σ, with φσφ−1 = σq where q = `a is the size of the residue
field of L.

Lemma 4.5.2.2. The exact sequence

1→ ΛL → ΓL → TL → 1

is topologically split, so ΓL is a semi-direct product.

Proof. Let S be a Sylow pro-p subgroup of IL, which must be isomorphic to Zp. Let φ be a lift of Frobenius
to ΓL. Then φSφ−1 is another Sylow pro-p subgroup of IL, and hence is conjugate to S by an element of
IL. By choosing the lift φ, we may thereby assume that φ normalizes S. But then it is clear that S and φ
together topologically generate TL, giving the desired splitting.

For TL,τ := ΓL,τ/ΓL, this gives a topological splitting of

1→ ΛL → ΓL,τ → TL,τ → 1.

As ΓL,τ is an open subgroup of ΓL, we observe that TL,τ is an open subgroup of TL. Note that TL,τ is an
open normal subgroup of TL topologically generated by some powers of φ and σ which will be denoted by
φτ and στ (since any open subgroup of a semidirect product C n C ′ for pro-cyclic C and C ′ is of the form
C0 n C ′0 for open subgroups C0 ⊂ C and C ′0 ⊂ C ′). In particular, TL,τ is itself isomorphic to Tq′ for some
q′. The element στ and ΛL together topologically generate ΓL,τ ∩ IL.

Before extending τ̃ , we need several technical lemmas.

Lemma 4.5.2.3. The centralizer of the image of τ̃ is O.

Proof. As τ is absolutely irreducible, EndΛL(τ) = k. By Lemma 4.5.1.2, we see that the reduction of
EndΛL(τ̃) modulo the maximal ideal of O is k, so the map O ↪→ EndΛL(τ̃) is surjective by Nakayama’s
lemma.

Lemma 4.5.2.4. The dimension of τ is not divisible by p.

Proof. As τ is continuous and ΛL has pro-order prime to p, the representation τ factors through a finite
discrete quotient Λ of ΛL whose order is prime to p. Such a representation is the reduction of a projective
O[Λ]-module by Fact 4.5.1.1(3). Inverting p, we obtain a representation of Λ in characteristic zero that is
absolutely irreducible since the “reduction” τ is absolutely irreducible over k. By [Ser77, §6.5 Corollary 2],
the dimension of this representation (equal to the dimension of τ) divides the order of Λ.

We will now extend τ̃ from ΛL ⊂ IL to ΓL,τ by defining it on the topological generators στ and φτ . We
say that such an extension has tame determinant if det(τ̃(στ )) has finite order which is prime to p.

Lemma 4.5.2.5. There is a unique continuous extension τ̃ : ΓL,τ ∩ IL → G(O) with tame determinant.

Proof. A continuous extension of τ̃ to ΓL,τ ∩ IL is determined by its value on στ . As στ ∈ ΓL,τ , in light of
Remark 4.5.2.1 there is an A ∈ G(O) such that for g ∈ ΛL we have

τ̃(στgσ
−1
τ ) = Aτ̃(g)A−1.
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We would like to send στ to the element A. However, this might not produce a continuous extension, and
even if it does it might not have tame determinant unless we pick A correctly. As στ is a topological generator
for a group isomorphic to Zp, the existence of a continuous extension satisfying στ 7→ A is equivalent to
some p-power of A having trivial reduction. We wish to show that there is a unique choice of such A that
also makes the extension have tame determinant.

We will first show that some power Ap
b

lies in the centralizer of the image τ̃(ΛL). Consider the conjugation
action of 〈στ 〉 on ΛL. As ker τ̃ = ker τ is a normal subgroup of ΓL,τ (if g ∈ ΓL,τ and τ(h) = 1, then τg(h)
is conjugate to τ(h) = 1 by Remark 4.5.2.1) we get an action of 〈στ 〉 on ΛL/ ker τ ' τ(ΛL). The action is
continuous, so there is a power pb such that for all g ∈ ΛL we have

τ(σp
b

τ gσ
−pb
τ ) = τ(g).

As ker τ̃ = ker τ , we see that

Ap
b

τ̃(g)A−p
b

= τ̃(σp
b

τ gσ
−pb
τ ) = τ̃(g).

