## PNAS

# Supporting Information for <br> Climate change determines the sign of productivity trends in US forests 

J. Aaron Hogan, Grant M. Domke, Kai Zhu, Daniel J. Johnson, Jeremy W. Lichstein
J. Aaron Hogan

Email: hogan.jaaron@ufl.edu

This PDF file includes:
Supporting Information Text
Figures S1 to S9
Tables S1 to S5
SI References

## Supporting Information Text

6.7.1 Effect of changes in biomass losses on biomass stocks ( $\Delta \mathrm{B}_{\text {disturbance }}$ )

To isolate the effect of changes in fractional biomass losses (L), we held $f_{y r}$ (year) and $f$ (age) in eq. 4 constant, and we varied $f_{d}$ (disturbance) over time according to the observed change in $L$ at each plot. At the time of the first remeasurement ( $\mathrm{T}_{\text {first }}$ ), the model-predicted biomass stock for a given plot is $\widehat{\mathrm{B}}_{\text {first }}=f_{d}\left(\mathrm{~L}_{\text {first }}\right) \times f_{y r}\left(\right.$ year $\left._{\text {first }}\right) \times f\left(\right.$ age $\left._{\text {first }}\right)$, where $\mathrm{L}_{\text {first }}$, year $_{\text {first }}$, and age ${ }_{\text {first }}$ are plot-specific values. Similarly, at the time of the last measurement ( $\mathrm{T}_{\text {last }}$ ), and holding $f_{y r}$ (year) and $f$ (age) constant, the model-predicted biomass stock is $\widehat{\mathrm{B}}_{\text {last }} \mid$ year $_{\text {first }}$, age $_{\text {first }}=f_{d}\left(\mathrm{~L}_{\text {last }}\right) \times f_{y r}\left(\right.$ year $\left._{\text {first }}\right) \times f\left(\mathrm{age}_{\text {first }}\right)$. The annualized change in biomass stock ( $\mathrm{Mg} \cdot \mathrm{ha}^{-1} \cdot$ year $^{-1}$ ) at a given plot due to changing disturbance (fractional losses) is then $\Delta \mathrm{B}_{\text {disturbance }}=\left(\widehat{\mathrm{B}}_{\text {last }} \mid\right.$ year $_{\text {first }}$, age $\left._{\text {first }}-\widehat{\mathrm{B}}_{\text {first }}\right) /\left(\mathrm{T}_{\text {last }}-\mathrm{T}_{\text {first }}\right)$. We averaged these values across plots within each ecoprovince to calculate the mean $\Delta \mathrm{B}_{\text {disturbance }}$ values reported in Figs. 3 and S6-S7.

### 6.7.2 Effect of changes in the stand age distribution on biomass stocks $\left(\Delta \mathrm{B}_{\text {age }}\right)$

To isolate the effect of changes in the stand age distribution, we held $f_{d}$ (disturbance) and $f_{y r}$ (year) in eq. 4 constant, and we varied $f$ (age) over time according to the observed change in stand age at each plot. The model-predicted biomass stock for a given plot at time $\mathrm{T}_{\text {first }}$ is $\widehat{\mathrm{B}}_{\text {first }}$ (as in section 6.7.1). The model-predicted biomass stock at time $\mathrm{T}_{\text {last }}$, holding $f_{d}$ (disturbance) and $f_{y r}$ (year) constant, is $\widehat{\mathrm{B}}_{\text {last }} \mid \mathrm{L}_{\text {first }}$ year $_{\text {first }}=f_{d}\left(\mathrm{~L}_{\text {first }}\right) \times f_{y r}\left(\right.$ year $\left._{\text {first }}\right) \times f\left(\right.$ age $\left._{\text {last }}\right)$. The annualized change in biomass stock ( $\mathrm{Mg} \cdot \mathrm{ha}^{-1} \cdot$ year $^{-1}$ ) at a given plot due to changing stand age is then $\Delta \mathrm{B}_{\text {age }}=\left(\widehat{\mathrm{B}}_{\text {last }} \mid \mathrm{L}_{\text {first }}\right.$ year $\left._{\text {first }}-\widehat{\mathrm{B}}_{\text {first }}\right) /\left(\mathrm{T}_{\text {last }}-\mathrm{T}_{\text {first }}\right)$. We averaged these values across plots within each ecoprovince to calculate the mean $\Delta \mathrm{B}_{\text {age }}$ values reported in Figs. 3 and $\mathrm{S} 6-\mathrm{S} 7$.

### 6.7.3 Effect of productivity trends on biomass stocks ( $\Delta \mathrm{B}_{\text {productivity trend }}$ )

To isolate the effect of productivity trends $(\tau)$, we held $f_{d}$ (disturbance) and $f$ (age) constant, and we varied $f_{y r}$ (year) over time according to the remeasurement dates ( $\mathrm{T}_{\text {first }}$ and $\mathrm{T}_{\text {last }}$ ) at each plot. The model-predicted biomass stock for a given plot at time $\mathrm{T}_{\text {first }}$ is $\widehat{\mathrm{B}}_{\text {first }}$ (as in section 6.7.1). The model-predicted biomass stock at time $\mathrm{T}_{\text {last }}$, holding $f_{d}$ (disturbance) and $f($ age $)$ constant, is $\widehat{\mathrm{B}}_{\text {last }} \mid \mathrm{L}_{\text {first }}$, age $\mathrm{first}=f_{d}\left(\mathrm{~L}_{\text {first }}\right) \times f_{y r}\left(\right.$ year $\left._{\text {last }}\right) \times f\left(\right.$ age $\left._{\text {first }}\right)$. The annualized change in biomass stock ( $\mathrm{Mg} \cdot \mathrm{ha}^{-1} \cdot$ year $^{-1}$ ) at a given plot due to $\tau$ is then $\Delta \mathrm{B}_{\text {productivity trend }}=$ $\left(\widehat{\mathrm{B}}_{\text {last }} \mid L_{\text {first }}\right.$, age $\left._{\text {first }}-\widehat{\mathrm{B}}_{\text {first }}\right) /\left(\mathrm{T}_{\text {last }}-\mathrm{T}_{\text {first }}\right)$. We averaged these values across plots within each ecoprovince to calculate the mean $\Delta \mathrm{B}_{\text {productivity trend }}$ values reported in Figs. 3 and S6-S7.

