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Abstract. Plant functional traits research has revealed many interesting and important patterns among
morphological, physiological, and life-history traits and the environment. These are exemplified in
trade-offs between groups of traits such as those embodied in the leaf and wood economics spectra.
Inferences from empirical studies are often constrained by the correlative nature of the analyses, avail-
ability of trait data, and a focus on easily measured traits. However, empirical studies have been
fundamental to modeling endeavors aiming to enhance our understanding of how functional traits scale
up to affect, for example, community dynamics and ecosystem productivity. Here, we take a
complementary approach utilizing an individual-based model of tree growth and mortality (the allo-
metrically constrained growth and carbon allocation [ACGCA] model) to investigate the theoretical trait
space (TTS) of North American trees. The model includes 32 parameters representing allometric,
physiological, and anatomical traits, some overlapping leaf and wood economics spectra traits. Using a
Bayesian approach, we fit the ACGCA model to individual tree heights and diameters from the USFS
Forest Inventory and Analysis (FIA) dataset, with further constraints by literature-based priors. Fitting
the model to 1.3 million FIA records—aggregated across individuals, species, and sites—produced a
posterior distribution of traits leading to realistic growth. We explored this multidimensional posterior
distribution (the TTS) to evaluate trait–trait relationships emerging from the ACGCA model, and
compare these against empirical patterns reported in the literature. Only three notable bivariate
correlations, among 496 possible trait pairs, were contained in the TTS. However, stepwise regressions
uncovered a complicated structure; only a subset of traits—related to photosynthesis (e.g., radiation-use
efficiency and maintenance respiration)—exhibited strong multivariate trade-offs with each other, while
half of the traits—mostly related to allometries and construction costs—varied independently of other
traits. Interestingly, specific leaf area was related to several rarely measured root traits. The trade-offs
contained in the TTS generally reflect mass-balance (related to carbon allocation) and engineering
(mostly related to allometries) trade-offs represented in the ACGCA model and point to potentially
important traits that are under-explored in field studies (e.g., root traits and branch senescence rates).
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INTRODUCTION

Plant functional traits research has led to the
discovery of important patterns among morpho-
logical, physiological, and life-history traits and
between such traits and the environment. In
trees, key functional traits include properties of
leaves/needles, wood/stems, and roots that are
important determinants of plant functions, such
as water transport, carbon gain, mechanical limi-
tations, and nutrient uptake (Wright et al. 2004,
Chave et al. 2009, Reich 2014). Many trait trade-
offs or correlations (e.g., leaf lifespan increases
with leaf mass per area; relative growth rate
decreases with wood density) have been uncov-
ered through empirical studies, based on trait
measurements of hundreds (Reich et al. 1997,
Baraloto et al. 2010) to thousands (Wright et al.
2004, Shipley et al. 2006, Chave et al. 2009) of
species. Using a variety of regression and ordina-
tion techniques, these studies have successfully
shown how functional trait relationships relate
to theoretical expectations. However, the statisti-
cal models (mostly correlational methods) under-
lying such empirical studies do not directly
include a representation of the underlying mech-
anisms predicted by theory. Thus, there is an
opportunity to enhance our understanding of the
trait space occupied by trees through the use of
mechanistic models that explicitly include, for
example, engineering and mass-balance relation-
ships (e.g., Scheiter et al. 2013), in addition to
important environmental drivers.

Integration of functional traits with mechanis-
tic models has been a focus of recent research
aimed at improving parameterization of dynamic
global vegetation models (DGVMs; Scheiter et al.
2013, Fyllas et al. 2014, Sakschewski et al. 2015).
Trait-based mechanistic models of patch- and
landscape-scale vegetation dynamics have also
been used to explore the sensitivity of net pri-
mary productivity to different plant traits (Falster
et al. 2011), and how trait trade-offs and distur-
bance can lead to diverse communities with
many coexisting species (Falster et al. 2017).
Other trait-based modeling studies have utilized
trade-offs between functional traits to better
understand community-level trait patterns, with
the goal of improving predictions of how vegeta-
tion and climate interact to influence primary

productivity (Scheiter et al. 2013), or to evaluate
how trait distributions vary across large regions
(Sakschewski et al. 2015). In general, these types
of studies share a common goal of understanding
how functional traits influence plant, ecosystem,
community, and/or global properties of interest,
but they generally do not use the mechanistic
model to infer functional traits and potential
trade-offs between traits.
The aforementioned empirical or correlative

approaches to understanding trait relationships
have been instrumental to understanding where
organisms lie within a trait spectrum (e.g., trait
trade-offs or life-history dimensions). For
instance, the leaf economics spectrum (LES)
quantifies trade-offs among leaf mass per area
(LMA), leaf lifespan (LL), mass-normalized pho-
tosynthetic capacity (Amass), leaf nitrogen (Nmass),
leaf phosphorus (Pmass), and leaf dark respiration
(Rmass; Wright et al. 2004). Trait–environment
relationships are also often evaluated; for
instance, LES traits are often correlated with
mean annual rainfall and temperature (Wright
et al. 2004). Another spectrum relevant to trees is
the wood economics spectrum (WES), which
links wood traits to major ecological functions,
including competitive ability, resistance to stress,
and disturbance responses (Chave et al. 2009).
An important trade-off revealed by the WES is
that growth and mortality rates are both nega-
tively correlated with wood density (Chave et al.
2008, 2009). A third proposed spectrum, the
worldwide “fast–slow” economics spectrum,
integrates key leaf, wood, and fine root traits,
including those in the LES and WES, into a single
spectrum by demonstrating consistent trade-offs
between traits leading to fast vs. slow growth
(Reich 2014). Although the validity and interpre-
tation of some trait spectra have been questioned
(Lloyd et al. 2013, Osnas et al. 2013), there is still
broad interest in quantifying empirical trait spec-
tra (D�ıaz et al. 2016) and using these patterns to
improve representation of plant functional diver-
sity in models such as DGVMs (Scheiter et al.
2013, Van Bodegom et al. 2014, Fisher et al.
2015). Yet, the underlying factors giving rise to
empirical patterns are not always clear and likely
emerge from different types of trade-offs, such as
those related to resource allocation or physical
constraints (Scheiter et al. 2013).
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Standard approaches to inferring trait spectra
or trade-offs from direct measurements of func-
tional traits include various types of regression
analyses (Reich et al. 1999, Wright et al. 2004,
Adler et al. 2014, Atkin et al. 2015) and ordina-
tion methods (Reich et al. 1999, Cavender-Bares
et al. 2004, D�ıaz et al. 2004, Baraloto et al. 2010,
Stahl et al. 2013). Often, the goal of such analyses
is to discover how functional traits relate to other
traits, to an emergent process (e.g., rates of sur-
vival, growth, reproduction), to the environment,
or to reduce the dimensionality of the potential
trait space by identifying key trade-offs. We refer
to these common approaches (i.e., regression and
ordination methods) as describing “empirical
trait spectra” because they are revealed by direct
analyses of trait data collected on plants, often
growing in field conditions. These studies pro-
vide vital insights, but may be limited by the
traits they assess, favoring traits that are easy to
measure over those that are more difficult to
quantify (Weiher et al. 1999, Lavorel and Garnier
2002, Lavorel et al. 2007). It is likely, however,
that such under-represented traits are important
for predicting whole-plant function. These poten-
tial limitations may render empirical spectra
inappropriate for predicting plant function under
novel conditions (Webb et al. 2010, Evans 2012,
Scheiter et al. 2013).

To move beyond empirical or phenomenolog-
ical models of trait relationships, and to develop
the capacity to predict plant function under
future or novel environments, trade-offs should
be related to plant function and underlying pro-
cesses and mechanisms. Scheiter et al. (2013)
envisaged that trait trade-offs fall into one of
three categories describing mechanisms that
give rise to the trade-offs, and they suggested
that this could facilitate incorporating a trait
perspective into DGVMs. These include (1)
mass conservation trade-offs related to resource
use and allocation, (2) engineering trade-offs that
prevent structures or architectures of plants
that are not feasible, and (3) empirical trade-offs
that are more difficult to derive mathematically
and that are not explicitly considered in a given
modeling framework (Scheiter et al. 2013). We
propose a complimentary approach to under-
standing trait spectra that takes these considera-
tions into account by using a trait-based, process
model of whole-plant function to determine how

functional traits interact with each other to
influence whole-plant function (e.g., growth and
survival).
Thus, to produce realistic behavior of whole-

plant performance, mechanistic models should
consider important mass-balance processes—such
as those related to plant physiological processes
(e.g., photosynthesis, respiration) and carbon
allocation (mass conservation trade-offs)—and
engineering constraints—such as structural char-
acteristics (e.g., anatomical features), and allo-
metric relationships. Examples include the many
existing individual-based models (IBMs) of plant
growth (Bugmann 2001, Ogle and Pacala 2009,
Fyllas et al. 2014). Such models are useful in
relating key traits—which usually take the form
of model parameters—to processes such as
carbon acquisition, allocation, and metabolism
and provide a novel way of investigating the
influence of key functional traits (model parame-
ters) on growth and/or survival (model outputs).
By fitting IBMs to empirical data on plant perfor-
mance and functional traits, it may be possible to
investigate the “theoretical trait space” that
emerges from the mass conservation and engi-
neering trade-offs (Scheiter et al. 2013) that are
built into the IBM. Evaluation of the theoretical
trait space (or spectra) should provide insight
into how plant performance and/or trade-offs
relate to the range of traits observed. Using
mechanistic models to estimate trait values also
provides an opportunity to better understand
how under-represented (rarely measured) traits
may influence tree growth and/or survival.
The main objectives of this study were to (1)