Therefore Ap
b

lies in the centralizer of τ̃(ΛL).
By Lemma 4.5.2.3, this centralizer is O. We claim that by multiplying A by some unit in O, we can

arrange for the continuous extension τ̃ to exist and have tame determinant. We will use the fact that an

element of O× is the product of a 1-unit and a Teichmuller lift of an element of k×. As Ap
b ∈ O× and the

pth power map is an automorphism of k×, we may multiply A by a unit scalar so that Ap
b

reduces to the
identity matrix. By Lemma 4.5.2.4, the dimension n of τ is prime to p so we may multiply A by a 1-unit so
that det(A) has finite order prime to p. Sending στ to this particular A gives a continuous extension with
tame determinant.

Let’s show this extension is unique. Any extension must send στ to an element of the form wA for

w ∈ O× (the centralizer of the image τ̃(ΛL)). By continuity, there is a power pb such that (wA)p
b

reduces

to the identity. This means that wp
b

reduces to the identity, and hence that w reduces to the identity. On
the other hand, det(wA) det(A)−1 = wn. The left side has finite order that is relatively prime to p, so wn

does too. This forces wn = 1 since its reduction is 1. But as n is prime to p (Lemma 4.5.2.4), the only nth
roots of unity in O× are Teichmuller lifts. Therefore w = 1.

Lemma 4.5.2.6. There is a continuous extension τ̃ : ΓL,τ → G(O).

Proof. We extend τ̃ in Lemma 4.5.2.5 continuously to ΓL,τ by defining it on φτ . As φτ ∈ ΓL,τ , there is an
element A ∈ G(O) conjugating τ̃ : ΛL → G(O) to τ̃φτ : ΛL → G(O). Each has a unique extension to a
continuous morphism from IL ∩ ΓL,τ to G(O) with tame determinant. Therefore for g ∈ IL ∩ ΓL,τ we have

τ̃(φτgφ
−1
τ ) = Aτ̃(g)A−1

since the right side has the same (tame) determinant as τ̃ on IL ∩ Tτ . We can continuously extend τ̃ :
IL ∩ ΓL,τ → G(O) by sending φτ to A since A has reduction with finite order.

This gives the desired lift and extension of τ in the case that τ ' τ∗.
In Case 3, τ is conjugate to τ∗ but not isomorphic. The argument follows the same structure as the

previous case, but we make a few modifications to treat τ ⊕ τ∗ together. In particular, we can pick a copy
of the k[ΛL]-module τ inside Vτ and a copy of τ∗ ' τ∨ inside V such that the pairing restricted to τ ⊕ τ∗ is
perfect.

Define ΓL,τ⊕τ∗ = {g ∈ ΓL : g(τ ⊕ τ∗) = τ ⊕ τ∗}. It contains ΓL,τ with index 2, as any automorphism
either preserves τ and τ∗ or swaps them. Arguing as in the paragraph after Lemma 4.5.2.2, we obtain a split
exact sequence

0→ ΛL → ΓL,τ⊕τ∗ → TL,τ⊕τ∗ → 1

where TL,τ⊕τ∗ is an open normal subgroup of TL topologically generated by some powers of φ and σ which
we denote by φτ⊕τ∗ and στ⊕τ∗ . We may arrange that either

• Case 3a: φ2
τ⊕τ∗ = φτ and στ⊕τ∗ = στ or

• Case 3b: φτ⊕τ∗ = φτ and σ2
τ⊕τ∗ = στ .
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In Case 3a, we begin by lifting τ to O as a representation of ΛL: as before, we do this using the fact
that the pro-order of ΛL is prime to p, and obtain a lift τ̃ unique up to isomorphism. We extend τ̃ to be a
representation of ΓL,τ ∩ IL by defining it on στ using the GLn-version of Lemma 4.5.2.5, [CHT08, Lemma
2.4.11]. There it is shown all such extensions are unique up to equivalence. In particular, τ̃ and (τ̃φτ⊕τ∗ )∨ are
isomorphic O[ΓL,τ ∩ IK ]-modules. We can use this to define a sign-symmetric perfect pairing on τ̃ ⊕ τ̃φτ⊕τ∗
that is compatible with the action of ΓL,τ ∩ IK and φτ⊕τ∗ , hence of ΓL,τ⊕τ∗ .