### 6.7.4 Uncertainty estimates for the biomass change components

We quantified the uncertainty in the biomass change components due to uncertainty in the parameter estimates for the temporally-balanced $n / s$ model fits (Table S5). For biomass change component $\mathrm{c}\left(\Delta \mathrm{B}_{\mathrm{c}}\right)$, with parameters $\theta_{\mathrm{c}}$ in the corresponding model term in eq. 4, we randomly generated 9999 parameter sets from the sampling distribution of $\theta_{c}$. For each of these parameter sets, we calculated $\Delta \mathrm{B}_{\mathrm{c}}$ for each inventory plot (as explained in sections 6.7.1-6.7.3) using the best-fit $n / s$ estimates for the parameters in the other two model terms in eq. 4. For each of the 9999 parameter sets, we calculated the mean of $\Delta \mathrm{B}_{\mathrm{c}}$ across inventory plots in the ecoprovince $\left(\overline{\Delta \mathrm{B}_{\mathrm{c}}}\right)$. We then calculated the variance $\left(\mathrm{VAR}_{\mathrm{c}}\right)$ and standard deviation $\left(\mathrm{SD}_{\mathrm{c}}\right)$ across the 9999 realizations of $\overline{\Delta \mathrm{B}_{\mathrm{c}}}$, and the $95 \%$ confidence interval as $\overline{\Delta \mathrm{B}_{c}^{*}} \pm 1.96 \times \mathrm{SD}_{\mathrm{c}}$, where $\overline{\Delta \mathrm{B}_{\mathrm{c}}^{*}}$ is the ecoprovince mean calculated with the best-fit nls estimates (the ecoprovince means reported in Figs. 3 and $\mathrm{S} 6-\mathrm{S} 7$ ). For $\Delta \mathrm{B}_{\text {age }}, \theta$ is multivariate (eqs. $2-3$ ), and we generated parameter sets using the mvrnorm function in the MASS library in R, assuming the sampling distribution of $\theta$ is multivariate normal (1) with mean and variance-covariance matrix provided by the $n / s$ model fits (Table S5). For $\Delta \mathrm{B}_{\text {productivity trend }}$ and $\Delta \mathrm{B}_{\text {disturbance }}, \theta$ is univariate (consisting of $\tau$ and $\alpha$, respectively), and we generated parameter values using the rnorm function in R with mean and standard deviation (i.e., the standard error of the parameter estimate) provided by the $\mathrm{n} / \mathrm{s}$ model fits (Table S5).

Confidence intervals (Cls) for the sum of the $\Delta \mathrm{B}$ components ( $\Delta \mathrm{B}_{\text {sum }}$; Figs. $\mathrm{S} 6-\mathrm{S} 7$ ) were estimated as follows: First, we estimated the variance of the sum of the $\Delta \mathrm{B}$ components $\left(\mathrm{VAR}_{\text {sum }}\right)$ as the sum of the three variance components $\left(\operatorname{VAR}_{\mathrm{c}}\right)$. Then, we estimated the CI for $\Delta \mathrm{B}_{\text {sum }}$ as $\overline{\Delta \mathrm{B}_{\text {sum }}^{*}} \pm 1.96 \times \mathrm{SD}_{\text {sum }}$, where $\overline{\Delta \mathrm{B}_{\text {sum }}^{*}}=\overline{\Delta \mathrm{B}_{\text {age }}^{*}}+\overline{\Delta \mathrm{B}_{\text {productivty }}^{*}}+\overline{\Delta \mathrm{B}_{\text {disturbance }}^{*}}$, and $\mathrm{SD}_{\text {sum }}=$ $\sqrt{\mathrm{VAR}_{\text {sum }}}$.

Cls for the indices used to evaluate the $\Delta B$ components ( $x$-axes of Figs. S6B-D) were estimated as follows: For the mean change in stand age (' $\Delta$ stand age'; Fig. S6B), the Cl is $\pm 1.96$ times the standard error of $\Delta$ stand age across inventory plots. For $\tau$ (Fig. S6C), the CI is $\pm 1.96$ times the standard error of the $\tau$ parameter estimate. For $\alpha \frac{\overline{\left(L_{\text {last }}-L_{\text {first }}\right)}}{\left(\mathrm{T}_{\text {last }}-T_{\text {first }}\right)}($ Fig. S6D), the Cl is $\pm 1.96$ $\frac{\overline{\left(L_{\text {last }}-L_{\text {first }}\right)}}{\left(T_{\text {last }}-T_{\text {frrst }}\right)}$ imes the standard error of the $\alpha$ parameter estimate (here, we treat $\frac{\frac{\left(L_{\text {last }}-L_{\text {first }}\right)}{\left(T_{\text {last }}-T_{\text {first }}\right)}}{\text { as a }}$ constant due to its small uncertainty at the ecoprovince level, and we use the identity that the standard deviation scales linearly with a constant multiplier).


Fig. S1. Map of ecoprovinces in the coterminous US. Each ecoprovince is a geographic area with similar soil, climate conditions and potential natural vegetation (2). Ecoprovince boundaries (3) are shown in black. State political boundaries are shown in red. The green line near the center of the US divides east from west in our analysis. Ecoprovince names are given in Tables 1 and S2S4.


Fig. S2. Simplified graphical representations of non-linear models used to quantify productivity trends $(\tau)$. Archetypal shapes of curves are shown for (A) biomass stock as a function of stand age: biomass $=f$ (stand age); (B) biomass production (growth) as a function of stand age: growth $=f$ (stand age); and (C) growth as a function of biomass: growth= $f$ (biomass). Each of the three model forms was fit separately for each US ecoprovince. Each model includes an estimated parameter $(\tau)$ that determines how the curve shifts up or down as a function of year. The examples in this figure show the difference between curves in the years 2000 (solid line) and 2020 (dotted line) if $\tau=0.5 \%$ year $^{-1}$. The examples shown here do not illustrate the full flexibility of the functional forms we considered (e.g., flexible shape in $\mathbf{B}$ and flexible $y$-intercept in $\mathbf{C}$ ). See Methods for details.


Fig. S3 (above). Comparison of weighted mean productivity trends ( $\tau$, \% year ${ }^{-1}$ ) for the eastern and western US by model functional form. Points are regional means and error bars are 95\% confidence intervals. To calculate regional weighted means, each ecoprovince productivity trend (Tables S2-S4) was weighted by its inverse variance (4). For biomass $=f$ (age), the weighted mean productivity trend is $0.82( \pm 0.04) \%$ year ${ }^{-1}$ for the eastern US $(n=14)$ and $-0.92( \pm 0.18$, standard error) \% year-1 for the western US $(\mathrm{n}=11)$. For growth $=f($ age $)$, the weighted mean productivity trend is $0.57( \pm 0.06) \%$ year ${ }^{-1}$ for the eastern US $(n=14)$ and $-1.93( \pm 0.14) \%$ year ${ }^{-1}$ for the western US $(\mathrm{n}=7)$. For growth $=f$ (biomass), the weighted mean productivity trend is 0.27 $( \pm 0.06) \%$ year ${ }^{-1}$ for the eastern US $(n=13)$ and $-1.58( \pm 0.14) \%$ year ${ }^{-1}$ in the western US $(n=$ 10).