quantify the theoretical trait space (TTS) of North
American trees, (2) evaluate the TTS to determine
which traits are important predictors of tree
growth and which trade off with each other to
influence growth, and (3) use this TTS to better
understand how patterns in empirical trait spec-
tra (e.g., LES and WES) arise. To accomplish
these objectives, we fit an IBM of tree growth
and survival, the allometrically constrained
growth and carbon allocation (ACGCA) model
(Ogle and Pacala 2009), to 1.27 million growth
observations of “healthy” trees from the USFS
Forest Inventory and Analysis (FIA) database
that were pooled across sites, species, and indi-
viduals, complemented by literature information
(TreeTraits database; Kattge et al. 2011, Ogle
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et al. 2013, 2014) to help constrain parameter val-
ues (traits) to realistic ranges. To achieve this, we
employed a Bayesian framework that utilized a
fast, custom stochastic algorithm for fitting the
ACGCA model to the aggregated FIA data and
literature information, which produced a 32-
dimensional (joint) posterior distribution of
parameters (traits) that lead to realistic tree
growth. We refer to this joint posterior as the
TTS, and we evaluated the TTS to address the
following questions: (1) Do bivariate or higher
dimensional relationships exist between traits in
the TTS, and if so, which traits contribute to these
relationships? (2) Which traits are the best pre-
dictors of growth and what is the role that these
traits play in the TTS? (3) How does the TTS
compare to empirical spectra such as the LES
and WES?

METHODS

Overview
We fit the ACGCA model (Ogle and Pacala

2009) to USFS Forest Inventory and Analysis
(FIA) data on individual tree heights and stem
diameters within a Bayesian framework to inves-
tigate the TTS of North American trees. Compu-
tational challenges involved with fitting the
ACGCA model to the large FIA dataset and the
limitations of precompiled software—such as
JAGS (Plummer 2003) or OpenBUGS (Lunn et al.
2009) for conducting Bayesian analysis—necessi-
tated development of a customized Metropolis-
Hastings (MH) algorithm. In addition to fitting
the ACGCA model to the FIA data, model
parameters (Table 1) were partially constrained
by priors derived from the TreeTraits database
(Kattge et al. 2011, Ogle et al. 2013, 2014). Below,
we first summarize the ACGCA model; then, we
provide an overview of the data sources used to
inform the ACGCA model, followed by a
description of the Bayesian approach used to fit
the ACGCA model to the data, including a
description of the custom MH algorithm and
how the Bayesian results were analyzed.

Tree growth and carbon allocation model
The ACGCA model is an IBM of tree growth

and mortality (Ogle and Pacala 2009). The
ACGCA model recognizes the importance of
including both allometric relationships (related

to engineering trade-offs) and physiological
(mass balance) processes underlying labile and
structural carbon dynamics, including allocation
and growth (Ogle and Pacala 2009); these pro-
cesses are governed by 32 functional traits (i.e.,
model parameters; see Table 1). Tree growth is
simulated by dynamically allocating labile car-
bon to storage and structural biomass pools in a
way that obeys observed allometric relationships
among leaf, stem, branch, and root compart-
ments (Ogle and Pacala 2009). Structural (bio-
mass) pools of different tissue compartments
(leaves; fine roots; and root, branch, and trunk
sapwood and heartwood) are predicted at each
time step.
Labile carbon dynamics are essential to the

ACGCA model. There are two main types of
labile carbon storage pools. One is associated
with storage in leaf and fine root tissue, and
labile carbon in this pool is retranslocated when
structural tissue is lost (e.g., via senescence of
leaves or fine roots). The other storage pool is
associated with storage in sapwood and can be
drawn upon during times of stress (high labile
carbon demand). The ACGCA model also
includes a transient labile carbon pool (e.g.,
recent photosynthesis and retranslocated carbon)
that is not associated with storage in any specific
tissue and is immediately redistributed within
the plant to accommodate structural biomass
production, growth respiration, and allocation to
storage pools (Ogle and Pacala 2009).
Labile carbon allocation and storage aligns

with six physiological states: healthy, static,
shrinking, recovering, recovered, or dead. Each
physiological state is described by a set of differ-
ence equations that satisfy mass-balance relation-
ships among the structural and labile carbon
pools (Eqs. 4–8, below). Negative carbon balance
(demand > supply) results in a “reduced” allom-
etry, an unhealthy state, and eventual tree death.
To quantify the TTS of living trees, we only focus
on the healthy state because we are interested in
understanding the traits that underlie tree
growth, of living trees; in a subsequent study, we
also explore the trait space of trees that succumb
to environmental stress (M. Fell and K. Ogle, un-
published manuscript). In the healthy state, labile
carbon is allocated so that the sizes of the struc-
tural and storage pools are kept in allometric
proportion by solving a set of difference
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equations that tie the size of each pool to trunk
radius. Below, we highlight key aspects of the
ACGCA model relevant to this study and note
specific functional traits relevant to these pro-
cesses; a full description of the model is given in
Ogle and Pacala (2009).

Light is the only environmental driving vari-
able in the current version of the ACGCA model.
A simple radiation-use function is applied to
determine the amount of labile carbon fixed by a
tree (gross photosynthesis, PG) per year:

PG tð Þ ¼ e � APAR tð Þ (1)

where e is radiation-use efficiency (a functional
trait), APAR is the absorbed photosynthetically

active radiation (PAR), and t is time (years).
Absorbed photosynthetically active radiation is
based on the maximum annual PAR above the
tree’s crown (PARmax), modified by the light
extinction coefficient of the tree’s crown (k, a
trait), its leaf area (LA), and its leaf area index
(LAI) using the Beer-Lambert equation (Ogle and
Pacala 2009):

APAR tð Þ ¼ PARmax 1� exp �k � LAI t� Dtð Þð Þ� �
� LA t� Dtð Þ

LAI t� Dtð Þ
� �

(2)

The numerical time step, Dt, is set to 1/16 of a
year to achieve numerical convergence, and the

Table 1. Descriptions and units associated with the 32 parameters (hq’s) in the ACGCAmodel that are representa-
tive of potentially important functional traits.

Symbol Unit Description

Hmax m Maximum tree height
φH – Slope at H vs. r curve at r = 0 m
g – Relative height at which trunk transitions from paraboloid to cone
SWmax m Maximum sapwood width
kS – Proportionality between BT and BO for sapwood
kH – Proportionality between BT and BO for heartwood
q g dw/m3 Wood density
f1 – Fine root area-to-leaf area ratio
f2 – Leaf area-to-xylem conducting area ratio
cC g gluc/m3 Maximum storage capacity of living sapwood cells
cw m3 g/dw (Inverse) density of sapwood structural tissue
cX – Xylem conducting area-to-sapwood area ratio
CgL g gluc g/dw Construction costs of producing leaves
CgR g gluc g/dw Construction costs of producing fine roots
Cgw g gluc g/dw Construction costs of producing sapwood
dL g gluc g/dw Labile carbon storage capacity of leaves
dR g gluc g/dw Labile carbon storage capacity of fine roots
SL year�1 Senescence rate of leaves
SLA m2 g/dw Specific leaf area
SR year�1 Senescence rate of fine roots
SO year�1 Senescence rate of coarse roots and branches
rR m Average fine root radius
qR g dw/m3 Tissue density of fine roots
RmL g gluc g�dw�1�year�1 Maintenance respiration rate of leaves
RmS g gluc g�dw�1�year�1 Maintenance respiration rate of sapwood
RmR g gluc g�dw�1�year�1 Maintenance respiration rate of fine roots
gB – Relative height at which trunk transitions from neiloid to paraboloid
k – Crown light extinction coefficient
e g gluc/MJ Radiation-use efficiency
m – Maximum relative crown depth
a – Crown curvature parameter
R0 m Maximum potential crown radius of a tree with diameter at breast height

of 0 m (i.e., for a tree that is exactly 1.37 m tall)
R40 m Maximum potential crown radius of a tree with diameter at breast height

of 0.4 m (40 cm)
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model outputs individual tree states at an annual
timescale (Ogle and Pacala 2009). The effect of
light was tested by running simulations that
varied PARmax from 10% (e.g., representing an
overtopped tree in a dense canopy) to 100% (an
open-grown tree) of the maximum incident radi-
ation expected above the forest canopy, following
a logarithmic progression (206, 259, 326, 411, 517,
651, 820, 1032, 1300, 1636, 2060 MJ�m�2�yr�1),
yielding 11 light levels. Leaf area is assumed to
be related to xylem conducting area (XA, a trait)
via an allometric function. Leaf area index is
equal to LA divided by the tree’s projected crown
area (Ogle and Pacala 2009).

