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Abstract

In the classic spatially implicit formulation of Hubbell�s neutral theory of biodiversity a

local community receives immigrants from a metacommunity operating on a relatively

slow timescale, and dispersal into the local community is governed by an immigration

parameter m. A current problem with neutral theory is that m lacks a clear biological

interpretation. Here, we derive analytical expressions that relate the immigration

parameter m to the geometry of the plot defining the local community and the

parameters of a dispersal kernel. Our results facilitate more rigorous and extensive tests

of the neutral theory: we conduct a test of neutral theory by comparing estimates of

m derived from fits to empirical species abundance distributions to those derived from

dispersal kernels and find acceptable correspondence; and we generate a new prediction

of neutral theory by investigating how the shapes of species abundance distributions

change theoretically as the spatial scale of observation changes. We also discuss how our

main analytical results can be used to assess the error in the mean-field approximations

associated with spatially implicit formulations of neutral theory.
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I N T R O D U C T I O N

Hubbell�s neutral theory of biodiversity seeks to explain

observed patterns of species abundance and diversity with a

simple model that assumes that all species are equivalent on

a per-capita basis (Hubbell 1979, 2001; Bell 2001). The

neutral model is a first-order model that ignores many

processes that are known to operate in real ecosystems, such

as niche specialization and interspecific competition. Nev-

ertheless, it provides remarkable fits with very few para-

meters to biodiversity data from ecosystems including

rainforests (Volkov et al. 2003, 2005), coral reefs (Volkov

et al. 2007), and freshwater fish communities (Mune-

epeerakul et al. 2008). This suggests that an understanding

of the emergent macroscopic properties of ecosystems can

be attained without understanding the fine-scaled processes

that generate them. Since Hubbell�s seminal work introduc-

ing the neutral theory (Hubbell 1979, 2001), subsequent

research has focused on estimating the model�s parameters

(Munoz et al. 2007; Jabot & Chave 2009), fitting the neutral

model to data (Latimer et al. 2005), comparing the theory�s

predictions to those of non-neutral theories (Purves &

Pacala 2005), simulating the theory�s dynamics (Rosindell

et al. 2008), and investigating non-equilibrium dynamics

(Adler 2004; Chisholm & Burgman 2004; Vanpeteghem

et al. 2008). Reviews of research into neutral theory can be

found in Chave (2004) and Leigh (2007).

A current problem with neutral theory is the lack of a clear

biological interpretation of the immigration parameter m—a

key parameter in Hubbell�s (2001) original spatially implicit

formulation, in which a semi-isolated local community

receives immigrants from a much larger metacommunity that

operates on a slower timescale (henceforth we refer to

Hubbell�s local community ⁄ metacommunity model as the

�classic� spatially implicit neutral model). The immigration

parameter m is the probability that a death in the local

community is replaced by the offspring of an individual from

outside the local community. Previous researchers have

estimated m by fitting theoretical neutral models to observed

species abundance distributions (SADs) from ecosystems

including tropical forests, coral reefs and South African

Fynbos (Latimer et al. 2005; Volkov et al. 2007). However, it
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has been previously difficult to compare estimates of m from

different ecosystems (and hence to conjecture about the

ecological basis for observed differences in SADs between

ecosystems) or from studies with different sampling designs

(e.g., plot sizes) because general relationships describing the

dependence of m on patterns of propagule dispersal and

sampling design have not been available.

Another, closely related, limitation of neutral theory is the

current lack of a direct link between spatially implicit and

the spatially explicit models that they approximate (Etienne

2005, 2007). Spatially explicit neutral models consist

(typically) of two-dimensional landscapes on which species�
dispersal is governed by a dispersal kernel—a probability

density function that describes the pattern of propagule

scatter away from a parent individual (Ribbens et al. 1994;

Clark et al. 1999; Nathan & Muller-Landau 2000; Jones &

Muller-Landau 2008). Spatially explicit neutral models have

yielded predictions about beta diversity (Chave & Leigh

2002; Condit et al. 2002) and species-area distributions

(Rosindell et al. 2008). In cases where spatially explicit

neutral models become analytically intractable or computa-

tionally infeasible, spatially implicit models, such as Hub-

bell�s classic model, have been used as mean-field approx-

imations instead (Hubbell 2001; Volkov et al. 2007).