Fig. S4 (next page). Comparison of productivity trend $(\tau)$ parameter estimates from analyses using alternative datasets. We fit models to three alternative datasets: (1) 'all data' included all remeasurements of non-plantation forest plots that met the filtering criteria described in Methods; this dataset was used for all analyses in this paper unless stated otherwise; (2) the 'temporallybalanced' dataset only included the first and last plot remeasurement for plots with two or more remeasurements; the eastern US portion of this dataset was used to partition biomass change into components (Figs. 3 and S6-S7); and (3) the 'excluding timber harvest' dataset is the same as 'all data' except that it excludes plots where one or more harvested trees were reported during any remeasurement interval. Error bars show $95 \%$ confidence intervals. Estimates are not available in cases where the sample size was insufficient to constrain the model. For example, most western US plot locations have only been remeasured once, leading to small sample sizes for most western ecoprovinces in the 'temporally-balanced' dataset. See Methods section 6.4.5 for a more general discussion of convergence issues.



Fig. S5. Productivity trends $(\tau)$ for US ecoprovinces within bivariate climate-change spaces: (A-C) mean annual temperature change ( $\triangle \mathrm{MAT}$ ) vs. change in the Palmer Drought Severity Index ( $\triangle$ PDSI); (D-F) $\triangle$ MAT vs. mean annual precipitation change ( $\triangle$ MAP); (G-I) $\triangle$ PDSI vs. $\triangle$ MAP. Each column shows results for one of the three model forms (Fig. S2). Each symbol represents an ecoprovince $\tau$ estimate (Tables S2-S4) on a truncated color scale ( $\tau<-2 \%$ year ${ }^{-1}$ colored dark purple, and $\tau>2 \%$ year ${ }^{-1}$ colored bright green). Across ecoprovinces, $\triangle$ MAT was negatively correlated with $\triangle \mathrm{PDSI}$ and $\triangle \mathrm{MAP}$, and $\triangle \mathrm{PDSI}$ and $\triangle \mathrm{MAP}$ were positively correlated with each other. Thus, ecoprovinces that experienced the greatest warming tended to get drier (and tended to have $\tau<0$ ), and ecoprovinces that experienced the least warming tended to get wetter (and tended to have $\tau>0$ ). Climate change statistics for each ecoprovince are reported in Table 1.


$$
\Delta \mathrm{B}_{\text {observed }}\left(\mathrm{Mg} \mathrm{ha}^{-1} \text { year }^{-1}\right)
$$

c




Fig. S6. Model evaluation for the biomass change partitioning analysis for 14 eastern US ecoprovinces, based on the temporally-balanced dataset (Table S5). Points are ecoprovince means and error bars are $95 \%$ confidence intervals. Eastern US ecoprovinces are color coded to match Fig. S1. (A) The sum of the modeled components of biomass change ( $\Delta \mathrm{B}_{\text {sum }}=\Delta \mathrm{B}_{\text {age }}+$ $\Delta \mathrm{B}_{\text {productivity trend }}+\Delta \mathrm{B}_{\text {disturbance }}$ ) in relation to the observed change in biomass ( $\Delta \mathrm{B}_{\text {observed }}$ ). The red dashed line is the $1: 1$ line. (B) Biomass change due to change in stand age ( $\Delta \mathrm{B}_{\text {age }}$ ) in relation to the ecoprovince mean change in stand age ( $\Delta$ stand age). Noise in the relationship is due to difference among ecoprovinces in age distributions and in biomass vs. age relationships. (C) Biomass change due to productivity trends ( $\Delta \mathrm{B}_{\text {productivity trend }}$ ) in relation to the $\tau$ parameter estimates. (D) Biomass change due to change in mortality and harvest losses ( $\Delta \mathrm{B}_{\text {disturbance }}$ ) in relation to an index that summarizes loss effects: the loss effect parameter ( $\alpha$ ) times the annualized mean change in fractional biomasses losses (L) between the first and last plot remeasurements ( $\mathrm{T}_{\text {first }}$ and $\mathrm{T}_{\text {last }}$, respectively). The minus sign that precedes $\alpha$ makes the sign of the loss effect consistent with $\Delta \mathrm{B}_{\text {disturbance }}$.


Fig. S7. Relationships between observed biomass change ( $\Delta \mathrm{B}_{\text {observed }}$ ) and modeled components of biomass change for 14 eastern US ecoprovinces. (A) biomass change due to productivity trends ( $\Delta \mathrm{B}_{\text {productivity trend }}$ ), (B) biomass change due to change in stand age $\left(\Delta \mathrm{B}_{\text {age }}\right)$, and $(\mathbf{C})$ biomass change due to change in mortality and harvest losses ( $\Delta \mathrm{B}_{\text {disturbance }}$ ). Points are ecoprovince means and error bars are $95 \%$ confidence intervals.


Fig. S8. Example of models fit to forest inventory data for ecoprovince M332 (Middle Rocky Mountain Steppe - Coniferous Forest - Alpine Meadow) in the western US (see Fig. S1). Left: Data for individual FIA plots (small black symbols), data means in equal-sample-size bins (large colored dots) and fitted curves (parameter estimates in Tables S2-S4). All FIA plot data are shown, without regard for measurement date. Fitted curves are plotted based on the ecoprovince mean values for measurement date and fractional biomass losses (L). FIA plot data are noisy due to the small sample area, as well as heterogeneity in soil, climate, and disturbance history within ecoprovinces. Empirical estimates for biomass growth (G) are sometimes negative due to decreases in the expansion factors (trees per hectare, TPHa) of individual trees that grow from the microplot size-class to the subplot size-class (see details in Methods). Right: Data means by bin (with $95 \%$ confidence intervals, $x$-axes) in relation to the predicted value at the bin midpoint (point estimate, $y$-axes). Predictions are based on the bin means for measurement date and L , and therefore may differ slightly from the predicted curve in the left panel. Colors match the dots in the left panels. Dashed lines are the $1: 1$ line.


Fig. S9. Example of models fit to forest inventory data for ecoprovince 232 (Outer Coastal Plain Mixed Forest) in the eastern US. Details as in Fig. S8.