In Case 3b, as τ∨ and τστ⊕τ∗ are isomorphic k[ΛL]-modules it follows that τ̃∨ and τ̃στ⊕τ∗ are isomorphic
O[ΛL]-modules. In particular, this isomorphism gives a natural way to define a sign-symmetric perfect pairing
on M = τ̃ ⊕ τ̃στ⊕τ∗ lifting the residual one. This pairing is compatible with the action of ΓL,τ⊕τ∗ ∩IL (which
is generated by ΛL and στ⊕τ∗). Finally, we claim that M and Mφτ are isomorphic. As φτ ∈ ΓL,τ preserves τ ,
the reductions of M and Mφτ are isomorphic by an isomorphism which identifies τ and τφτ . By uniqueness
of the lift of τ as a O[ΛL]-module, we obtain an isomorphism of τ̃ and τ̃φτ and hence of M and Mφτ

preserving the pairing. Then we proceed as in the proof of Lemma 4.5.2.6, defining an image of φτ using
this isomorphism.

In conclusion, we have shown:

Lemma 4.5.2.7. In case 3, there exists an O[ΓL,τ⊕τ∗ ]-module τ̃ ⊕ τ∗ with pairing lifting τ ⊕ τ∗ together
with its pairing.

4.5.3 Lifts with Pairings

We continue the notation of §4.5.1, and analyze how the duality pairing interacts with the decomposition
(4.5.1.1). Recall that we obtained an isomorphism M ' M∨ of R[ΓL]-modules which gave isomorphisms
Mτ 'M∨τ∗ of R[ΓL,τ ]-modules. The key point is that for any lift and extension τ ′ of τ to an O[ΓL,τ ]-module,
the isomorphism of R[ΛL]-modules

τ ′ ⊗HomΛL(τ ′,M)→Mτ

is compatible with the ΓL,τ -action.
To do this, it is convenient to break into the cases introduced at the end of §4.5.1. For an irreducible

k[Λ]-module τ occurring in V , note that (τg)∨ = (τ∨)g for any g ∈ ΓL, so if τ ' τ∗ then τg ' (τg)∗. We let

• Σn denote the set of ΓL-conjugacy classes of such τ for which τ is not conjugate to τ∗;

• Σe denote the set of ΓL-conjugacy classes of such τ for which τ ' τ∗;

• Σc denote the set of ΓL-conjugacy classes of such τ for which τ∗ is conjugate to τ but τ 6' τ∗.

From (4.5.1.1), we obtain a decomposition

M =
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ ′ ⊗Wτ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ ′ ⊗Wτ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ

(τ ′ ⊗Wτ ) (4.5.3.1)

where τ ′ is any lift and extension of τ to Γτ and Wτ = HomΛ(τ ′,M) is a representation of TL,τ . Note that
Wτ is free as an R-module (since M and τ ′ are, with τ ′ 6= 0 and R local), and hence that Wτ is tamely
ramified of the type considered in §4.4.

We may rewrite this to make use of the special extensions constructed in §4.5.2. In particular, for τ ∈ Σc
we rewrite

IndΓL
ΓL,τ

(τ ′ ⊗Wτ ) = IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗

)
where Wτ⊕τ∗ := HomΛ′L

(τ̃ ⊕ τ∗,M). This uses the notation and results from Case 3 in §4.5.2, in particular
the fact that τ ⊕ τ∗ is an irreducible representation of the group Λ′L generated by ΛL and any g ∈ ΓL with
τ∗ ' τg. Note that Wτ⊕τ∗ is a representation of TL,τ⊕τ∗ , which is a subgroup of TL = ΓL/ΛL, hence of the

form Tq as considered in §4.4. Using the extensions τ̃ and τ̃ ⊕ τ∗ from §4.5.2, we obtain a decomposition

M =
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗

)
. (4.5.3.2)
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Now let M ′ be another R[ΓL]-module that is finite free over R such that the irreducible representations
of ΛL occurring in V ′ := M ′/mM ′ are among the same τ ’s, so

M ′ =
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ̃ ⊗W ′τ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ̃ ⊗W ′τ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗W ′τ⊕τ∗

)
.