The amount of “excess” labile carbon, E(t),
determines the size of the transient pool available
for biomass production at time t. E(t) is
computed as a simple mass balance that first
scales up area-specific photosynthesis to tree-
level carbon assimilation (input variable) as
PG tð Þ � LA t� Dtð Þ. Other inputs to E(t) are associ-
ated with retranslocation of labile carbon from
senescing leaf and root tissues and sapwood-to-
heartwood conversion (incorporated through d
terms explained below). Losses from E(t) are
attributed to maintenance respiration (RM) of all
living tissues (tissue-specific trait). Thus, E(t) is
given by:

E tð Þ ¼ PG tð Þ �LA t�Dtð Þþ dS tð Þ �SO �BOS t�Dtð Þ
þ

X
i¼L;R

di �Si �Bi t�Dtð Þ�RM tð Þ (3)

Key traits (parameters) here include dS, dL, and
dR (g gluc g/dw), which are the labile carbon stor-
age capacities of sapwood, leaves, and fine roots,
respectively (see Ogle and Pacala 2009 for full
derivation of d terms). BOS, BL, and BR (g dw) are
state variables that represent the structural bio-
mass of other (e.g., branches and coarse roots)
sapwood, leaves, and fine roots, and SO, SL, and
SR are their corresponding senescence rates (also
traits/parameters; Ogle and Pacala 2009).

Excess labile carbon (when E > 0) is subse-
quently allocated to the different tissue compart-
ments to produce structural biomass, Bi, where
i = L (leaves), R (fine roots), TS (trunk sapwood),
TH (trunk heartwood), OS (other sapwood, i.e.,
sapwood of branches and coarse roots), and OH
(other heartwood). For each time step in the
model, the excess carbon allocated to each

compartment is simultaneously converted to bio-
mass and allocated to storage according to each
tissue’s labile carbon storage capacity (d’s, as
defined above). The allocation of labile carbon
and production of structural carbon must satisfy
constraints set by the tree’s allometric relation-
ships, which are tied to the radius (r) of the tree’s
trunk such that for a tree growing according to
the healthy allometry (Ogle and Pacala 2009):

DBOS ¼ k � DBTS (4)

DBOH ¼ k � DBTH (5)

DLA r tð Þð Þ
SLA

¼ DBL (6)

qR � rR
2
� DRA r tð Þð Þ ¼ DBR (7)

q tð Þ � DVT r tð Þð Þ ¼ DBT (8)

The DBi’s denote the change in structural
biomass in a given time step. Allometric rela-
tionships are incorporated via the changes in
LA (DLA), fine root area (DRA), and trunk vol-
ume (DVT), which are expressed as functions of
trunk radius at time t, r(t), as per the healthy
allometry. The traits (parameters) k, specific leaf
area (SLA), rR, qR, and q (see Table 1 for defini-
tions) link the allometric and mass-balance
constraints.
Eqs. 4–8 are solved numerically using a root-

finding routine (Ogle and Pacala 2009), yielding
solutions for r and all other state variables (e.g.,
LA, RA, B’s), including tree height (H), which is
linked to r by a simple allometric equation:

H tð Þ ¼ Hmax � 1� exp � uH

Hmax
� r tð Þ

� �� �
(9)

Two key allometric traits are the maximum
tree height, Hmax, and the initial (at r = 0) slope
of the H vs. r allometric curve, uH .
For the purpose of fitting the ACGCA model

to FIA data, the model can be viewed as a non-
linear function of the vector of parameters (traits)
and inputs (e.g., light or PARmax; Table 1) that
yields outputs such as H and r for each year of
the simulation.

 ❖ www.esajournals.org 6 January 2018 ❖ Volume 9(1) ❖ Article e02060

FELL ET AL.



Data sources
The ACGCA model parameters are informed

by two primary data sources: the FIA data com-
piled by the U.S. Forest Service (http://www.fia.
fs.fed.us/) and the TreeTraits database compiled
from published literature (Kattge et al. 2011, Ogle
et al. 2013, 2014; see Tree functional traits database).
The FIA database provided repeated measure-
ments for radius and height data for 965,003 indi-
vidual trees occurring in approximately 100,779
plots that are an unbiased sample of forested areas
in the United States (Bechtold and Patterson 2005).

Forest inventory data
The FIA data were filtered such that only living

individuals with at least two height and diameter
measurements were included in the study to facil-
itate calculating changes in radius (Dr) and height
(DH). The data were further filtered to select for
“healthy,” growing trees such that an individual
was discarded if (1) it was missing r and/or H val-
ues, (2) Dr ≤ 0 or DH ≤ 0, (3) r < 0.05 m (the start-
ing radius for the ACGCA simulations), or (4) the
annualized Dr or DH values were larger than the
99.9% quantile of all data (i.e., remove outliers).
The resulting, filtered FIA dataset (1,270,510
remeasurements) had minimum and maximum
(min, max) r, H, Dr, and DH values of (0.050 m,
0.923 m), (0.051 m, 78.030 m), (3.24 9 10�5 m/yr,
0.012 m/yr), and (1.23 9 10�2 m/yr, 3.360 m/yr),
respectively.

The sheer size of the FIA data precludes fitting
the ACGCA model to individual- or tree-level
data as this would greatly exceed available com-
putational resources. Thus, to quantify the distri-
bution of observed tree growth based on the FIA
data, the r, H, Dr, and DH data were log-trans-
formed and used to construct a four-dimensional
histogram describing the distribution of “realis-
tic” values corresponding to healthy, growing
trees. The histogram had nine evenly spaced bins
in each dimension (94 = 6516 total bins). The
number of bins was chosen based on trial and
error to provide sufficient resolution for analysis,
but avoiding excessive computational issues
associated with using more bins. Limits in each
dimension were based on the minimum and
maximum values in the filtered FIA data, with
the exception of the minimum value for r, which
was set to 0.05. Each point (ri, Hi, Dri, DHi)
representing an individual tree with multiple

measurements was assigned to a bin, for i = 1, 2,
. . ., 1,270,510 remeasurement points. The propor-
tion of trees falling in each of the 6561 bins was
computed, yielding a four-dimensional probabil-
ity distribution (or histogram) of the FIA data
(henceforth referred to as Hist), aggregated
across individuals, species, and sites.
Tree functional traits database.—Data from the

TreeTraits database (Kattge et al. 2011, Ogle et al.
2013, 2014) were used to derive semi-informative
priors to constrain the parameters (traits) to realis-
tic ranges. TreeTraits contains summary statistics
(e.g., sample means or parameter estimates) for
functional traits extracted from the literature for
the ca. 300 tree species represented in the FIA
database. TreeTraits provided over 7400 records
for 27 functional traits, with sample sizes ranging
from 6 (rr and qr) to >1700 (SLA and q; see Table 1
for parameter/trait descriptions). The Bayesian
model (see Bayesian model) requires priors for log-
or logit-scale parameters, and means and stan-
dard deviations of the transformed values (log or
logit; Appendix S1: Table S1) were derived from
the TreeTraits database and used to construct
semi-informative priors. The TreeTraits database
lacked data for ks, kh, f1, gB, and m (see Table 1 for
definitions); in these cases, the prior means were
set to the values used for Pinus taeda and Acer
rubrum in Ogle and Pacala (2009), and the prior
standard deviations were set to constrain
parameters to magnitudes similar to A. rubrum
and P. taeda in Ogle and Pacala (2009). See
Appendix S1: Table S1 for the prior distributions.

Bayesian model
The ACGCA model was fit to the FIA data in a

Bayesian framework to yield posterior distribu-
tions of parameters (traits) leading to “realistic”
tree growth based on the FIA data and partially
constrained by the priors. The basic Bayesian for-
mulation defines the posterior distribution of the
parameters, conditional on the data (FIA), as pro-
portional to the likelihood of the data (based on
Hist) multiplied by the prior(s):

p hjFIAð Þ / p FIAjr hð Þ;Hðhð Þ;Dr hð Þ;DH hð ÞÞ � p hð Þ
(10)

Note that h represents the vector of 32 ACGCA
model parameters (we use bold font to explicitly
refer to the vector of parameters). The term
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p(h|FIA) is the posterior distribution of h conditional
on the FIA data; p(FIA|r(h), H(h), Dr(h), DH(h)) is the
likelihood of the FIA data given the ACGCA out-
puts for r, H, Dr, and DH, which are deterministic
functions of h; and p(h) is the joint prior for h.

The likelihood of the FIA data was computed
by evaluating Hist at the ACGCA output (r, h, Dr,
Dh). In particular, for each annual time step
(t = 1, 2, . . ., T) for which ACGCA outputs are
produced, the likelihood is computed as:

p FIAjr hð Þ;Hðhð Þ;Dr hð Þ;DH hð ÞÞ

¼
YT
t¼1

Hist rt hð Þ; Ht hð Þ;Drt hð Þ; DHt hð Þð Þ (11)

That is, for a vector of outputs for r, H, Dr, and
DH (where Drt = rt � rt�Dt, and likewise for DH),
at each time, t, we find the four-dimensional bin
in Hist that contains these values, and we return
the probability of observing this vector based on
the relative frequencies of the FIA data that are
looked up in Hist. Eq. 11 thus obtains the (his-
togram) probability of each simulated (r, H, Dr,
DH) over the simulation period from initial year
t = 1 to final year t = T, and the product of these
probabilities is the likelihood of the data given
the particular outputs produced by the ACGCA
model for a given vector of parameters (h). If the
ACGCA simulation associated with a particular
vector of trait values (h) resulted in a tree that
was in the healthy state for the entire 50-yr simu-
lation, then T = 50 (approximately the average
age of a tree in the FIA data). If the tree died dur-
ing the simulation period (not in the healthy
state), or had values outside of the minimum and
maximum values set by Hist, the parameters
were rejected in the MH algorithm (see MH
implementation), because the likelihood is defined
as 0 in these cases.