Table S1. Robustness of productivity trend $(\tau)$ estimates.
The table summarizes the number of pairwise comparisons within ecoprovinces that were consistent with respect to the sign and statistical significance of $\tau$ estimates. Consistency checks were performed within ecoprovinces across the three model forms (for a given data subset) and across the three data subsets (for each model form). The model forms and data subsets are described in Fig. S4. If three $\tau$ estimates were available for a given consistency check, then there were three pairwise comparisons. If two $\tau$ estimates were available, then there was one pairwise comparison. If only one $\tau$ estimate was available, then there were zero pairwise comparisons. For example, for ecoprovince 211, there were three pairwise comparisons for all consistency checks, whereas for ecoprovince 255, the number of pairwise comparisons ranged from zero to three. 'Consistent sign and significance' refers to pairwise comparisons where both $\tau$ estimates were significantly positive, both $\tau$ estimates were significantly negative, or both $\tau$ estimates were not significantly different from zero.

| Comparison | consistent sign and <br> significance | total number of <br> pairwise comparisons |
| :--- | :---: | :---: |
| Across model forms - main dataset | $42(67 \%)$ | 63 |
| Across model forms - temporally balanced | $33(80 \%)$ | 41 |
| Across model forms - excluding timber harvest | $34(77 \%)$ | 44 |
| Across data subsets - pooled results from three | $134(94 \%)$ | 143 |
| model forms |  |  |






| Region | Code | Ecoprovince | N obs | $\underset{\text { plots }}{\mathrm{N}}$ | $\underset{\mathrm{L}}{\mathrm{Mean}}$ | Model-independent parameters |  |  |  |  | Michaelis-Menten function parameters |  |  |  |  |  |  |  | Log-normal function parameters |  |  |  |  |  |  |  | $\underset{\substack{\text { mean } \\ R^{2}}}{\text { Bin }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\tau\left(\%\right.$ year ${ }^{1}$ ) |  |  |  | , | A |  | k |  | p |  | s |  | a |  | b |  | c |  | d |  |  |
|  |  |  |  |  |  | coef | s.e. | $p$ | coef | s.e. |  |
| East | 211 | Northeastern Mixed Forest | 6877 | 2876 | 0.11 | 0.81 | 0.18 | *** | 0.83 | 0.03 | - | - | - | - | - | - | - | - | 31.2 | 1.7 | 112.9 | 5.4 | 123.7 | 5.9 | 1.1 | 0.1 | 0.99 |
| East | 212 | Laurentian Mixed Forest | 22715 | 9499 | 0.12 | 1.17 | 0.11 | *** | 0.77 | 0.03 | - | - | - | - | - | - | - | - | 23.0 | 0.8 | 67.5 | 1.6 | 103.1 | 2.2 | 1.1 | <0.1 | 0.98 |
| East | 221 | Eastern Broadleaf Forest | 7333 | 3571 | 0.09 | 0.20 | 0.11 | ns | 0.88 | 0.03 | - | - | - | - | - | - | - | - | 46.5 | 10.5 | 143.4 | 12.8 | 119.2 | 8.1 | 1.1 | 0.1 | 0.99 |
| East | 222 | Midwest Broadleaf Forest | 5845 | 2589 | 0.12 | 1.06 | 0.21 | ** | 0.87 | 0.04 | - | - | - | - | - | - | - | - | 19.4 | 3.7 | 96.7 | 5.4 | 101.3 | 4.5 | 1.0 | 0.1 | 0.99 |
| East | 223 | Central Interior Broadleaf Forest | 10010 | 3864 | 0.10 | 0.95 | 0.11 | *** | 0.79 | 0.03 | - | - | - | - | - | - | - | - | 14.4 | 24.7 | 100.6 | 25.7 | 118.7 | 12.0 | 1.6 | 0.4 | 0.97 |
| East | 231 | Southeastern Mixed Forest | 13517 | 6193 | 0.14 | 1.29 | 0.12 | *** | 0.71 | 0.02 | 220.2 | 6.6 | 42.7 | 2.3 | -0.1 | <0.1 | - | - | - | - | - | - | - | - | - | - | 0.99 |
| East | 232 | Outer Coastal Plain Mixed Forest | 13629 | 6626 | 0.16 | 0.79 | 0.19 | ** | 0.87 | 0.01 | 206.2 | 9.6 | 41.3 | 2.9 | - | - | 1.2 | <0.1 | - | - | - | - | - | - | - | - | 0.99 |
| East | 234 | Lower Mississippi Riverine Forest | 1388 | 778 | 0.14 | 0.53 | 0.41 | ns | 0.80 | 0.06 | 478.3 | 82.0 | 153.2 | 30.7 | - | - | - | - | - | - | - | - | - | - | - | - | 0.95 |
| West | 242 | Pacific Lowland Mixed Forest | 83 | 83 | 0.10 | - | - | - | - | - | - |  | - |  | - | - | - | - | - | - | - | - | - | - | - | - | - |
| East | 251 | Prairie Parkland (Temperate) | 2295 | 906 | 0.10 | 0.40 | 0.22 | ns | 0.72 | 0.07 | 148.6 | 10.2 | 5.2 | 5.4 | -3.2 | 3.6 | - | - | - | - | - | - | - | - | - | - | 0.89 |
| East | 255 | Prairie Parkland (Subtropical) | 717 | 319 | 0.15 | -0.33 | 0.44 | ns | 0.56 | 0.11 | - | - | - | - | - | - | - | - | 11.8 | 1.9 | 89.0 | 10.2 | 58.3 | 5.0 | 1.1 | 0.1 | 0.83 |
| West | 261 | California Coastal Chaparral Forest and Shrub | 25 | 25 | 0.13 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 262 | California Dry Steppe | 0 | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 263 | California Coastal Steppe - Mixed Forest and Redwood Forest | 163 | 161 | 0.08 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 313 | Colorado Plateau Semi-Desert | 218 | 218 | 0.10 | -1.45 | 0.59 | * | - | - | - | - | - | - | - | - | - | - | 40.2 | 12.3 | 148.9 | 39.3 | 142.8 | 8.7 | 0.6 | 0.1 | 0.79 |
| West | 315 | Southwest Plateau and Plains Dry Steppe and Shrub | 4 | 4 | 0.19 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 321 | Chihuahuan Semi-Desert | 9 | 9 | 0.27 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 322 | American Semidesert and Desert | 3 | 3 | 0.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 331 | Great Plains/Palouse Dry Steppe | 331 | 255 | 0.10 | -1.58 | 0.49 | ** | 0.86 | 0.12 | 314.6 | 431.8 | 373.9 | 734.1 | 0.1 | 0.2 | - | - | - | - | - | - | - | - | - | - | 0.58 |
| West | 332 | Great Plains Steppe | 232 | 128 | 0.11 | 0.48 | 1.58 | ns | 0.64 | 0.29 | 502.6 | 606.5 | 360.8 | 468.4 | - | - | - | - | - | - | - | - | - | - | - | - | 0.91 |
| West | 341 | Intermountain Semi-Desert and Desert | 66 | 64 | 0.12 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 342 | Intermountain Semi-Desert | 124 | 123 | 0.12 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| East | 411 | Everglades | 96 | 63 | 0.10 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |


| East | M211 | Adirondack-New England Mixed forest - Coniferous Forest - Alpine Meadow | 6772 | 3006 | 0.12 | 0.72 | 0.16 | ** | 0.82 | 0.02 | - | - | - | - | - | - | - | - | 11.9 | 2.9 | 157.0 | 10.9 | 207.7 | 26.6 | 1.7 | 0.1 | 0.98 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| East | M221 | Central Appalachian Broadleaf Forest - Coniferous Forest - Meadow | 8315 | 3810 | 0.07 | 0.99 | 0.12 | ** | 0.90 | 0.04 | - | - | - | - | - | - | - | - | 49.4 | 12.7 | 102.1 | 12.6 | 100.6 | 3.2 | 1.1 | 0.1 | 0.98 |
| East | M223 | Ozark Broadleaf Forest Meadow | 896 | 349 | 0.10 | 0.05 | 0.26 | ns | 0.90 | 0.07 | 225.9 | 25.3 | 51.4 | 12.3 | -0.1 | <0.1 | - | - | - | - | - | - | - | - | - | - | 0.85 |
| East | M231 | Ouachita Mixed Forest | 1006 | 495 | 0.10 | 0.46 | 0.43 | ns | 0.77 | 0.08 | 306.5 | 52.1 | 133.5 | 26.0 | - | - | - | - | - | - | - | - | - | - | - | - | 0.93 |
| West | M242 | Cascade Mixed Forest | 3224 | 3207 | 0.11 | 0.59 | 0.67 | ns | 1.08 | 0.07 | - | - | - | - | - | - | - | - | 0 | 5.4 | 467.6 | 77.2 | 581.4 | 102.2 | 2.1 | 0.1 | 0.97 |
| West | M261 | Sierran Steppe - Mixed Forest - Coniferous Forest Alpine Meadow | 1977 | 1807 | 0.11 | 7.9 | 4.3 | ns | 0.62 | 0.11 | 130.6 | 48.8 | 91.0 | 18.3 | -0.1 | $<0.1$ | - | - | - | - | - | - | - | - | - | - | 0.97 |
| West | M262 | California Coastal Range Coniferous Forest - Open Woodland - Shrub - Meadow | 30 | 26 | 0.11 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | M313 | Arizona-New Mexico Mountains Semi-Desert Open Woodland - Coniferous Forest - Alpine Meadow | 367 | 367 | 0.13 | -1.83 | 0.33 | ** | 0.61 | 0.13 | - | - | - | - | - | - | - | - | 42.7 | 11.0 | 180.7 | 41.1 | 177.8 | 40.9 | 0.98 | 0.2 | 0.69 |
| West | M331 | Southern Rocky Mountain Steppe - Open Woodland - Coniferous Forest - Alpine Meadow | 1756 | 1756 | 0.22 | -0.87 | 0.34 | * | 0.60 | 0.04 | - | - | - | - | - | - | - | - | 27.0 | 4.2 | 136.8 | 18.1 | 241.2 | 35.9 | 1.5 | 0.1 | 0.94 |
| West | M332 | Middle Rocky Mountain Steppe - Coniferous Forest - Alpine Meadow | 2612 | 2602 | 0.17 | 0.85 | 0.85 | ns | 0.46 | 0.05 | - | - | - | - | - | - | - | - | 11.7 | 2.5 | 104.6 | 20.3 | 258.3 | 37.5 | 1.7 | 0.1 | 0.96 |
| West | M333 | Northern Rocky Mountain Steppe - Coniferous Forest - Alpine Meadow | 1753 | 1742 | 0.16 | 2.33 | 1.86 | ns | 0.58 | 0.06 | - | - | - | - | - | - | - | - | 12.0 | 3.7 | 93.6 | 28.6 | 137.6 | 7.2 | 1.1 | 0.1 | 0.96 |
| West | M334 | Black Hills Coniferous Forest | 459 | 181 | 0.16 | 0.28 | 0.64 | ns | 0.84 | 0.11 | 98.0 | 18.5 | 53.1 | 19.1 | - | - | - | - | - | - | - | - | - | - | - | - | 0.72 |
| West | M341 | Nevada-Utah Mountains Semi-Desert - Coniferous Forest - Alpine Meadow | 220 | 220 | 0.22 | -1.54 | 0.54 | ** | 0.51 | 0.14 | - | - | - | - | - | - | - | - | 22.4 | 6.3 | 115.4 | 27.6 | 156.2 | 23.0 | 1.08 | 0.20 | 0.82 |

Table S3. Parameters for the growth= $f($ age $)$ model. For the $f$ (age) function $(f(x)$ in eq. 1), only the log-normal form (eq. 3) was considered. Other details follow Table S2. For model selection details and figures showing predicted vs. observed values for each ecoprovince, see fa msModels Biomassa slaAge.htm.