Lemma 4.5.3.1. The natural map⊕
τ∈Σn

HomTL,τ (Wτ ,W
′
τ )⊕

⊕
τ∈Σe

HomTL,τ (Wτ ,W
′
τ )⊕

⊕
τ∈Σc

HomTL,τ⊕τ∗ (Wτ⊕τ∗ ,W
′
τ⊕τ∗)→ HomΓL(M,M ′)

is an isomorphism.

Proof. We may immediately pass to working with representations of the finite discrete groups Γ and Λ.
Notice that

HomΓ(IndΓ
Γτ (Mτ ), IndΓ

Γτ (M ′τ )) ' HomΓτ (Mτ , IndΓ
Γτ (M ′τ )) ' HomΓτ (Mτ ,M

′
τ )

where the second isomorphism uses that HomΓτ (Mτ ,M
′
τg ) = 0 by Lemma 4.5.1.3 when τ and τg are non-

isomorphic. Furthermore, if τ1 and τ2 are not Γ-conjugate then

HomΓ(IndΓ
Γτ1

(Mτ1), IndΓ
Γτ2

(M ′τ2)) = 0

again using Lemma 4.5.1.3. Then using (4.5.1.1) we see that

HomΓ(M,M ′) =
⊕

[τ1],[τ2]

HomΓ(IndΓ
Γτ1

(Mτ1), IndΓ
Γτ2

(M ′τ2)) =
⊕
[τ ]

HomΓτ (Mτ ,M
′
τ ).

All the irreducible finite-dimensional representations of Λ occurring in V and V ′ are absolutely irreducible
over k by design. For τ ∈ Σn ∪ Σe, consider the natural inclusion

HomR(Wτ ,W
′
τ ) ↪→ HomΛ(τ̃ ⊗Wτ , τ̃ ⊗W ′τ ) = HomΛ(τ̃ , τ̃)⊗R HomR(Wτ ,W

′
τ ), (4.5.3.3)

using that Wτ and W ′τ are R-free of finite rank and Λ has no effect on them. But R ↪→ HomΛ(τ̃ , τ̃) is an
isomorphism because EndΛ(τ) = k and because surjectivity can be checked modulo mR using Lemma 4.5.1.2.
As Mτ ' τ̃ ⊗Wτ , this implies that

HomΓτ (Mτ ,M
′
τ ) = HomΛ(Mτ ,M

′
τ )Tτ = HomΛ(τ̃ ⊗Wτ , τ̃ ⊗W ′τ )Tτ = HomR(Wτ ,Wτ )Tτ = HomTτ (Wτ ,W

′
τ )

where Tτ is the image of TL,τ in Γτ . An analogous computation in the case τ ∈ Σc completes the proof.

We can now consider the duality isomorphism M ' M∨. By Lemma 4.5.3.1, this is equivalent to a
collection of isomorphisms of R[TL,τ ]-modules ϕτ : Wτ ' W∨τ∗ for τ ∈ Σe ∪ Σn and an isomorphism of
R[TL,τ⊕τ∗ ]-modules ϕτ : Wτ⊕τ∗ 'W∨τ⊕τ∗ for τ ∈ Σc. We analyze the cases separately.

In Case 1 (τ ∈ Σn), note that IndΓL
ΓL,τ

Mτ is an isotropic subspace of M as τ 6' τ∗. In particular,

the perfect sign-symmetric pairing on IndΓL ΓL,τMτ ⊕ IndΓL ΓL,τ∗Mτ∗ is equivalent to an isomorphism of
R[ΓL]-modules

IndΓL
ΓL,τ

Mτ '
(

IndΓL
ΓL,τ∗

Mτ∗

)∨
,

which is equivalent to the isomorphism of R[TL,τ ]-modules ϕτ : Wτ ' W∨τ∗ . (Note that the similitude
character ν is present in the use of the dual.)

In Case 2 (τ ∈ Σe), the perfect sign-symmetric pairing on IndΓL
ΓL,τ

Mτ is equivalent to an isomorphism

Wτ 'W∨τ of R[TL,τ ]-modules. Thus it gives a pairing 〈, 〉Wτ on Wτ via

〈w1, w2〉Wτ
:= ϕτ (w1)(w2).