Spatially implicit neutral models have yielded predictions

about alpha diversity and SADs that have, in many cases,

found good agreement with real biodiversity data sets

(Hubbell 2001; Volkov et al. 2003, 2005, 2007; Etienne &

Olff 2004). However, without a direct link between the

immigration parameters of spatially implicit models and the

dispersal parameters of spatially explicit models, it is not

possible to assess the degree of error associated with the

mean-field approximations.

In this paper, we provide a quantitative biological

interpretation for the immigration parameter m in terms of

the parameters of a dispersal kernel and the geometry of plot

(or plots) defining the local community. The only known

previous attempt to quantify this dependence produced

numerical results but did not yield simple analytical expres-

sions (Etienne 2005; Appendix S1). Our results allow us to

estimate the immigration parameter m from dispersal data,

thereby reducing the number of free parameters in the neutral

model and facilitating more rigorous tests of its predictions

against biodiversity data. We explore two applications of our

main analytical results: we conduct a test of neutral theory by

comparing estimates of m based on dispersal kernel data to

those from previous fits to SADs; and we generate a new

testable prediction of neutral theory by investigating how the

shapes of SADs change theoretically as the spatial scale of

observation (the size of the local community) is increased.

Our results are also a step towards the analytical unification of

spatially implicit neutral models and the spatially explicit

models that they approximate.

I N T E G R A T I O N O F D I S P E R S A L K E R N E L S I N T O T H E

S P A T I A L L Y I M P L I C I T N E U T R A L T H E O R Y

We consider a spatially homogeneous infinite two-dimen-

sional landscape in which sessile individual organisms (such

as trees) exist at density q per unit area. Each individual

releases propagules according to a radially symmetric

dispersal kernel. For convenience, we assume that all

individuals have the same dispersal kernel and produce the

same number of propagules per unit time, and that each

propagule that arrives to an open site has the same

probability of capturing the site (following the full math-

ematical proof of our main result in Appendix S1, we show

in Appendix S2 that the main result holds independently of

these assumptions). When an individual dies, it is replaced

by the progeny of a parent individual randomly selected

from a dispersal kernel centred at the dying individual. In

reality, of course, the dispersal kernels are centred at the

parent individuals, but because of the symmetry of the

problem in space and time, the two approaches are

equivalent. This model ignores many important biological

processes, but it is consistent with other spatially explicit

neutral models (e.g., Chave & Leigh 2002; Condit et al.

2002).

To conceptualize the relationship between our spatially

explicit model and the spatially implicit model of Hubbell

(2001), imagine a quadrat of area A thrown down

somewhere on the infinite spatially homogeneous landscape.

The J = qA individuals inside the quadrat comprise the

�local community�. It is important to note that in defining

the local community in this way, we do not posit any

mechanisms governing diversity above those described in

the previous paragraph—the local community is simply a

convenient scale of observation.

When an individual at location (x, y) in the local

community dies, the replacement individual may, by virtue

of the random dispersal and recruitment processes, be from

within the local community (i.e., within the quadrat) or from

outside the local community (i.e., from outside the quadrat).

Define mx,y as the probability that the replacement individual

at location (x, y) is drawn from outside the local community.

This parameter will be highest for individuals on the edges

of the quadrat and smallest for individuals at the centre of

the quadrat, where mx,y » 0 for large A. We define m as the

average value of mx,y across the whole of the local

community as follows:

m ¼ 1

A

Z Z
A

mx; ydxdy ð1Þ

This definition of m is consistent with that of Hubbell

(2001) and subsequent researchers. It arises as a simple

physical consequence of throwing a quadrat down on the

spatially explicit neutral landscape. Although the parameter
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m is central to spatially implicit models, its definition is

independent of them.