| Region | Code | Ecoprovince | N obs | $\underset{\text { plots }}{\mathrm{N}}$ | MeanL | Model-independent parameters |  |  |  |  | Log-normal function parameters |  |  |  |  |  |  |  | $\underset{\substack{\text { Bin } \\ \text { means } \\ \mathbf{R}^{2}}}{ }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\tau\left(\%\right.$ year ${ }^{-1}$ ) |  |  | $\alpha$ |  | a |  | b |  | c |  | d |  |  |
|  |  |  |  |  |  | coef | s.e. | $p$ | coef | s.e. |  |
| East | 211 | Northeastern Mixed Forest | 6877 | 2876 | 0.11 | 0.31 | 0.18 | ns | 0.64 | 0.03 | 0.0 | 1.6 | 3.4 | 1.6 | 34.5 | 1.8 | 2.5 | 0.7 | 0.72 |
| East | 212 | Laurentian Mixed Forest | 22715 | 9499 | 0.12 | 1.40 | 0.17 | ** | 0.82 | 0.02 | 1.1 | 0.3 | 1.2 | 0.2 | 22.9 | 1.0 | 1.8 | 0.3 | 0.82 |
| East | 221 | Eastern Broadleaf Forest | 7333 | 3571 | 0.09 | -0.45 | 0.15 | *** | 0.76 | 0.04 | 0.0 | 30.6 | 4.4 | 30.6 | 39.0 | 8.0 | 2.8 | 10.7 | 0.69 |
| East | 222 | Midwest Broadleaf Forest | 5845 | 2589 | 0.12 | 0.22 | 0.23 | ns | 0.77 | 0.04 | 2.6 | 0.2 | 0.8 | 0.1 | 52.9 | 2.4 | 0.8 | 0.1 | 0.69 |
| East | 223 | Central Interior Broadleaf Forest | 10010 | 3864 | 0.10 | -0.19 | 0.14 | ns | 0.62 | 0.04 | 1.7 | 1.4 | 2.0 | 1.4 | 28.6 | 4.3 | 1.7 | 0.9 | 0.95 |
| East | 231 | Southeastern Mixed Forest | 13517 | 6193 | 0.14 | 1.54 | 0.18 | *** | 0.91 | 0.02 | 3.0 | 0.1 | 1.9 | 0.1 | 17.5 | 0.5 | 1.0 | 0.1 | 0.80 |
| East | 232 | Outer Coastal Plain Mixed Forest | 13629 | 6626 | 0.16 | 1.65 | 0.21 | *** | 0.90 | 0.02 | 2.8 | 0.1 | 0.9 | 0.1 | 16.1 | 0.4 | 0.8 | 0.1 | 0.81 |
| East | 234 | Lower Mississippi Riverine Forest | 1388 | 778 | 0.14 | 0.86 | 0.72 | ns | 0.78 | 0.08 | 3.4 | 0.5 | 1.7 | 0.5 | 18.5 | 2.2 | 0.7 | 0.2 | 0.53 |
| West | 242 | Pacific Lowland Mixed Forest | 83 | 83 | 0.10 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| East | 251 | Prairie Parkland (Temperate) | 2295 | 906 | 0.10 | 0.63 | 0.44 | ns | 0.42 | 0.10 | 1.9 | 1.1 | 0.8 | 1.1 | 42.9 | 4.5 | 1.1 | 1.1 | 0.14 |
| East | 255 | Prairie Parkland (Subtropical) | 717 | 319 | 0.15 | 1.17 | 1.32 | ns | 0.74 | 0.15 | 0.8 | 0.7 | 2.4 | 0.8 | 18.4 | 2.0 | 1.3 | 0.4 | 0.79 |
| West | 261 | California Coastal Chaparral Forest and Shrub | 25 | 25 | 0.13 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 262 | California Dry Steppe | 0 | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 263 | California Coastal Steppe - Mixed Forest and Redwood Forest | 163 | 161 | 0.08 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 313 | Colorado Plateau Semi-Desert | 218 | 218 | 0.10 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 315 | Southwest Plateau and Plains Dry Steppe and Shrub | 4 | 4 | 0.19 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 321 | Chihuahuan Semi-Desert | 9 | 9 | 0.27 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 322 | American Semidesert and Desert | 3 | 3 | 0.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 331 | Great Plains/Palouse Dry Steppe | 331 | 255 | 0.10 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 332 | Great Plains Steppe | 232 | 128 | 0.11 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 341 | Intermountain Semi-Desert and Desert | 66 | 64 | 0.12 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 342 | Intermountain Semi-Desert | 124 | 123 | 0.12 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| East | 411 | Everglades | 96 | 63 | 0.10 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| East | M211 | Adirondack-New England Mixed forest Coniferous Forest - Alpine Meadow | 6772 | 3006 | 0.12 | 0.91 | 0.21 | *** | 0.63 | 0.03 | 1.9 | 0.5 | 1.2 | 0.5 | 32.6 | 2.0 | 1.6 | 0.5 | 0.58 |
| East | M221 | Central Appalachian Broadleaf Forest Coniferous Forest - Meadow | 8315 | 3810 | 0.07 | 0.97 | 0.23 | *** | 0.83 | 0.06 | 2.6 | 0.2 | 1.3 | 0.2 | 31.4 | 4.3 | 0.9 | 0.2 | 0.79 |


| East | M223 | Ozark Broadleaf Forest Meadow | 896 | 349 | 0.10 | 3.63 | 1.82 |  | 0.90 | 0.15 | 1.4 | 0.3 | 0.9 | 0.3 | 32.3 | 2.9 | 0.4 | 0.1 | 0.46 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| East | M231 | Ouachita Mixed Forest | 1006 | 495 | 0.10 | 4.49 | 2.23 | * | 0.93 | 0.09 | 1.4 | 0.3 | 0.9 | 0.3 | 24.4 | 1.8 | 0.3 | 0.1 | 0.26 |
| West | M242 | Cascade Mixed Forest | 3224 | 3207 | 0.11 | -1.56 | 0.30 | *** | 0.97 | 0.08 | 6.0 | 0.6 | 4.3 | 0.8 | 35.2 | 1.7 | 0.3 | 0.1 | 0.51 |
| West | M261 | Sierran Steppe - Mixed Forest - Coniferous Forest - Alpine Meadow | 1977 | 1807 | 0.11 | -2.46 | 0.24 | *** | 0.70 | 0.13 | 0.0 | 4.5 | 8.0 | 1.5 | 47.0 | 7.6 | 2.7 | 1.1 | 0.55 |
| West | M262 | California Coastal Range Coniferous Forest Open Woodland - Shrub - Meadow | 30 | 26 | 0.11 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | M313 | Arizona-New Mexico Mountains Semi-Desert Open Woodland - Coniferous Forest - Alpine Meadow | 367 | 367 | 0.13 | -2.49 | 0.30 | *** | 0.58 | 0.15 | 0.0 | 5.1 | 3.4 | 5.1 | 61.9 | 17.7 | 2.1 | 2.3 | 0.54 |
| West | M331 | Southern Rocky Mountain Steppe - Open Woodland - Coniferous Forest - Alpine Meadow | 1756 | 1756 | 0.22 | -0.79 | 0.63 | ns | 0.60 | 0.06 | 0.1 | 0.7 | 1.9 | 0.7 | 49.0 | 3.6 | 2.0 | 0.6 | 0.79 |
| West | M332 | Middle Rocky Mountain Steppe - Coniferous Forest - Alpine Meadow | 2612 | 2602 | 0.17 | -0.47 | 0.59 | ns | 0.83 | 0.06 | 0.0 | 0.3 | 2.5 | 0.5 | 61.7 | 4.5 | 2.3 | 0.3 | 0.84 |
| West | M333 | Northern Rocky Mountain Steppe - Coniferous Forest - Alpine Meadow | 1753 | 1742 | 0.16 | 0.49 | 0.66 | ns | 0.88 | 0.06 | 1.0 | 0.2 | 3.3 | 0.6 | 47.9 | 1.8 | 1.4 | 0.1 | 0.91 |
| West | M334 | Black Hills Coniferous Forest | 459 | 181 | 0.16 | -1.34 | 0.73 | ns | - | - | 1.6 | 0.3 | 12.3 | 10.4 | 56.4 | 0.3 | 0.0 | 0.0 | 0.20 |
| West | M341 | Nevada-Utah Mountains Semi-Desert - Coniferous Forest - Alpine Meadow | 220 | 220 | 0.22 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |

Table S4. Parameters for the growth= $f$ (biomass) model. For the $f$ (biomass) function ( $f(\mathrm{x})$ in eq. 1), only the Michaelis-Menten form (eq. 2) was considered. Other details follow Table S2. For model selection details and figures showing predicted vs. observed values for each ecoprovince, see FIA nls3Models BiomassG plotB.html.

| Region | Code | Ecoprovince | $\begin{gathered} \mathrm{N} \\ \mathrm{ob} \end{gathered}$ | $\underset{\text { plots }}{\mathrm{N}}$ | $\underset{\text { Mean }}{\text { M }}$ | Model-independent parameters |  |  |  |  | Michaelis-Menten function parameters |  |  |  |  |  |  |  | $\begin{gathered} \text { Bin } \\ \text { means } \\ \mathbf{R}^{2} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\tau\left(\%\right.$ year ${ }^{-1}$ ) |  |  | $\alpha$ |  | A |  | k |  | p |  | s |  |  |
|  |  |  |  |  |  | coef | s.e. | $p$ | coef | s.e. |  |
| East | 211 | Northeastern Mixed Forest | 6877 | 2876 | 0.11 | 0.19 | 0.17 | ns | 0.63 | 0.03 | 3.8 | 0.2 | 70.4 | 59.1 | 0.7 | 0.1 | - | - | 0.80 |
| East | 212 | Laurentian Mixed Forest | $2271$ | 9499 | 0.12 | 1.36 | 0.18 | *** | 0.80 | 0.02 | 3.1 | 0.2 | 19.5 | 4.1 | - | - | 0.6 | 0.1 | 0.99 |
| East | 221 | Eastern Broadleaf Forest | 7333 | 3571 | 0.09 | -0.68 | 0.13 | *** | -0.74 | 0.04 | 5.4 | 0.2 | 23.6 | 2.8 | - | - | - | - | 0.78 |
| East | 222 | Midwest Broadleaf Forest | 5845 | 2589 | 0.12 | 0.04 | 0.22 | ns | 0.76 | 0.05 | 8.4 | 1.5 | 317.3 | 110.8 | 0.1 | 0.1 | - | - | 0.93 |
| East | 223 | Central Interior Broadleaf Forest | $\begin{aligned} & 1001 \\ & 0 \end{aligned}$ | 3864 | 0.10 | -0.59 | 0.12 | *** | -0.68 | 0.04 | 5.1 | 0.2 | 42.0 | 3.4 | - | - | - | - | 0.62 |
| East | 231 | Southeastern Mixed Forest | $\begin{aligned} & 1351 \\ & 7 \end{aligned}$ | 6193 | 0.14 | 1.72 | 0.19 | *** | -0.87 | 0.02 | 3.8 | 0.1 | 2.6 | 0.4 | - | - | - | - | 0.63 |
| East | 232 | Outer Coastal Plain Mixed Forest | $1362$ | 6626 | 0.16 | 1.37 | 0.20 | ** | 0.87 | 0.02 | 2.9 | 0.1 | 26.1 | 4.9 | 1.6 | 0.4 | 0.5 | 0.1 | 0.91 |
| East | 234 | Lower Mississippi Riverine Forest | 1388 | 778 | 0.14 | 0.81 | 0.69 | ns | -0.76 | 0.08 | 4.0 | 0.5 | 3.7 | 1.4 | - | - | - | - | 0.80 |
| West | 242 | Pacific Lowland Mixed Forest | 83 | 83 | 0.10 |  | - | - | - | - | - | - | - | - | - | - | - | - | - |
| East | 251 | Prairie Parkland (Temperate) | 2295 | 906 | 0.10 | 0.41 | 0.45 | ns | -0.39 | 0.11 | 3.4 | 0.3 | 19.9 | 3.7 | - | - | - | - | 0.37 |
| East | 255 | Prairie Parkland (Subtropical) | 717 | 319 | 0.15 | 0.43 | 0.94 | ns | -0.78 | 0.14 | 2.8 | 0.5 | 1.9 | 2.2 | - | - | - | - | 0.30 |
| West | 261 | California Coastal Chaparral Forest and Shrub | 25 | 25 | 0.13 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 262 | California Dry Steppe | 0 | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 263 | California Coastal Steppe - Mixed Forest and Redwood Forest | 163 | 161 | 0.08 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 313 | Colorado Plateau Semi-Desert | 218 | 218 | 0.10 | -1.31 | 0.90 | ns | -0.88 | 0.25 | 5.1 | 1.7 | 145.0 | 49.7 | - | - | - | - | 0.53 |
| West | 315 | Southwest Plateau and Plains Dry Steppe and Shrub | 4 | 4 | 0.19 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 321 | Chinuahuan Semi-Desert | 9 | 9 | 0.27 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 322 | American Semidesert and Desert | 3 | 3 | 0.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 331 | Great Plains/Palouse Dry Steppe | 331 | 255 | 0.10 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 332 | Great Plains Steppe | 232 | 128 | 0.11 | 0.82 | 1.62 | ns | 0.66 | 0.24 | 5.1 | 2.2 | 147.5 | 104.2 | 0.1 | 0.0 | - | - | 0.86 |
| West | 341 | Intermountain Semi-Desert and Desert | 66 | 64 | 0.12 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | 342 | Intermountain Semi-Desert | 124 | 123 | 0.12 | 1.94 | 5.44 | ns | -0.99 | 0.25 | 3.3 | 2.7 | 82.5 | 33.3 | - | - | - | - | 0.87 |
| East | 411 | Everglades | 96 | 63 | 0.10 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| East | M211 | Adirondack-New England Mixed forest Coniferous Forest - Alpine Meadow | 6772 | 3006 | 0.12 | 0.83 | 0.21 | *** | 0.64 | 0.03 | 2.9 | 0.1 | 15.4 | 3.9 | - | - | 4.3 | 2.2 | 0.76 |