We claim this pairing is sign-symmetric.
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From §4.5.2 we have an isomorphism ı : τ̃ ' τ̃∨ of R[ΓL,τ ]-modules. Let ψ : M →M∨ be the isomorphism
of R[ΓL]-modules given by m 7→ 〈m,−〉M , and define 〈v1, v2〉τ̃ := ı(v1)(v2). We have a commutative diagram

τ̃ ⊗Wτ
id⊗ϕτ //

��

τ̃ ⊗W∨τ
ı⊗id

// τ̃∨ ⊗W∨τ

��

Mτ
ψ

// M∨τ

The commutativity says that for an elementary tensor mi = vi ⊗ wi ∈Mτ = τ̃ ⊗Wτ we have

〈m1,m2〉M = ψ(m1)(m2) = (ı(v1)⊗ ϕτ (w1)) (v2 ⊗ w2) = ı(v1)(v2) · ϕτ (w1)(w2) = 〈v1, v2〉τ̃ 〈w1, w2〉Wτ
.

(4.5.3.4)
The pairings are perfect and 〈·, ·〉τ is sign-symmetric, so the pairing on Wτ is sign-symmetric if and only if
the pairing on Mτ is sign-symmetric.

In Case 3 (τ ∈ Σc), an analogous argument using the isomorphism τ̃ ⊕ τ∗ ' τ̃ ⊕ τ∗
∨

of R[ΓL,τ⊕τ∗ ]-
modules shows that the pairing induced by ϕτ : Wτ⊕τ∗ 'W∨τ⊕τ∗ is sign-symmetric if and only if the pairing
on

IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗W ′τ⊕τ∗

)
induced from the pairing on M is sign-symmetric.

We can now define the minimally ramified deformation condition for ρ : ΓL → G(k), under the continuing
assumption that we have extended k so all irreducible representations of ΛL occurring in V are absolutely
irreducible over k. From (4.5.3.2), we obtain a decomposition

V =
⊕
τ∈Σn

IndΓL
ΓL,τ

(
τ̃ ⊗W τ

)
⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(
τ̃ ⊗W τ

)
⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗W τ⊕τ∗

)
. (4.5.3.5)

where W τ is a representation of TL,τ over k. If τ ∈ Σn, define Gτ := Aut(W τ ). If τ ∈ Σe, there is a
sign-symmetric perfect pairing 〈·, ·〉W τ

on W τ : in that case define Gτ := GAut(W τ , 〈·, ·〉W τ
). (The notation

GAut means automorphisms preserving the pairing up to scalar.) If τ ∈ Σc, there is a sign-symmetric perfect
pairing on W τ⊕τ∗ : in that case define Gτ := GAut(W τ⊕τ∗ , 〈·, ·〉W τ⊕τ∗

). Make a finite extension of k so that

all the pairings are split. Lift Gτ to a split reductive group Gτ over O by lifting the split linear algebra data.

Definition 4.5.3.2. Let ρ : ΓL → G(R) be a continuous Galois representation lifting ρ as above, with
associated R[Γ]-module

M =
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗

)
.

We say that ρ is minimally ramified with similitude character ν if each Wτ and Wτ⊕τ∗ is minimally ramified
in the sense of Definition 4.4.2.1 as a representation of TL,τ or TL,τ⊕τ∗ valued in the group Gτ . (Note
that defining the minimally ramified deformation condition as in §4.4 may require an additional étale local
extension of O, which as always is harmless for applications.)

Let Dm.r.,ν
ρ denote the deformation functor for ρ with specified similitude character ν, and Dm.r.,ν

Gτ
(re-

spectively Dm.r.,ν
Gτ

) denote the deformation functor for W τ or W τ⊕τ∗ viewed as a representation valued in

Gτ (respectively with specified similitude character ν). In particular, letting r = dimW τ (or dimW τ⊕τ∗

when τ ∈ Σc), we have that the adjoint representation adW τ is the Lie algebra of Gτ , which is the Lie
algebra of GSpr or GOr when τ ∈ Σe or Σc, and the Lie algebra of GLr when τ ∈ Σn. Let Σ′n consist of one
representative for each pair of representations τ, τ∗ ∈ Σn.