In this section of the manuscript, we first use (1) to derive

an analytical approximation for m that is independent of the

shape of the local community and the functional form of the

dispersal kernel. We then derive an exact expression for m

for the special case of a square plot and a bivariate Gaussian

dispersal kernel, and we verify that this expression tends to

the general approximation as the plot becomes large relative

to the mean dispersal distance. We compare the analytical

results to the results of numerical simulations. In the

Supplementary Information, we present the mathematical

details of the derivations and examine the robustness of our

results to violations of the neutral assumption that all

species have the same dispersal kernel (Appendices S1–S3).

We also derive analogous results for the simpler one-

dimensional case (Appendix S4), which may provide a

reasonable model of ecosystems such as riparian zones and

coastlines.

The general case

From eqn 1, we derived a general approximation that relates

the immigration parameter m to the mean dispersal distance

d and the perimeter P and area A of a plot (see Appendix S1

for the derivation):

m � Pd

pA
ð2Þ

Expression (2) is the central result of this paper. The

approximation assumes only that the dispersal kernel is

symmetric with a finite mean dispersal distance, and that the

geometry of the plot is defined on a scale somewhat larger

that that of the mean dispersal distance (see below). The

approximation is independent of the functional form of the

dispersal kernel and independent of the shape of the plot.

Because the approximation depends only on the mean

dispersal distance d and not the functional form of the

dispersal kernel, it is in fact robust to violations of the strict

neutral assumptions that all species have the same dispersal

kernel and exert the same propagule pressure (see

Appendix S2).

We used numerical techniques to investigate the rate of

convergence of the approximation (2) to the true theoretical

value of m (Figs 1–3; Table 1). Given an estimate of the

mean dispersal distance d for a given ecological community,

our results can be used to determine whether the

approximation (2) is valid for circular, square or rectangular

plots of a particular size. As a rule of thumb, the edge length

of a square plot should be roughly five times greater than

the mean dispersal distance for the error in the approxima-

tion to be < 10%, and roughly ten times greater than the

mean dispersal distance for the error to be < 5% (Fig. 1;

Table 1). For a circular plot, the diameter should be roughly

three times greater than the mean dispersal distance for the

error in the approximation to be < 10%, and roughly four

Figure 1 The relationship between the immigration rate m and the

ratio of plot edge length w to mean dispersal distance d for a square

plot. The approximation (thick unbroken line) given by (2) in the

text converges to the values obtained from numerical simulations

for Gaussian, Student�s t (with m = 3 degrees of freedom),

exponential and inverse power (with power a = 5) dispersal

kernels.

Figure 2 The relationship between the immigration rate m and the

ratio of plot diameter w to mean dispersal distance d for a circular

plot. The approximation (thick unbroken line) given by (2) in the

text converges to the values obtained from numerical simulations

for Gaussian, Student�s t (with m = 3 degrees of freedom),

exponential and inverse power (with power a = 5) dispersal

kernels. Convergence is somewhat faster than for the square plot

(Fig. 1).
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times greater than the mean dispersal distance for the error

to be < 5% (Fig. 2; Table 1). Note that these rules of thumb

mask considerable variability between dispersal kernels: in

particular, larger plots are required for the approximation to

be accurate if the dispersal kernel is fat-tailed (e.g., Student�s
t distribution; Table 1). For rectangular plots, the accuracy

of the approximation depends both on the width and height

of the plot (Fig. 3).

A special case: square plot and bivariate Gaussian
dispersal kernel

We derived an exact analytical expression for the immigra-

tion parameter m for the special case of a square plot of edge

length w and Gaussian dispersal described by the bivariate

density function:

f ðx; yÞ ¼ 1

r2p
exp �ðx � x0Þ2 þ ðy � y0Þ2

r2

� �

The exact expression for m is (see Appendix S3 for

derivation):

m ¼ 1� erf
w
ffiffiffi
p
p

2d

� �
� 1� exp � pw2

4d 2

� �� �
2d

pw

� �2

ð3Þ

where erf is the error function (Abramowitz & Stegun

1972). As the edge length of the plot w becomes large rel-

ative to the mean dispersal distance d, the value of the error

function approaches one and the value of the exponential

approaches zero, so we have the following approximation:

m � 4d

pw
¼ Pd

pA

which matches the approximation for the general case given

by (2), as expected.