The prior, p(h), in Eq. 10 is computed as the
product of 32 independent univariate priors for
each trait q in the parameter vector h; that is,

p hð Þ ¼
Y32

q¼1
p hq
� 	

where the priors for each hq are given in
Appendix S1: Table S1. As noted previously, all
parameters were log- or logit-transformed, and
each is assigned a normal or truncated normal
prior (see Eq. 13). For the normal priors:

log hq
� 	

or logit hq
� 	 �Normal hq; rq

� 	
(12)

Eq. 12 applies to all but four parameters in
q = 1, . . ., 32; hq and rq represent the prior mean
and standard deviation, respectively, on the cor-
responding log or logit scale (see Appendix S1:
Table S1).
Truncated normal priors were used for the

other four parameters, g, gB, Hmax, and q (see
Table 1 for definitions and Appendix S1:
Table S1 for transformations), to exclude unreal-
istic or extreme values:

log hq
� 	

or logit hq
� 	�TruncNormal hq; rq; aq; bq

� 	
(13)

where hq and rq are the prior mean and standard
deviation, and aq and bq are the lower and upper
bounds, respectively. Both trunk-tapering param-
eters, g and gB, were given bounds relative to
each other such that g > gB. This was accom-
plished by setting a = log(gB) and b = ∞ for g,
and a = �∞ and b = log(g) for gB. The maximum
potential tree height on the log scale, log(Hmax),
was given a lower bound of a = �∞ and an
upper bound of b = log(127 m) based on physi-
cal limitations of water transport (Domec et al.
2008). Finally, wood density, q, was given bounds
based on physical (or engineering) constraints
imposed by cX (Table 1), cw, and VwVc, where
VwVc represents the volume ratio of structural
tissue to internal cell volume for living sapwood
cells such that:

a ¼ VwVc� cx VwVc� bð Þ
cw 1þ VwVcð Þ (14)

b ¼ 1� cx
cw

(15)

Eq. 14 is based on the assumption that there is
a lower limit to the ratio of xylem cell wall area
—mostly cellulose with density 1/cw, where cw is
assumed known (Suzuki 1999, Ogle and Pacala
2009)—to xylem conduit lumen area (set by b).
Eq. 15 is based on the assumption that the con-
duit lumens do not contain structural tissue, and
thus do not contribute mass to the bulk wood
density. Here, we assume VwVc = 0.5, b = 0.05,
and cw = 6.67 9 10�7 m3 g/dw, and we treat cX
as unknown parameter (trait).
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The above Bayesian model is relatively simple
and does not involve any hierarchical priors. No
attempt was made to estimate individual-, site-,
or species-specific parameters. Instead, the goal
of the Bayesian model is to yield distributions of
the “global” h vectors that are consistent with the
“aggregated” FIA data—pooled across all indi-
viduals, sites, and species—and the semi-
informative priors, which are also pooled across
all studies (publications) and species. This
greatly simplifies the model formulation and
computational requirements (i.e., the ACGCA
model is only run once for every h vector, and
the likelihood only needs to be evaluated once
for a given ACGCA output vector at each simu-
lation year). Hence, the posterior distribution
of h can be viewed as the probability distribution
of trait values leading to realistic tree growth of
healthy trees, across all species and environ-
ments combined. That is, the posterior marginal-
izes over individuals, sites, and species, such
that posterior distributions for any individual,
site, or species are expected to be contained within
the aggregated distribution. Importantly, this
approach eliminates combinations of trait values
(h vectors) that produce growth dynamics incon-
sistent with the FIA data (“unrealistic” growth).

As described above, Hist was used for the like-
lihood rather than an alternative distribution
such as a multivariate normal or a kernel density
estimate of the four-dimensional distribution.
Both of these alternative approaches were
explored, but they led to greater computational
expense and/or undesirable behavior of the MH
algorithm (see Metropolis-Hastings algorithm). Use
of Hist greatly reduced the computational
demands because it only needed to be computed
once and then referenced via a “look-up” func-
tion when running the MH algorithm. The result-
ing simple, global analysis allowed us to run the
MH algorithm on a desktop computer in a rea-
sonable amount of time (~2 d).

Metropolis-Hastings algorithm
We implemented an MH algorithm to allow

simultaneous evaluation of the ACGCA model
and to compare the ACGCA output against Hist.
Our MH algorithm for sampling from the poste-
rior distribution is standard and follows Gelman
et al. (2014). In summary, the algorithm proposes
a vector of potential parameter values at each MH

iteration z and accepts or rejects the proposed
parameters. In particular, let h* denote the pro-
posed vector of parameter values, and let r�t , H

�
t ,

Dr�t , and DH�
t denote the corresponding ACGCA

outputs at simulation year t, given h* proposed at
iteration z. We obtain h* by independently gener-
ating individual h�q (again, for q = 1, 2, . . ., 32 com-
ponents) from a jumping distribution, Jzðh�q jhz�1Þ.
Truncated normal jumping distributions were
employed for parameters with truncated priors
(i.e., g, gB, Hmax, and q), using the same upper
and/or lower limits as the priors (Eq. 13). Normal
jumping distributions were used for all other h�q.
As each component (h�q) is proposed, it is either

accepted or rejected based on the following
acceptance ratio (arq) that involves evaluation of
the posterior distribution (density), up to some
normalizing constant (see Eq. 10), and the jump-
ing distribution:

arq ¼
p h�q jFIA

 �

=Jz h�qjhz�1

 �

p hz�1
q jFIA


 �
=Jz hz�1

q jh�

 �

¼
p h�q jFIA

 �

Jz hz�1
q jh�


 �

p hz�1
q jFIA


 �
Jz h�qjhz�1

 � (16)

If arq > 1, the posterior density evaluated at h�q
is greater than the posterior density at hz�1

q , and
h�q is accepted such that hzq ¼ h�q . If the proposed
value decreases the posterior density (arq < 1), it
is accepted with probability arq; otherwise,
hzq ¼ hz�1

q (Gelman et al. 2014).
MH implementation.—The above MH algorithm

was applied to the ACGCA model and FIA data,
for each of the aforementioned (11) light levels
described in the ACGCA model section above.
Five parallel MH chains were simulated for each
of the 11 light levels (PARmax), with PARmax fixed
at a single value for the duration of a given MH
simulation. Starting values (at z = 0) for each
parameter component, h0q , were generated for
each chain by randomly sampling from the prior
distributions. Starting values were rejected if
they resulted in a zero likelihood according to
Hist (Eq. 11); that is, we continued to randomly
draw starting values until we obtained values
that produced realistic growth curves (i.e., asso-
ciated with positive probability in Hist).
Once acceptable starting values were obtained,

jumping distributions for each MH chain were
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tuned for 30,000 iterations to achieve near opti-
mal acceptance rates of ~44% (Gelman et al.
1996). The simulations were executed for an
additional 50,000 iterations after tuning, the first
20,000 of which were discarded as burn-in, yield-
ing a sample of 30,000 iterations per chain. Thus,
we obtained a total of 1,650,000 (5 chains 9 11
light levels 9 30,000 iterations) parameter sets
overall, which we thinned by 50 to reduce both
within-chain autocorrelation and storage require-
ments (n = 33,000 samples). We verified conver-
gence of these thinned, post-burn-in chains using
the Gelman diagnostic tool (Plummer et al. 2006)
in R (see Appendix S2). All results refer to the
thinned output unless otherwise noted.

All MH code for the analysis was written in
the R programming language (R Core Team
2015), and the ACGCA model was programmed
in C based on code developed by Ogle and
Pacala (2009) and Gemoets et al. (2013). A wrap-
per function in C was written to pass inputs from
R to the C code (Gemoets et al. 2013), and return
outputs to R. This code was then implemented
via a custom parallelization algorithm allowing
multiple R sessions to run simultaneously, each
running a single chain.

Output analysis
Sensitivity analysis.—Again, we only used FIA

data for trees that are assumed to be healthy and
growing; we do not explicitly account for various
filtering processes (e.g., non-light-related envi-
ronmental stress or competition), but we impose
mass-balance and engineering constraints
contained within the ACGCA model. Thus, we
interpret the joint posterior distribution of the
parameters, h, as the TTS. First, we use the TTS
to explore the sensitivity of tree growth to
changes in the TTS traits. Using n = 3300 h
vectors from the TTS (obtained by retrieving
every 10th sample from the 33,000 vectors), we
obtained the predicted (output) radius (r) and
height (H) values, and we computed growth
rates (Dr and DH) representative of “young”
(simulation years 1–10) and “mature” (years
41–50) trees. For each of the four growth indices,
we regressed the predicted growth index (y vari-
able) on the corresponding parameters (traits, x
variables) that produced the growth index. This
was accomplished in R using the linear model
(lm) function where y was regressed on all x

variables (32 traits), including main effects and
quadratic effects of each trait, and all two-way
interactions among traits; consider this the “full”
model. Next, we repeated the regression analysis
32 times, whereby one of the traits (x variables)
was removed; consider these the reduced mod-
els. Then, for each trait, we computed the partial
R2 based on the difference in the sum of squared
errors (residuals) between the full and reduced
model (Kutner et al. 2005). Higher partial R2

