1. (3 points) Solve the inequality and write the solution set in interval notation.

\[\frac{1}{x-5} - \frac{1}{x+3} \leq 0 \quad \text{L.C.D.} = (x-5)(x+3) \]

\[\frac{x+3}{(x-5)(x+3)} - \frac{x-5}{(x-5)(x+3)} \leq 0 \]

\[\frac{x+3 - x+5}{(x-5)(x+3)} \leq 0 \]

\[\frac{8}{(x-5)(x+3)} \leq 0 \]

\[(-3, 5) \]

2. (4 points) Solve the inequality and write the solution set in interval notation.

\[|4x - 5| > 7 \]

\[|4x - 5| = 4x - 5 \quad \text{or} \quad -4x + 5 \]

\[4x - 5 > 7 \quad -4x + 5 > 7 \]

\[4x > 12 \quad -4x > 2 \]

\[x > 3 \quad x < -\frac{1}{2} \]

\[(-\infty, -\frac{1}{2}) \cup (3, \infty) \]

3. (3 points) Find the distance between the points \((-3,1)\) and \((2,4)\).

\[d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \]

\[= \sqrt{(2+3)^2 + (4-1)^2} \]

\[= \sqrt{5^2 + 3^2} \]

\[= \sqrt{25 + 9} \]

\[= \sqrt{34} \]