Given that values of m for several different biologically

plausible dispersal kernels are consistent to within about

10% (Figs 1 and 2), eqn 3 may provide suitable estimates of

m for small plots even when the functional form of the

dispersal kernel is unknown (the simpler eqn 2 makes no

assumptions about the functional form of the dispersal

kernel but can only be used for large plots).

A P P L I C A T I O N S

Estimating the immigration parameter from dispersal data

To date, the parameter m of the neutral theory has almost

always been treated as a free parameter and estimated

indirectly from fits to SADs. With our new analytical results

we are now able to estimate m directly from dispersal data

(Etienne (2005) performed such an exercise using numerical

results; see Appendix S5 for a discussion of his fundamental

dispersal number in the context of our results). If the SAD

in a given community is the result of a neutral process, then

the estimate of m from dispersal data should be similar to

the estimate of m fitted to the SAD, thereby providing a test

of neutral theory.

On Barro Colorado Island (BCI) the mean dispersal

distance d, based on seed-trap data for 81 tree species in the

plot, is 39.5 m and the 95% confidence interval for d is (32.8,

46.7) (confidence interval estimated by bootstrap-resampling

raw data in Muller-Landau 2001; see also Condit et al. 2002).

Table 1 Minimum ratio of plot dimension w (= edge length for

square or diameter for circle) to mean dispersal distance d required

for the error in the estimate of m given by (2) in the text to be

< 10% or < 5%. Ratios of w ⁄ d are estimated from numerical

simulations

Error threshold

Square

plot

Circular

plot

10% 5% 10% 5%

Dispersal kernel Gaussian 4.5 9.1 2.7 3.6

Rayleigh 3.6 7.2 2.1 2.7

Student�s t * 6.8 13.7 4.3 6.6

Exponential 5.5 11.0 3.6 5.0

Inverse power� 4.1 7.9 2.5 3.5

*With m = 3 degrees of freedom.

�With power a = 5.

Figure 3 Error associated with estimates of the immigration rate m

from the approximation (2) for rectangular plots of different

dimensions w by h and for a Gaussian dispersal kernel with mean

dispersal distance d. Black areas indicate error < 5%. Grey areas

indicate error between 5 and 10%. White areas indicate error

> 10%. The circle represents the BCI plot (w = 1000 m,

h = 500 m, d » 40 m). The square represents a hypothetical long

thin forest transect in the same forest (w · h = 5 m · 500 m;

d » 40 m). The cross represents a short transect in the same forest

(w · h = 2 m · 50 m; d » 40 m).
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The plot sizes at which the approximation (2) becomes

useful are thus fairly modest on BCI: it is valid to within

about 10% in square plots of area 4 ha, and to within about

5% on square plots of area 16 ha (calculations based on

Table 1). The approximation is better in circular plots than in

square plots: it is valid to within about 10% in circular plots

of area 1 ha, and to within 5% in circular plots of area 2 ha

(calculations based on Table 1). The 50 ha permanent BCI

forest plot is rectangular with dimensions 1000 m · 500 m,

which is well above the size for which the approximation is

valid (Fig. 3). Plugging A = 500 000 m2 (50 ha), perimeter

P = 3000 m and d in the range (32.8, 46.7) into approxima-

tion (2) gives a mean estimate of m » 0.075 and a 95%

confidence interval for m of (0.063, 0.089). This interval does

not quite overlap with estimates of m = 0.1 (Hubbell 2001),

and m = 0.098–0.133 (Etienne 2005) based on species

abundance data from the same plot, and almost overlaps

with another estimate m = 0.09 (Volkov et al. 2007).

We also applied our approximation (2) to estimate m from

dispersal data for three Peruvian tropical floodplain species

(Clark et al. 1999). We used their estimated mean dispersal

parameters from fits of a bivariate Student�s t distribution to

estimate the values of m that would correspond to 50 ha

local communities comprised of three Peruvian tropical

floodplain species (Table 2). The estimates of m (0.0058–

0.0109) were smaller than those estimated from other

tropical forests (Volkov et al. 2007), and this is directly

attributable to the lower estimates of dispersal distance for

the Peruvian trees. Thus, we predict that SADs from this

ecosystem should have a stronger interior mode character-

istic of dispersal limitation.