Proposition 4.5.3.3. The natural map

Dm.r. ν
ρ (R)→

∏
τ∈Σ′n

Dm.r.
Gτ (R)×

∏
τ∈Σe

Dm.r. ν
Gτ (R)×

∏
τ∈Σc

Dm.r. ν
Gτ (R)

is an isomorphism.
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Proof. This expresses the decomposition obtained in this section: given a lift ρ of ρ, we obtain a decomposi-
tion of M as in Definition 4.5.3.2. Our analysis with pairings shows that when τ ∈ Σe, Wτ is a deformation
of W τ together with its sign-symmetric perfect pairing. Likewise, when τ ∈ Σc we know that Wτ⊕τ∗ is a
deformation of W τ⊕τ∗ together with its pairing. When τ ∈ Σn, we know Wτ 'W∨τ∗ . This gives the natural
map: to ρ ∈ Dm.r. ν

ρ (R) associate the collection of the Wτ for τ ∈ Σe ∪ Σc ∪ Σ′n.
Conversely, given Wτ for τ ∈ Σe ∪ Σc ∪ Σ′n, and defining Wτ∗ := W∨τ for τ ∈ Σ′n we can define a lift

M :=
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗

)
.

as in (4.5.1.1). (Note that the groups ΓL,τ depend only on the fixed residual representation V .) For
τ ∈ Σe, the sign-symmetric perfect pairing on the lift Wτ gives an isomorphism ϕτ : Wτ ' W∨τ of R[TL,τ ]-

modules, which gives a sign-symmetric pairing on IndΓL
ΓL,τ

(τ̃ ⊗Wτ ) (using (4.5.3.4)). Likewise, τ ∈ Σc the

sign-symmetric pairing on Wτ⊕τ∗ gives one on IndΓL
ΓL,τ⊕τ∗

(
τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗

)
. For τ ∈ Σn, we obtain an

isomorphism ϕτ : Wτ 'W∨τ∗ of R[TL,τ ]-modules and hence a sign-symmetric perfect pairing on (τ̃ ⊗Wτ )⊕
(τ̃∨ ⊗Wτ∗) which gives one on IndΓL

ΓL,τ
(τ̃ ⊗Wτ )⊕ IndΓL

ΓL,τ
(τ̃∨ ⊗Wτ∗). Putting these together, we obtain a

sign-symmetric pairing on M ; the action of ΓL preserves it up to scalar, giving a continuous homomorphism
ρ : ΓL → G(R).

Finally, we claim that these constructions are compatible with strict equivalence of lifts, giving an iden-
tification of the deformation functors. For g ∈ Ĝ(R), decompose the g-conjugate ΓL-representation Mg

according to (4.5.3.2). As g reduces to the identity, it must respect the decomposition into τ -isotypic
pieces, so gives automorphisms gτ ∈ Aut(Wτ ) and gτ ∈ Aut(Wτ⊕τ∗). If τ ∈ Σe or Σc, as g is compatible
with the pairing on M we see gτ is compatible with the pairing as well. For τ ∈ Σe, the gτ -conjugate
TL,τ -representation W gτ

τ is minimally ramified as minimally ramified lifts of W τ for the group TL,τ are a
deformation condition, and likewise for τ ∈ Σc and τ ∈ Σ′n.

Conversely, given gτ ∈ Aut(Wτ ) reducing to the identity (compatible with the pairing on Wτ or Wτ⊕τ∗

if there is one), using (4.5.1.1) and acting on each piece we obtain a lift of the form Mg for g ∈ Ĝ(R). Thus
the identification is compatible with strict equivalence.

Corollary 4.5.3.4. The minimally ramified deformation condition with fixed similitude character is liftable.
The dimension of the tangent space is h0(ΓL, ad0(ρ)).

Proof. Liftability is a consequence of Proposition 4.5.3.3 and the smoothness of the framed minimally ramified
deformation ring for representations of TL,τ (Proposition 4.4.2.3 and Corollary 4.4.2.5). Recall that the
dimension of the tangent space of a deformation condition of a representation θ : TL,τ → Gτ (k) is the
dimension of the tangent space of the framed deformation ring minus the relative dimension of Gτ plus
the dimension of H0(TL,τ , ad θ) (see Remark 2.2.2.6). By Corollary 4.4.2.5, for τ ∈ Σe the dimension of
the tangent space of Dm.r.,ν

Gτ
is h0(TL,τ , adW τ ) − 1 = h0(TL,τ , ad0W τ ), and for τ ∈ Σc the dimension is

h0(TL,τ⊕τ∗ , adW τ⊕τ∗)− 1 = h0(TL,τ⊕τ∗ , ad0W τ⊕τ∗). For τ ∈ Σ′n, by Proposition 4.4.2.3 the dimension of
the tangent space of Dm.r.