(maximum = 1) values indicate greater impor-
tance of a trait for predicting growth, relative to
traits associated with lower values.
Posterior parameter space.—To evaluate the

structure of the TTS, independent of predicted
growth, we graphically explored whether the
TTS is refined compared to the independent
prior distributions used for each trait. To initially
address this, we overlaid the marginal posterior
distributions for each hq (each trait) with the cor-
responding prior distribution for that trait. Next,
we analyzed the posterior samples of h to explore
trait correlations (or trade-offs) associated with
the TTS by computing bivariate correlations
between all unique pairs of the 32 hq, yielding
(32 9 31)/2 = 496 bivariate plots and associated
Pearson correlation coefficients.
To further explore the correlation structure of

the TTS, as contained in the posterior samples, we
evaluated how perturbations to this structure
affect tree growth. For these simulations, the pos-
terior samples of the individual hq, for all 11 light
levels, were stored in a 33,000 (MH itera-
tions) 9 32 (parameters) matrix that maintained
the correlation structure produced by the MH
simulations. This correlation structure was subse-
quently perturbed such that, for a given column
(or trait, q), all of the sampled values (rows) were
randomized without replacement, producing a
new matrix of parameter values. This was
repeated for each column (parameter), while
maintaining the original row (iteration) order of
the other 31 columns (parameters). Thus, we pro-
duced 33 matrices of posterior samples; one main-
tained the original correlation structure, and the
others (32) maintained the correlation structure of
all but one of the parameters (or traits). For each
of these 32 randomized parameter matrices, the
ACGCA model was run for each of the 33,000
rows (each containing a randomized parameter
vector), resulting in associated output vectors (r,
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H, Dr, and DH). The likelihood of each output
vector was evaluated with Eq. 11 (Hist) to deter-
mine whether the corresponding, randomized
parameter vector produced realistic tree growth
(i.e., a likelihood >0), indicating that the simulated
tree survived for 50 yr, remained in a healthy
state, and was not associated with unrealistic
values for r, H, Dr, and/or DH. From these simula-
tions, we calculated, across all light levels, the
proportion of the “new” (randomized) 33,000
parameter vectors that produced realistic tree
growth, for each of the 32 matrices for which one
trait was randomized.

Multivariate trait correlation structure.—The
above randomization of individual trait values
suggested a more complicated correlation struc-
ture among the 32 traits that was not revealed
by the bivariate analyses (see Results). Thus, we
conducted multiple regressions to further assess
the correlation structure of the TTS defined by
the joint posterior for h. The rationale for the
regressions was to consider the MH posterior
samples as a dataset, and then to treat each of
the 32 traits (hq) in turn as the dependent vari-
able with the remaining 31 traits and light level
serving as 32 independent (explanatory) vari-
ables. Each trait, whether treated as the inde-
pendent or dependent variable, was log- or
logit-transformed according to the transforma-
tion used in the Bayesian model (see
Appendix S1: Table S1). The transformed values
were standardized by subtracting their poste-
rior mean and dividing by their posterior stan-
dard deviation. We refer to each transformed
and standardized parameter (trait) as dq, all of
which are unitless, with mean 0 and variance 1.
For consistency, light level was rescaled from
�3 (lowest light level) to +3 (highest level),
roughly the same range as the standardized
traits (dq).

We conducted stepwise regressions in R by fit-
ting two models for each trait: one with only
main effects, and one with main effects and all
possible two-way interactions. All stepwise
regressions used forward and backward selec-
tion. The Bayesian Information Criterion (BIC)
was used for model selection because it tends to
select more parsimonious models compared to
the Akaike information criterion (AIC) given that
BIC’s penalty term is larger per variable added
for large datasets (Gelman et al. 2014).

Results from stepwise regression allowed
exploration of the importance of trait–trait inter-
actions for understanding the “overall” effect of
one trait on another trait. For example, consider
the following generic regression model for
dependent variable trait dq, which is significantly
correlated with independent variable traits di
and dj and their interaction (q 6¼ i or j):

dq ¼ b0 þ bidi þ bjdj þ bijdidq (17)

The overall effect of di is given by combining
all terms on the right-hand side involving di,
and factoring out di, such that Eq. 17 can be
rewritten as:

dq ¼ b0 þ bi þ bijdj

 �

di þ bjdj (18)

Thus, the overall effect of di (i.e., bi + bijdj)
depends on the partial regression coefficients for
its main effect (bi) and interaction term (bij) and
the value of the other trait, dj. Because the regres-
sion variables (d) are linear transformations of
the actual trait (h), Eq. 18 allowed us to quantify
how correlations between pairs of traits depend
on the values of other traits. Thus, interactions
with other traits could potentially result in a
wide range of possible bivariate correlations
(negative, uncorrelated, or positive) and
strengths of correlations (strong to weak)
between two traits (e.g., hq and hi), conditional on
the values of other traits (e.g., hj).
We used Eq. 18 to approximate the posterior

distributions for the overall effects for each
dependent trait. That is, for each of the 32 depen-
dent trait models, Eq. 18 was evaluated at the
point estimates of the regression coefficients (b’s),
for every posterior parameter vector (n = 33,000)
of the associated independent traits (e.g., di [or
hi] and dj [or hj] in Eq. 18). This approach ignores
uncertainty in the regression coefficients (b), but
it does account for uncertainty in and covariation
among the traits, as quantified by the joint poste-
rior for h.

RESULTS

ACGCA model vs. FIA comparison
The posterior region of the ACGCA simula-

tions for tree radius vs. height generally had
good overlap with the FIA data (Fig. 1a, b). Since
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the ACGCA model was only run for 50 years in
each simulation, it did not reach the large radii
and heights reported for trees from older stands.
The ACGCA model also did not sufficiently cap-
ture the FIA region characterized by short trees
with small radii, perhaps because these trees
may not align with the ACGCA model’s
“healthy” condition. However, the growth
curves (and associated parameter or trait values)
obtained by fitting the ACGCA model to the
aggregated FIA data (Fig. 1b, e) are notably
refined (more constrained) relative to the growth
curves produced by the ACGCA model in the
absence of the FIA data (Fig. 1c, f).

Posterior parameter samples
Posterior estimates for h are given in

Appendix S1: Table S2. For 30 of the 32 hq’s
(traits), the 95% posterior credible intervals (CIs)

included the prior mean, for each of the 11 light-
level-specific marginal distributions. Based on
visual inspection, the posteriors closely resem-
bled the priors for 18 of the hq’s (as in Fig. 2c; for
12 hq’s, the posteriors were not notably different
from the priors, but were slightly shifted (as
in Fig. 2b); for only two hq’s (e and SO), the poste-
rior and prior distributions were notably differ-
ent (as in Fig. 2a). For SO, the posteriors did not
differ by light level, but the overall posterior
mean and 95% CI were 0.13 [0.01, 0.47] year�1,
resulting in a slower senescence rate (longer lifes-
pan) for stems and coarse roots (“other” woody
tissue) compared to what would be predicted
from the literature (prior mean = 1.85 yr�1;
Appendix S1: Fig. S1). Only one parameter
(e, radiation-use efficiency) had posterior distri-
butions that noticeably differed across light
levels (Fig. 2a). The four highest light levels

Fig. 1. Tree height (H) vs. trunk radius (r) based on (a) Forest Inventory and Analysis (FIA) data only
(n = 1,270,510 data points), (b) the ACGCA model after having fit the model to the FIA data (n = 1,650,000 simu-
lations points), and (c) the ACGCAmodel based on prior distributions (no FIA data), whereby parameters (traits)
are randomly drawn from the independent priors and only growth curves representing “healthy” trees are kept
(n = 1,650,000 simulation points). The bottom panels d–f show the same height vs. radius relationships but as
smoothed color density plots.
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(PARmax = 50, 63, 79, and 100% of maximum
light) resulted in posterior means and 95% CIs
for e that varied from 15.0 [4.8, 35.0], 13.6 [3.7,
31.4], 9.9 [3.0, 24.4], to 11.3 [2.9, 28.8] g gluc/MJ,
respectively. These posterior estimates were sig-
nificantly different from the prior mean (37.81 g
gluc/MJ) and showed a trend of decreasing e as
PARmax increased (Appendix S1: Fig. S2).

Bivariate relationships
Bivariate correlations among all possible pairs

of the hq’s (496 total pairs) were generally weak
(Appendix S1: Table S3); for example, only 178
pairs were associated with significant (P ≤ 0.05)
correlations, ranging from Pearson correlations
of R = �0.25 to 0.42. The remaining 175 correla-
tions may be deemed biologically insignificant

given that |R| < 0.2, but many of these were still
statistically significant (Appendix S1: Table S3)
due to the large number of posterior samples
used to compute R.

Starting values and resampling
Generation of starting values required an aver-

age (based on n = 10 repetitions of generating
starting values for each light level) of 7004 (32%
light) to 52,353 (100% light) draws from the pri-
ors to obtain a single vector of starting values for
h, with an overall mean (across all 11 light levels)
of 24,996 draws (n = 110; Table 2). The high
number of draws required to generate starting
values indicates that many parameter sets lead to
unrealistic tree growth, such that the simulated
tree heights and radii fell outside the empirical

Fig. 2. Marginal posterior probability densities by light level (11 thin lines) for a select set of parameters (traits),
overlaid with their prior probability distributions (thick black lines) for transformed values of (a) radiation-use
efficiency (e, g gluc/MJ), (b) proportion of xylem conducting area (cX, unitless), and (c) construction cost of produc-
ing leaves (CgL, g gluc g/dw). Three main patterns emerged across the 32 traits: (a) shows the only case of notable
differentiation of the posterior by light level, and it also illustrates differences between the prior and posteriors—
SO was the only other parameter (trait) where the posterior visually differed from the prior; (b) shows that the pos-
terior distributions obtained under the 11 light levels were nearly identical, and the prior and posteriors were only
slightly differentiated for, but effectively very similar for one cX of 11 traits (several other traits showed a similar
pattern: Hmax, SWmax, q, f1, f2, cX, RmL, RmS, RmR, gB, R0, R40); and (c) shows one (CgL) of 18 traits described by a high
degree of overlap between the prior and posterior distributions (other traits with a similar pattern: φH, g, kS, kH,
cC, CgR, Cgw, dL, dR, SL, SLA, SR, rR, qR, k, m, a). See Table 1 for definitions of traits (parameters).
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distribution estimated from FIA data (as deter-
mined by Hist).
The resampling procedure for evaluating the

importance of the parameter correlation struc-
ture, as quantified by the MH posterior samples,
resulted in acceptance rates from 13.4% (when
radiation-use efficiency, e, was randomized rela-
tive to the other traits) to ~100% (when labile car-
bon storage capacity of leaves, dL, or roots, dR,
was randomized; Fig. 3). Randomization of four
other parameters (traits) led to acceptance rates
lower than 50%: maximum potential crown
radius of a tree with diameter at breast height of
40 cm (R40), root and leaf maintenance respira-
tion rates (RmR and RmL), and the fine root area to
leaf area ratio (f1; Fig. 3).