Although approximation (2) performs well for large

forest plots, it is not useful for long, thin forest transects

(Fig. 3), such as the 500 m · 5 m Amazonian forest

transects used by Tuomisto et al. (2003) or the

50 m · 2 m transects used in the Gentry method (Gentry

1982, 1988). In the Supporting Information we include a

MATLAB program that calculates m numerically for plots of

arbitrary size and shape and for arbitrary dispersal kernels.

We used this program to calculate m = 0.888 for a

hypothetical 500 m · 5 m forest transect and m = 0.956

for a hypothetical 50 m · 2 m forest transect on BCI with a

Gaussian dispersal kernel and mean dispersal distance

d = 40 m (the approximation (2) generates non-sensical

values m > 1 for these plots). Note that values for m for the

long thin plots are much larger than m » 0.075 for the 50 ha

plot—this is attributable to smaller plot sizes (relative to the

dispersal distance) and greater edge effects.

Spatial scale dependence of species abundance
distributions

Many tests of neutral theory have focussed on fitting

theoretical SADs to ecological data (e.g., Hubbell 2001;

McGill 2003; Volkov et al. 2003, 2005, 2007). Our results

presented here allow us to investigate, for the first time, how

the theoretical shape of an SAD changes as the spatial scale

of observation is increased (i.e., as the size of a plot, or local

community, is increased within a homogeneous metacom-

munity; see Appendices S6 and S7 for the mathematical

details). Note that there is a separate well studied issue of

how the shape of an SAD changes as sample size increases

on a fixed spatial scale (i.e., for a fixed community size)

(Preston 1948; Chisholm 2007; Green & Plotkin 2007;

Volkov et al. 2007). Here, we ignore the sampling issue and

assume that the SADs represent exhaustively sampled plots.

There is another separate, but less well studied, issue of how

the theoretical shape of an SAD changes when the data set

comprises multiple spatially separated subplots (Latimer

et al. 2005; Etienne 2007). We investigate this in the context

of our main results in Appendix S8.

An expression for the SAD (the expected number of

species with abundance n) in a local community with J

individuals and immigration rate m is given by:

<un> ¼ h
xn

n!

Z1

0

Cðnþ yÞ
Cð1þ yÞ e�xydy ð4Þ

where h is the fundamental biodiversity number,

x = h(1)m) ⁄ (Jm)–ln(1)x), and x is the ratio of the per-

capita birth rate to the per-capita death rate and can be

determined from the constraint J ¼
P1
n¼1

n<un> (Volkov

Table 2 t-Distributed dispersal kernel parameters and corresponding estimates of m for three Peruvian tropical floodplain tree species

u (m2) P r (m)* d (m)� A (ha)� P (m)� q (m)2)� m

Calycophyllum

spruceanum

195 2.94 6.3 4.8 50 3000 0.043 0.0092

Hyeronima laxiflora 17 0.82 5.2 3.0 50 3000 0.043 0.0058

Virola sebifera 163 1.82 7.9 5.7 50 3000 0.043 0.0109

*This is given by u = r2(2p)1) as described in Appendix S4.

�This is given by eqn (S8) in Appendix S4.

�These parameters are set to the same values as the BCI plot.
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et al. 2007). Combining (4) with our main result (2) allows us

to study the spatial scaling behaviour of the local community

SAD (Fig. 4; Appendix S6). Previously, this was not possi-

ble because the quantitative dependence of m on J was

unknown. For small J the SAD is a left-skewed humped

distribution, and as J increases the left-skewness decreases

and the height of the hump gradually increases (Fig. 4). In

the limit as J becomes large the local community SAD

approaches a log-series distribution:

<un>! w
xn

n

where w ¼ h= ln 1=ð1� xÞð Þ (see Appendix S7 for deriva-

tion), consistent with other theoretical and empirical

observations of log-series distributions at large scales

(Hubbell 2001; Volkov et al. 2007).