Gτ
is h0(TL,τ , adW τ ). Using Proposition 4.5.3.3, we see that the dimension of the

tangent space of the minimally ramified deformation condition is∑
τ∈Σe

h0(TL,τ , ad0W τ ) +
∑
τ∈Σc

h0(TL,τ⊕τ∗ , ad0W τ⊕τ∗) +
∑
τ∈Σ′n

h0(TL,τ , adW τ ).

It remains to identify this quantity with h0(ΓL, ad0(ρ)). Using Lemma 4.5.3.1

H0(ΓL,End(V )) = Homk[ΓL](V, V ) =
⊕

τ∈Σe∪Σn

HomTL,τ (W τ ,W τ )⊕
⊕
τ∈Σc

HomTL,τ⊕τ∗ (W τ⊕τ∗ ,W τ⊕τ∗)

=
⊕

τ∈Σe∪Σn

H0(TL,τ ,End(W τ ))⊕
⊕
τ∈Σc

H0(TL,τ⊕τ∗ ,End(W τ⊕τ∗)).

We are interested in H0(ΓL, ad0(ρ)): the elements ψ ∈ H0(ΓL,End(V )) compatible with the pairing on V
in the sense that for v, v′ ∈ V

〈ψv, ψv′〉 = 〈v, v′〉.

86



The pairing on Vτ = τ ⊗W τ is induced by the pairings on W τ and τ when τ ∈ Σe, and is induced by
the pairings on W τ⊕τ∗ and τ ⊕ τ∗ when τ ∈ Σc. When τ ∈ Σ′n, the pairing on Vτ ⊕ Vτ∗ comes from the

ΓL,τ -isomorphism Vτ ' V ∨τ∗ which in turn comes from the TL,τ -isomorphism W τ 'W
∨
τ∗ . So ψ is compatible

with the pairing if and only if

• when τ ∈ Σe, the associated ψτ ∈ H0(TL,τ ,End(W τ )) is compatible with the pairing on W τ ;

• when τ ∈ Σc, the associated ψτ ∈ H0(TL,τ⊕τ∗ ,End(W τ⊕τ∗) is compatible with the pairing on W τ⊕τ∗ ;

• when τ ∈ Σ′n, the associated ψτ and ψτ∗ are identified by duality and the isomorphism W τ 'W
∨
τ∗ .

In the first two cases, ad0W τ and ad0W τ⊕τ∗ are the symplectic or orthogonal Lie algebra, consisting exactly
of endomorphisms compatible with the pairing on W τ . In the third, we just choose one of ψτ and ψτ∗ without
restriction, which determines the other. Thus we see

H0(ΓL, ad0(ρ)) =
⊕
τ∈Σe

H0(TL,τ , ad0W τ )⊕
⊕
τ∈Σc

H0(TL,τ⊕τ∗ , ad0W τ⊕τ∗)⊕
⊕
τ∈Σ′n

H0(TL,τ , adW τ ).
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[GY03] Wee Teck Gan and Jiu-Kang Yu, Schémas en groupes et immeubles des groupes exceptionnels sur
un corps local. I. Le groupe G2, Bull. Soc. Math. France 131 (2003), no. 3, 307–358. MR 2017142
(2004j:14049)

[Ham08] Spencer Hamblen, Lifting n-dimensional Galois representations, Canad. J. Math. 60 (2008), no. 5,
1028–1049. MR 2442046 (2009j:11085)

[Hat] Shin Hattori, Ramification of crystalline representations, available at http://www2.math.

kyushu-u.ac.jp/~shin-h/RennesHodge/RennesHodge.pdf.

[Hum06] James E. Humphreys, Modular representations of finite groups of Lie type, London Mathematical
Society Lecture Note Series, vol. 326, Cambridge University Press, Cambridge, 2006. MR 2199819

[Jan04] , Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser
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