Sensitivity analysis
The multiple regressions of the four different

growth indices—radial and height growth, for
young and mature trees—on the 32 traits

Table 2. The mean number of draws from the priors
required to obtain a parameter vector, h, that
resulted in realistic tree growth under each light
level depicted by the PARmax values (mean and stan-
dard deviation [SD] based on n = 10 simulations).

Mean no. draws SD PARmax

43235.9 38392.1 206
13806.3 10946.8 259
21053.3 24366.2 326
14530.5 9413.5 411
7041.2 4834.6 517
7004.3 7448.3 651
13958.7 7711.6 820
29815.2 31777.0 1032
26828.7 16398.4 1300
45324.5 37804.6 1636
52352.8 56124.9 2060

Note: For example, when PARmax = 206 MJ�m�2�yr�1, over
43,000 random draws from the priors are generally required
to find a single set of parameter values that lead to predicted
r, H, Dr, and DH associated with a probability >0 given the
FIA histogram (Hist).

Fig. 3. The proportion of values accepted after randomizing the order of each parameter with respect to MH
iteration number (gray bars) overlaid with the R2 values associated with two different stepwise regressions
(points) that treated each parameter as the dependent variable: stepwise regressions with main effects only (trian-
gle) or main effects and two-way interactions (diamond). In general, R2 values increased as the proportion
accepted increased. In some cases (for parameters such as R40, RmR, RmL, f1, SLA, and SO), it is clear from the step-
wise regressions that including interactions drastically improved model fit. However, there were often many
more variables in these models (for SLA, 23 terms in the main effects-only model vs. 116 in the model with main
effects and interactions). See Table 1 for definitions of the parameters.
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revealed that similar traits govern height and
radial growth and that growth is insensitive to
many of these traits. Radial and height growth of
young trees was most sensitive to R0, e, SO, f1,
RmR, and RmL; only two of these traits (SO and
R0) were also among the top predictors of
growth in mature trees, which was also sensitive
to cX, RmS, f2, and R40 (partial R2 values >0.1 for
both growth indices; Fig. 4a, b). Growth of

young trees was insensitive to CgR, CgW, kS, SR,
dR, dL, and cC, and growth of mature trees was
also insensitive to CgR, CgW, SR, and dL, in addi-
tion to g, M, and CgL (partial R2 values <0.02;
Fig. 4a, b). See Table 1 for trait definitions.

Multiple-regression results
Stepwise regressions, with and without two-

way interactions, produced statistically significant

Fig. 4. Partial R2 values from the sensitivity analysis for traits in regression models explaining change in radius
(a) and change in height (b) for two time periods: years 1–10 (“young” trees, light gray bars) and years 41–50
(“mature” trees, dark gray bars). Higher partial R2 values indicate greater importance of that trait for predicting
growth. See Table 1 for definitions of traits (parameters).
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models (P < 0.05), with coefficients of determina-
tion (R2) as high as 0.81 (stepwise with interac-
tions) when e was treated as the dependent
variable (Appendix S1: Table S4; Fig. 3). Many
models with low R2 (e.g., Hmax, R

2 = 0.009) were
still statistically significant (e.g., P � 0.01) due to
the large sample size (n = 33,000). The stepwise
regression procedure that only considered main
effects produced models only containing intercept
terms when cC, CgL, CgR, Cgw, and dL were treated
as the dependent variable. When the procedure
included two-way interactions, it produced mod-
els only containing intercepts for the aforemen-
tioned variables, in addition to φH and m (see
Table 1 for trait definitions). In these cases, no
relationship was identified between the aforemen-
tioned “dependent variable” traits and other “in-
dependent variable” traits. As expected, models
for these traits yielded the smallest R2 values, and
when these traits were randomized, they had high
acceptance rates in the resampling procedure
(Fig. 3), and they were associated with many low,
non-significant bivariate correlations (Appendix S1:
Table S3).

Across the 32 different hq’s, the R2 values
from the different stepwise regression models
increased as the acceptance rate from the resam-
pling procedure decreased (Fig. 3; Appendix S1:
Table S4). Adding two-way interactions in the
stepwise regressions greatly increased the R2 for
some models (traits); for example, when two-
way interactions were included, the R2 for the
model of R40 increased from 0.32 (main effects
only) to 0.53, but was accompanied by a large
increase in the number of model parameters,
from 21 to 114 (Appendix S1: Table S4). The
increase in parameters when including two-way
interactions was driven by the inclusion of a large
number of interaction terms, and occasionally an
additional main effect (Fig. 5; Appendix S1:
Table S4). The direction (positive or negative) of
the main effects was generally not changed by
adding interactions.

The trait models with the highest R2 values were
the same for the stepwise regressions both with
and without two-way interactions. The top five
models with the highest R2 values corresponded to
the models for e, RmR, f1, RmL, and R40, with R2 val-
ues of 0.74, 0.42, 0.38, 0.33, and 0.32 (main effects
only), respectively, and 0.82, 0.53, 0.51, 0.48, and
0.53 (main effects and interactions), respectively. It

is worth noting that of these traits, RmL is part of
the LES (Wright et al. 2004) and e is related to the
LES via its relationship to leaf N (Sinclair and
Horie 1989, Wang et al. 1991, Martin and Jokela
2004). The model for SLA—an important LES trait
—had R2 values of 0.28 (with interactions) and 0.14
(without interactions). With respect to the WES, q
is the only ACGCA parameter that is explicitly
included in the WES; the models for q had low R2

values (e.g., R2 = 0.07 with interactions). However,
cX is indirectly related to the WES, and it had the
sixth highest R2 (0.31 with interactions). In general,
the traits (hq’s) that were associated with models
with relatively high R2 values were also typically
included as predictors in models for other traits
and were included in more interactions (Fig. 5;
Appendix S1: Table S4). Further, traits that are
directly or indirectly related to the LES or WES
were often included as predictors in regression
models for other LES- or WES-related traits. For
instance, the leaf traits SLA and RmL were included
as predictors of e, and the wood traits RmS and q
were included as predictors of cX (Fig. 5).
Focusing on the stepwise regressions with two-

way interactions, the overall effect of each inde-
pendent variable trait (e.g., see Eqs. 17 and 18)
shows that the correlation between the dependent
(dq) and the independent variable traits can
change when considering interactions with other
traits (e.g., dj in Eqs. 17 and 18; Fig. 6). In some
cases, the overall effect can switch signs relative to
the main effect—for example, see the overall effect
of RmS (along x-axes) on e (Fig. 6a), RmL (Fig. 6b),
and RmR (Fig. 6c), depending on the values of the
interacting traits. In most cases, the overall effect
is primarily negative or positive, with the magni-
tude of the effect being influenced by interacting
traits. For example, the main effect of e on RmL is
1.29 (Fig. 6b), but the approximated 95% CI repre-
senting the overall effect spans (0.06, 2.71).

DISCUSSION

Structure of the theoretical trait space
The TTS produced by the individual-based

tree growth model (ACGCA), constrained by for-
est inventory (FIA) and literature (TreeTraits)
data, suggests complex multivariate relationships
among a subset of functional traits related to tree
growth and carbon allocation. Bivariate, trait–
trait correlations were generally weak within the
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Fig. 5. Summary of effects included in multiple-regression models found with a stepwise regression routine
including main effects and all two-way interactions. Each column represents a model (i.e., columns are associated
with the trait that as treated as the dependent variable), and each row represents a potential covariate in the
model. When appropriate, � in a cell indicates the direction of the main effect for a given variable. The number
under each diagonal line in a cell represents the number of interaction terms that the corresponding covariate
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TTS (Fig. 7; Appendix S1: Table S3). Yet, it is clear
from evaluation of the data-constrained ACGCA
output (posterior for h) that about half of the 32
traits (hq’s) cannot be randomly combined; speci-
fic combinations of traits are necessary to achieve
predictions of realistic tree growth. This is further
emphasized by drawing values of each hq (trait)
from the independent, literature-based marginal
priors; the majority of trait value combinations
are rejected because they lead to growth patterns
that either do not agree with the FIA data
(Table 2) or lead to an unhealthy state given the
ACGCA model structure. For example, most
cases of randomly drawn trait combinations
resulted in trees that died during the simulation,
with most dying during the first time step. Simi-
larly, the results from independently randomizing
each trait (hq; Fig. 3) within the joint posterior
(TTS) clearly show that the TTS contains impor-
tant correlation structure that is necessary to
produce realistic predictions of tree growth.
Taken together with the stepwise regressions, our
findings provide evidence for complex, multi-
dimensional relationships between a subset of
functional traits that govern tree growth in the
TTS, but tree growth is insensitive to the other
(ca. half) traits in the TTS.