The success of neutral models in fitting observed SADs

does not constitute a robust test of neutral theory, because

neutral and niche-structured assembly rules can result in

similar SADs (Purves & Pacala 2005). Spatial scaling of

SADs may provide a more robust test of neutral theory: the

predicted changes in SADs (Fig. 4; Appendix S6) could be

tested with different-sized plots from a given ecosystem.

Determining the robustness of this test (i.e., the novelty of

the predictions relative to niche-structured models) and

developing it in detail (e.g., test statistics for nested vs. non-

nested plots) is beyond the scope of this paper.

D I S C U S S I O N

We have quantified how the immigration parameter m in the

classic spatially implicit formulation of neutral theory

depends on the parameters of a dispersal kernel and the

geometry of the plot that defines the local community. Our

results facilitate more rigorous confrontation of neutral

theory with biodiversity data, because we can now estimate

the parameter m from dispersal data (it was previously fit as

a free parameter). Furthermore, our results allow us to

predict how neutral SADs should vary across spatial scales

(i.e., local community or plot sizes).

We have provided several tools for relating m to dispersal

data. Our analytical approximation for large plots states that

m is proportional to the perimeter of the plot and the mean

dispersal distance and inversely proportional to the area of

the plot. The approximation is independent of the specific

geometry of the plot defining the local community and

Figure 4 Theoretical species abundance distributions (SADs) for local communities of different sizes (J) within a homogeneous

metacommunity with mean dispersal distance d = 39.5 m, density of individuals per unit area q = 0.043 m)2 and biodiversity number

h = 50 (parameter values correspond roughly to tropical forest on BCI). The immigration parameter m is calculated from the other

parameters assuming a bivariate Gaussian dispersal kernel (eqn 3). Species are binned into log2 abundance categories following the method of

Preston (1948).
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independent of the shape of the dispersal kernel (provided

that the dispersal kernel is radially symmetric). The plot size

(relative to the mean dispersal distance) at which the

approximation becomes accurate is smaller for circular plots

than for square plots, suggesting that analytical and

empirical work specifically targeted at neutral theory would

benefit from the use of circular plots (although unfortu-

nately large circular plots are more difficult to sample in the

field than large rectangular plots). For cases where the

approximation breaks down (small plots; long, thin plots;

local communities comprising multiple disconnected plots),

we have provided a computer program to estimate m

numerically from dispersal parameters and plot geometry.

Although m is useful for analytical purposes, such as

deriving the theoretical functional forms of SADs (e.g.,

Volkov et al. 2003), we propose that the mean dispersal

distance d is a more suitable fundamental parameter because

it is scale invariant, biologically meaningful and easily related

to m analytically (see Appendix S5 for an investigation of the

scale dependence of another proposed dispersal parameter

for neutral theory, I (Etienne 2005, 2009)). In the limit as

community size becomes sufficiently large (a few hectares

for tropical forest plots), the theoretical spatially implicit

SAD for a local community embedded in a homogeneous

metacommunity is completely determined by the local

community size J and two scale invariant parameters: d and

the fundamental biodiversity number h. Even for smaller

community sizes, the value of m and hence the shape of the

SAD is determined largely by the value of d for biologically

realistic choices of the dispersal kernel (Figs 1 and 2).

The predictions of spatially implicit neutral theory appear

robust to violations of the assumption that all species in a

community have the same dispersal kernel: our main

approximation (2) holds even when different species have

different dispersal kernels and exert different propagule

pressures, provided that the mean dispersal distance d is

calculated as the average of the mean dispersal distances of

different species (weighted by the species� relative abun-

dances and propagule pressures; see Appendix S2). This is

important, because the assumption that species have

identical dispersal kernels is patently false (Ribbens et al.

1994; Clark et al. 1998; Muller-Landau et al. 2008). Our

finding of robustness to interspecific variation in dispersal

kernels provides some justification for a fundamental

premise of neutral theory, which is that inter and intraspe-

cific trait variation averages out statistically at large scales

and is not important for predicting macroscopic patterns of

diversity (Chave 2004, p250–251).

In this paper, we have not attempted a thorough and

extensive application of the theoretical results to field

estimates of dispersal kernels and neutral model parameters,

but have instead limited our analysis to a few basic checks to

verify that the theoretical results produce sensible values.

We found that previous estimates of m from neutral model

fits to SADs on the 50 ha BCI plot (Hubbell 2001; Etienne

2005) are within about 25% of the theoretical value based

on mean dispersal distances (Muller-Landau 2001; Condit

et al. 2002). A possible explanation for the discrepancy is

that the seed-trap methods used to parameterize dispersal

kernels tend to underestimate the frequency of long-distance

dispersal events (Jones & Muller-Landau 2008) and there-

fore underestimate the mean dispersal distance. Molecular

evidence also suggests that mean dispersal distances of

neotropical trees are greater than those estimated from seed-

trap methods (Jones et al. 2005; Hardy et al. 2006). The

estimates of m from species abundance data may also be

unreliable, because very different combinations of the

parameters m and h (the fundamental biodiversity number)

can lead to similarly good fits (Etienne 2007). Of course, if

the estimates of m (or, equivalently, of d) from dispersal and

species abundance data within a given ecosystem cannot

ultimately be reconciled (e.g., by improved estimates of seed

dispersal parameters), it may be necessary to invoke non-

neutral mechanisms to describe the processes governing

species abundances in this ecosystem. In other words, the

estimate based on species abundances is unbiased only if the

neutral model assumptions are correct, in which case the

two estimates should yield the same answer (subject to

sampling errors). In contrast, if the neutral model assump-

tions are violated, then the species abundance method is

biassed, and we would not expect the two estimates to agree.

Our estimates of the immigration parameter m from

dispersal data in Peruvian floodplain forests were low

compared to those from BCI data, and this led us to predict

that SADs from the Peruvian forests should have a stronger

interior mode characteristic of dispersal limitation. Plot-

scale SADs for this floodplain ecosystem could be used to

test this prediction (aggregated data, but not raw plot-scale

data, are available in Pitman et al. 1999).

The future development of neutral ecological theory

requires the unification of the spatially implicit and explicit

models (Etienne 2005, 2007). The spatially implicit models

are mean-field approximations of the spatially explicit

models, but, without a direct link between them, it has

not previously been possible to assess the approximation

errors. Our work provides this link. For example, our results

could be used to assess errors in local community SADs in

Hubbell�s (2001) classic spatially implicit model by direct

comparison to theoretical SADs from a large, spatially

explicit landscape (Rosindell et al. 2008). This comparison

would entail (1) fixing a mean dispersal distance d for the

spatially explicit model; (2) calculating the corresponding

value of m for the spatially implicit model using the methods

described in this paper; and (3) calculating SADs for local

communities in both the spatially implicit and explicit

models (in the latter case, these local communities are �plots�
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within the simulated landscape). Assuming that the effects

of stochasticity are removed from the analysis, any

differences between the SADs from the two models would

reflect errors in the spatially implicit approximation. Thus,

our quantification of the relationship between the spatially

implicit model�s immigration parameter and the spatially

explicit model�s dispersal kernel is a step towards analytical

unification of the two versions of neutral theory.
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Additional Supporting Information may be found in the

online version of this article:

Figure S1 A schematic diagram of a plot A, which has only

one edge L, of length L, open to dispersal.

Figure S2 A schematic diagram of a plot A = A0 [ A1 [ A2,

which has only one edge L, of length L, open to dispersal.

O marks the origin (x = 0, y = 0).

Figure S3 The effect of different spatial configurations of

plots defining the local community (black areas in panels a

and b) on the theoretical shape of the species abundance

distribution (panels c and d), assuming the classic spatially

implicit neutral model, in which there is a single panmictic

local community.

Appendix S1 Derivation of the approximation linking

dispersal and immigration.

Appendix S2 Robustness of the approximation to violations

of the neutrality assumptions.

Appendix S3 Derivation of the exact expression for a

bivariate Gaussian kernel on a square plot.

Appendix S4 Dispersal and immigration in one-dimensional

landscapes.

Appendix S5 The relationship between the fundamental

dispersal number I and scale.

Appendix S6 Spatial scaling of SADs.

Appendix S7 Limiting behaviour of the local community

SAD.

Appendix S8 Species abundance distributions for dis-

connected local communities.
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