We find it interesting that only a subset of
traits exhibited complex, contingent relationships
(e.g., e, RmR, f, RmL, cX, R0, RmS, SLA, and a few
others; Figs. 3, 5); these traits are also the best
predictors of radial and height growth (Fig. 4).
Somewhat surprising, tree growth is relatively
insensitive to about half of the 32 traits (e.g., dL,
CgL, Cgw, CgR, cC, SR, SL, and g, among others;
Fig. 4), and these are also the traits that are
expected to operate independent of each other in
the TTS (e.g., Figs. 3, 5), or that are not directly
informed by the FIA data on tree radii and
heights. This implies that a smaller (ca. 15–16) set
of traits are important for understanding how
tree growth responds to light, the environmental
driver considered here. Thus, while coordination

may occur among certain traits in response to
specific environmental limitations, other traits
may be irrelevant. In this study, only light was
included as an environmental driver; if another
driver, such as water availability, were included,
tree growth would likely be sensitive to a differ-
ent subset of traits.

Relationships between traits and the importance
of under-represented traits
Multiple-regression analysis of the TTS pro-

vided insight into relationships among traits and
between traits and light level. Of the subset of
coordinated traits revealed by our analyses, we
focus on traits that are frequently measured in
field or laboratory settings and that are related to
empirical trait spectra (e.g., LES, WES). For
instance, when SLAwas treated as the dependent
variable trait, it was positively related to leaf
maintenance respiration (RmL), as expected
(Wright et al. 2004), and negatively related to
light level (PARmax), in agreement with previous
work showing that SLA is up to two times higher
for leaves produced in shade compared to high
light (Evans and Poorter 2001, Ogle et al. 2013).
Unanticipated relationships also emerged. For
example, SLA was correlated with a number of
root traits (RmR, f1, rR, and qr), many of which are
often challenging to measure and could possibly
define a root economics spectrum (Reich 2014).
Other infrequently measured traits (e.g., R0, R40,
SO) were often included as predictors of more
frequently measured traits (e.g., SLA, RmL, RmR,
q; Fig. 5; see Table 1 for trait definitions). While
it is often impractical, due to logistics or expense,
to measure traits such as SO (branch and coarse
root senescence rate) and various root traits
(Weiher et al. 1999, Lavorel et al. 2007), we
demonstrate that modeling can help reveal
potential relationships among traits that might
otherwise be impractical to investigate. Although
the trait relationships that emerge from our
analysis are not directly equivalent to those

trait was included in; if left blank, then it only occurred as a main effect. Gray shaded cells denote statistically sig-
nificant main effects (P < 0.05, most P � 0.05); all interaction effects were statistically significant, all but three
main effects were statistically significant, and the three non-significant main effects were included in at least one
significant interaction within the corresponding model. All parameters were transformed according to
Appendix S1: Table S1 and normalized. PARmax (MJ�m�2�yr�1) is light level, which is treated as a fixed driving
variable and is not a functional trait.

(Fig. 5. Continued)
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Fig. 6. Main effects of variables (traits) included in the stepwise regressions that treated the following four
traits as dependent variables: (a) radiation-use efficiency (e), (b) leaf maintenance respiration (RmL), (c) fine root
maintenance respiration (RmR), and (d) proportion xylem conducting area (cX). In these regressions, the depen-
dent traits and the independent traits (x-axes) were normalized such that the normalized variables are unitless.
The violin plots show the overall main effect of each variable (on x-axes) when taking into account interactions
(e.g., Eqs. 17 and 18), which contain the corresponding partial regression coefficient for the actual main effect
(light gray horizontal lines). Three primary cases are illustrated: (1) The interactions lead to a variable overall
main effect such that the violin plot is comparatively wide, but the direction of the overall effect is consistent with
the partial main effect (negative or positive); (2) the overall main effect can shift from negative to positive, or vice
versa, given the values of interacting variables (e.g., violin plots to overlap the dashed, horizontal zero line); and
(3) the interactions have little influence such that the overall main effect is nearly indistinguishable from the par-
tial main effect (e.g., very narrow violin plots). See Table 1 for definitions of the traits. All traits were transformed
according to Appendix S1: Table S1 and normalized.
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measured in the field that explicitly evaluate
inter- and/or intraspecific relationships, the
model-based TTS suggests that future observa-
tional or experimental studies should consider
potentially important traits (e.g., R0, R40, SO,
SWmax, f1, RmR, RmS; see Table 1) that are under-
represented in most measurement campaigns.

Additionally, for a subset of traits, their rela-
tionships (trade-offs) with other traits appear
more complex than suggested by empirical stud-
ies. For example, while the bivariate correlation
between light-use efficiency (e) and root mainte-
nance respiration (RmR) is weak (Appendix S1:
Table S3), RmR is a significant predictor of e when
other traits are considered (e.g., f1, SLA, RmL, R40),

partly because of interactions between RmR, these
other traits, and light level (Fig. 5). Existing
empirical trait spectra—including the LES (Wright
et al. 2004), WES (Chave et al. 2009), and the
worldwide fast–slow spectrum (Reich 2014)—typ-
ically do not evaluate trait–trait relationships
beyond at most three traits (e.g., 3D plots). Studies
using ordination methods provide an indication
that interactions exist, in that multiple traits are
often found to be correlated with a particular axis
in the ordination (Cavender-Bares et al. 2004,
D�ıaz et al. 2004, Baraloto et al. 2010, Stahl et al.
2013). The results from this study, however, indi-
cate that explicit consideration of multiple trait–
trait or trait–environment interactions is poten-
tially important (Fig. 5). Considering the variety
of relationships proposed in plant physiological
models—such as photosynthetic models (Far-
quhar et al. 1980), water transport models (Sperry
et al. 1998, Tuzet et al. 2003), stomatal conduc-
tance models (Ball et al. 1987, Damour et al. 2010,
Medlyn et al. 2011)—it is perhaps unsurprising
that multiple plant functional traits interact to
govern lower dimensional trait spaces (e.g.,
bivariate trait relationships), especially when they
are known to be correlated with the same under-
lying physiological processes.
We highlight potential mechanisms that may

give rise to some of the trait–trait relationships
that emerged through our multivariate analyses.
These trade-offs result from a combination of con-
straints inherent to the structure of the ACGCA
model as well as the constraints placed on tree
growth by fitting the model to FIA and TreeTraits
data. Consider one of the trade-offs that emerged
for SLA that may be representative of a hidden
mass conservation trade-off. To achieve a particu-
lar growth rate or size, as SLA increases for a fixed
amount of leaf biomass, leaf area (LA) increases,
which is expected to lead to increased photosyn-
thesis (PG). If more carbon is fixed, then this
“excess” carbon must be incorporated into tissues,
respired, or lost. Again, to achieve a particular
(fixed) growth rate as SLA increase, this would
require that the excess carbon be lost, which is
reflected in the positive correlation between SLA
vs. respiration (RmR and RmL) and/or tissue senes-
cence (SR and SL; Fig. 5). The negative correlation
between cX and q may be interpreted as an engi-
neering trade-off. For a fixed trunk radius, as the
conducting area in the sapwood increases

Fig. 7. Bivariate posterior plots for an example
parameter (trait) pair e and RmR, radiation-use effi-
ciency and root maintenance respiration, respectively.
The black points are the 1.65 million parameter pairs
generated by the MH routine before thinning by 50,
and the dark gray points represent the subset of 33,000
points used to calculate posterior statistics. The light
gray points represent a subset of the posterior space
obtained by filtering the MH output such that the mid-
dle 20% quantile for PARmax, f1, RmL, R40, and SLAwas
retained (all other samples ignored), resulting in 231
parameter sets out of 1.65 million that met these crite-
ria; this filtering by other traits led to a significant Pear-
son correlation (R = 0.26, P < 0.05) between the focal
pair of traits (e and RmR). All traits were transformed
according to Appendix S1: Table S1 and normalized;
see Table 1 for definitions of traits.
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(increase in cX), this leads to less structural tissue
and lower overall wood density (q).

Independent or potentially irrelevant traits
The regression analyses of the TTS, however,

suggest that a notable number of traits (~50% of
the 32 explored here) are independent of all other
traits, in agreement with our results from ran-
domizing traits (Fig. 3). The randomization
(Fig. 3) and sensitivity (Fig. 4) analyses utilized
the trait values produced by fitting the ACGCA
model to the FIA data, but they are otherwise
independent of the FIA data and reflect inherent
structure and constraints (e.g., engineering and
mass-balance trade-offs) contained within the
ACGCA model. Thus, these analyses point to
this subset of “independent” traits as those traits
that are essentially irrelevant for understanding
tree growth, in terms of height and radial incre-
ment. These are also traits that appear to be un-
informed by the FIA data given that they are
uncorrelated with other traits, and their marginal
posteriors mirror their independent priors. How-
ever, additional sensitivity analyses indicated
that some of the traits that are irrelevant to
growth are critical for predicting whole-plant
labile carbon status (such as Hmax, cC, and gB;
Fig. 4; Appendix S1: Fig. S4), which determines
tree survival (Ogle and Pacala 2009). This implies
that integration of survival data from the FIA
database could help inform these traits.

In summary, our results suggest that poten-
tially a small set of traits are necessary for under-
standing a particular integrated process (e.g.,
height growth, radial growth, survival), but that
these trait subsets may differ depending on the
process of interest. A similar result is reflected in
empirical studies showing that traits making up
the LES are often uncorrelated with traits in the
WES, with the traits in each spectrum being
related to different whole-plant processes (Bar-
aloto et al. 2010).

Trade-offs from economics spectra
Our analysis did not reveal strong correlations

or trade-offs between pairs of traits (Appendix S1:
Table S3), in contrast to previously described trait
spectra such as the LES and WES (Wright et al.
2004, Chave et al. 2009, Reich 2014). The stepwise
regression results, however, provide evidence for
the existence of such trait trade-offs in the TTS,

many of which agree with the empirical eco-
nomics spectra. One example, mentioned above,
is the relationship between SLA and RmL (equiva-
lent to Rmass in the LES). When SLA is treated as
the dependent trait, the partial regression coeffi-
cient for RmL is positive, which agrees with the
relationship in the LES (Wright et al. 2004). The
LES correlation between leaf lifespan (LL = SL

�1)
and LMA (LMA = SLA�1) is positive (Wright
et al. 2004), which agrees with the partial regres-
sion coefficient for SL in the model for SLA. Like-
wise, RmL and LL are positively correlated in the
LES (Wright et al. 2004), which agrees with the
negative partial regression coefficient for SL (since
SL = LL�1) in the regression model that treats RmL

as the dependent variable (Fig. 5).
There is considerably less overlap between the

WES (Chave et al. 2009) and the functional traits
in the ACGCA model, with only wood density
(q) being explicitly included in both. However,
the proportion of xylem conducting area (cX) is
an important wood trait in ACGCA, and it can
be derived from traits in the WES, including
mean conduit diameter and conduit density (i.e.,
number of conduits per cross-sectional area),
given assumptions about conduit shape (e.g., cir-
cular cross section). In the WES, conduit density
is often found to be negatively correlated with q
(Chave et al. 2009). This is in agreement with our
TTS; the bivariate correlation between q and cX
and the associated partial regression coefficients
were both negative and significant. Our study
also suggests that the WES could be expanded
upon by considering other wood traits (e.g., RmS,
SO, SWmax) that emerged here as important pre-
dictors of traits included in the WES (cX and q;
Fig. 5) and/or of tree growth (Fig. 4).
The general agreement between patterns con-

tained in our TTS and analogous aspects of com-
mon, empirical trait spectra (LES and WES)
suggests that quantifying the TTS provides
another approach to understanding trade-offs
among functional traits. The ACGCA model
directly incorporates mass conservation (via car-
bon allocation, utilization, and storage mecha-
nisms) and engineering trade-offs (via structural
and allometric relationships; Scheiter et al. 2013).
The TTS produced by the ACGCA model con-
tained trait trade-offs similar to those seen in the
LES and WES, at least in direction (positive vs.
negative), suggesting that mass conservation and
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engineering trade-offs likely govern much of the
variation in these empirical spectra. It is notable
that prominent empirical trait relationships were
contained in the TTS, despite the fact that the
ACGCA model, as implemented here, did not
include important factors such as water limita-
tions, nutrient availability, disturbances, or biotic
interactions that act on actual trees. If such fac-
tors are included in theoretical (modeling) analy-
ses of functional trait spectra, they could possibly
generate a more refined description of how speci-
fic physiological and environmental processes
influence the functional trait space.

Caveats of our TTS approach and future
directions

One concern that could arise from our
approach of fitting a fairly complex IBM (the
ACGCA model) to the aggregated FIA data is
non-identifiability of some of the parameters
(traits). There are two reasons, however, why this
potential issue is of little concern in this study.
First, the approach clearly eliminates combina-
tions of parameter (trait) values that are inconsis-
tent with the FIA data (e.g., Fig. 1a, b, d, e). For
instance, the ACGCA model is capable of simu-
lating a tree that grows over 100 m in a few
years, given certain (unrealistic) combinations of
parameter values. While the value of each
parameter (trait) may be observable in nature,
the particular combination of values is unlikely
to exist in nature, and such combinations are
subsequently eliminated by fitting the model to
the FIA data. Second, the ACGCA model incor-
porates engineering and mass-balance trade-offs
in the form of equations linking physiological,
allocation, and allometric constraints motivated
by years of research on these processes (Ogle and
Pacala 2009). While it is possible that multiple
combinations of trait value will lead to similar
growth dynamics, the parameter values will “tra-
vel along” trait manifolds contained within the
ACGCA model. Thus, fitting the ACGCA model
to the FIA enables the exploration of these mani-
folds and associated inferences about engineer-
ing and/or mass-balance trade-offs predicted by
the theoretical (i.e., semi-mechanistic) model of
tree growth, as constrained by data on real tree
growth (via the FIA database and literature-
based priors). Fitting the model to additional
types of data—such as mortality (live/dead

status) and independent measures of biomass—
would likely help to solve potential identifiability
issues given that our sensitivity analysis found
different sets of traits to be predictive of growth
vs. labile carbon status.
Related to the above identifiability issue, our

approach to quantifying the TTS is agnostic to site
conditions or species identity. Binning the FIA
data by both site and species would have pro-
duced an insufficient number of data points to
develop representative four-dimensional his-
tograms (Hist) of observed heights, radii, and
associated growth rates for each bin. However, we
would expect that binning by species, for abun-
dant species, may have produced trait spaces that
differed among species, with each being contained
in the overall TTS described here for a “generic”
North American tree in a healthy, growing state.
Moreover, the TTS presented here represents a

multidimensional hypervolume of traits that does
not explicitly account for other potentially impor-
tant environmental factors (e.g., moisture, distur-
bances) or biotic interactions (e.g., competition).
For instance, this study focused on light as the sole
environmental driver; filtering the TTS by limiting
the range of values associated with four traits (f1,
SLA, RmL, and R40; see Table 1) and light level
(PARmax) revealed a potential trade-off (correlation)
between root maintenance respiration (RmR) and
radiation-use efficiency (e; see Fig. 7; Appendix S1:
Fig. S3). Filtering by light represents a particular
environmental constraint, while filtering by the
other four traits represents potential environmen-
tal or biotic selection pressures. If other drivers
and filtering processes had been explicitly
accounted for in our analyses, the resulting trait
space associated with different scenarios would
likely have been refined relative to the TTS
described herein. This refinement or filtering of the
TTS to reflect additional constraints on tree growth
may have resulted in stronger bivariate relation-
ships among traits, representing more pronounced
trade-offs under specific conditions, or may have
identified a different subset of coordinated traits.
Other trait spaces could be constructed with

different process-based models of tree or plant
function, or by including species-specific traits
and fitting to data on individual trees or species.
The parameters in such models can generally be
interpreted as plant traits, and for comparison
against field-based empirical spectra, at least a
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subset of parameters should overlap with traits
in such empirical spectra. We could further refine
the TTS emergent from the ACGCA model by
including additional environmental limitations.
For instance, the modular structure of the
ACGCA model could accommodate a more
mechanistic model of carbon acquisition, but
incorporating, for example, the Farquhar et al.
(1980) model of photosynthesis and a stomatal
conductance model (Ball et al. 1987, Leuning
1995, Ogle and Reynolds 2002, Medlyn et al.
2011). Incorporation of a more mechanistic pho-
tosynthesis model, along with a water transport
model, could allow for the possible incorporation
of a full representation of the soil–plant atmo-
sphere continuum (Sperry et al. 1998, Tuzet et al.
2003), and thus, evaluation of the effects of water
availability on the TTS. The type of model-based
analysis conducted herein could provide unique
opportunities to investigate how specific pro-
cesses—such as those related to physiology, mass
conservation, and engineering constraints—inter-
act with each other to govern functional trait dis-
tributions and trade-offs.

CONCLUSIONS

In summary, in the absence of fitting the
ACGCA model to the FIA data, randomly chosen
combinations of parameters can result in trees
that grow unrealistically fast, tall, or wide, trees
that do not grow, or trees that immediately die,
even under high-light conditions (Fig. 1c, f). For
example, combining high values of SLA and e
with low values of respiration, construction costs,
and senescence rates will lead to a tree that unre-
alistically reaches its maximum height within one
annual time step. Thus, the trade-offs that emerge
by fitting the ACGCA model to the FIA and Tree-
Traits data represent a combination of the mass-
balance and engineering mechanisms that are
built into the model, combined with empirical
relationships contained in the FIA data.

Though strong bivariate patterns among traits
did not directly emerge from the TTS described
by the posterior distribution of parameters (h) in
the ACGCA model, complex multidimensional
relationships are contained in this trait space, for
at least a subset of traits. Thus, the TTS implies
that realistic tree growth can only be predicted if
the multivariate structure of a subset of traits

(subset of h) is maintained; if individual traits
within with the TTS are randomly combined, this
leads to immediate tree death in the vast majority
of simulations. The TTS also suggested a number
of root traits and other less commonly quantified
traits may be important for understanding trait
spectra, whole-plant performance (e.g., growth),
and life-history trade-offs, and such traits should
be considered in future observational and experi-
mental studies. Finally, the directions (positive or
negative) of the trait–trait relationships in the TTS
generally agreed with existing empirical spectra
(e.g., LES and WES), pointing to the validity of
using mechanistic models to explore the TTS,
while also suggesting mechanisms giving rise to
the observed variation in empirical trait spectra.
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