| East | M221 | Central Appalachian Broadleaf Forest Coniferous Forest - Meadow | 8315 | 3810 | 0.07 | 0.40 | 0.18 |  | -0.82 | 0.06 | 4.3 | 0.2 | 26.4 | 3.7 | - | - | - | - | 0.49 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| East | M223 | Ozark Broadleaf Forest Meadow | 896 | 349 | 0.10 | 3.15 | 1.62 | ns | -0.93 | 0.15 | 2.1 | 0.5 | 26.4 | 11.7 | - | - | - | - | 0.08 |
| East | M231 | Ouachita Mixed Forest | 1006 | 495 | 0.10 | 5.54 | 2.85 | ns | -0.84 | 0.11 | 1.6 | 0.5 | 13.2 | 4.9 | - | - | - | - | 0.14 |
| West | M242 | Cascade Mixed Forest | 3224 | 3207 | 0.11 | -1.65 | 0.25 | *** | -0.93 | 0.07 | 9.2 | 0.8 | 140.2 | 9.5 | 0.3 | <0.1 | 2.6 | 0.4 | 0.95 |
| West | M261 | Sierran Steppe - Mixed Forest - Coniferous Forest - Alpine Meadow | 1977 | 1807 | 0.11 | -1.85 | 0.32 | *** | -0.71 | 0.11 | 14.0 | 1.6 | 193.1 | 23.7 | - | - | - | - | 0.97 |
| West | M262 | California Coastal Range Coniferous Forest Open Woodland - Shrub - Meadow | 30 | 26 | 0.11 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| West | M313 | Arizona-New Mexico Mountains Semi-Desert Open Woodland - Coniferous Forest - Alpine Meadow | 367 | 367 | 0.13 | -2.29 | 0.29 | *** | -0.83 | 0.11 | 10.3 | 2.0 | 170.6 | 42.7 | - | - | - | - | 0.93 |
| West | M331 | Southern Rocky Mountain Steppe - Open Woodland - Coniferous Forest - Alpine Meadow | 1756 | 1756 | 0.22 | -0.65 | 0.61 | ns | 0.71 | 0.06 | 7.1 | 4.8 | 638.5 | 642.9 | 0.1 | <0.1 | - | - | 0.82 |
| West | M332 | Middle Rocky Mountain Steppe - Coniferous Forest - Alpine Meadow | 2612 | 2602 | 0.17 | -0.89 | 0.42 |  | 0.89 | 0.05 | 13.1 | 4.8 | 661.4 | 325.8 | 0.1 | <0.1 | - | - | 0.96 |
| West | M333 | Northern Rocky Mountain Steppe - Coniferous Forest - Alpine Meadow | 1753 | 1742 | 0.16 | -0.78 | 0.51 | ns | 0.94 | 0.05 | 17.0 | 6.2 | 704.9 | 347.7 | 0.1 | <0.1 | - | - | 0.96 |
| West | M334 | Black Hills Coniferous Forest | 459 | 181 | 0.16 | -0.27 | 1.08 | ns | -0.81 | 0.13 | 2.7 | 0.71 | 33.9 | 10.7 | - | - | - | - | 0.90 |
| West | M341 | Nevada-Utah Mountains Semi-Desert Coniferous Forest - Alpine Meadow | 220 | 220 | 0.22 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |




| Region | Code | Ecoprovince | N obs | $\underset{\text { plots }}{\mathrm{N}}$ | $\frac{\overline{\left(\text { Last }-L_{\text {first }}\right)}}{\left(\mathbf{T}_{\text {last }}-T_{\text {first }}\right)}$ | Model-independent parameters |  |  |  |  | Michaelis-Menten function parameters |  |  |  |  |  |  |  | Log-normal function parameters |  |  |  |  |  |  |  | $\underset{\substack{\text { Bin } \\ \text { means } \\ \mathbf{R}^{2}}}{\text { and }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\tau\left(\%\right.$ year ${ }^{-1}$ ) |  |  | $\alpha$ |  | A |  | k |  | p |  | $s$ |  | a |  | b |  | c |  | d |  |  |
|  |  |  |  |  |  | coef | s.e. | $p$ | coef | s.e. |  |
| East | 211 | Northeastern Mixed Forest | 4838 | 2419 | -0.00058 | 0.58 | 0.18 | *** | 0.84 | 0.03 | - | - | - | - | - | - | - | - | 33.4 | 2.0 | 118.9 | 5.9 | 118.4 | 5.9 | 1.0 | 0.1 | 0.99 |
| East | 212 | Laurentian Mixed Forest | 12962 | 6481 | 0.00484 | 1.19 | 0.14 | ** | 0.67 | 0.03 | - | - | - | - | - | - | - | - | 13.4 | 0.5 | 75.8 | 2.4 | 121.1 | 5.5 | 1.4 | <0.1 | 0.97 |
| East | 221 | Eastern Broadleaf Forest | 5466 | 2723 | -0.00005 | 0.24 | 0.13 | 0.06 | 0.81 | 0.03 | - | - | - | - | - | - | - | - | 21.1 | 2.7 | 179.5 | 10.5 | 156.8 | 15.7 | 1.5 | 0.1 | 0.99 |
| East | 222 | Midwest Broadleaf Forest | 3552 | 1776 | 0.00533 | 1.21 | 0.26 | *** | 0.77 | 0.05 | - | - | - | - | - | - | - | - | 14.0 | 1.4 | 101.9 | 6.0 | 115.6 | 8.2 | 1.2 | 0.1 | 0.99 |
| East | 223 | Central Interior Broadleaf Forest | 6388 | 3194 | 0.00608 | 0.85 | 0.12 | *** | 0.71 | 0.03 | - | - | - | - | - | - | - | - | 17.8 | 2.1 | 98.5 | 3.9 | 113.2 | 7.0 | 1.4 | 0.1 | 0.97 |
| East | 231 | Southeastern Mixed Forest | 7940 | 3970 | 0.00170 | 1.48 | 0.18 | *** | 0.65 | 0.02 | - | - | - | - | - | - | - | - | 16.1 | 0.8 | 120.4 | 5.6 | 112.8 | 9.3 | 1.6 | 0.1 | 0.98 |
| East | 232 | Outer Coastal Plain Mixed Forest | 7790 | 3895 | -0.00221 | 1.01 | 0.19 | *** | 0.71 | 0.02 | - | - | - | - | - | - | - | - | 20.5 | 1.0 | 121.3 | 3.6 | 111.1 | 9.3 | 1.5 | 0.1 | 0.97 |
| East | 234 | Lower Mississippi Riverine Forest | 830 | 415 | -0.00220 | 0.40 | 0.41 | ns | 0.79 | 0.07 | - | - | - | - | - | - | - | - | 0.0 | 5.9 | 340.8 | 204.4 | 375.4 | 940.5 | 2.6 | 0.7 | 0.94 |
| East | 251 | Prairie Parkland (Temperate) | 1392 | 696 | 0.00657 | 0.34 | 0.25 | ns | 0.70 | 0.09 | - | - | - | - | - | - | - | - | 24.4 | 4.1 | 93.3 | 7.4 | 102.7 | 8.9 | 1.1 | 0.1 | 0.97 |
| East | 255 | Prairie Parkland (Subtropical) | 444 | 222 | 0.00934 | -0.24 | 0.55 | ns | 0.53 | 0.16 | - | - | - | - | - | - | - | - | 9.6 | 1.9 | 88.5 | 12.5 | 56 | 5.9 | 1.0 | 0.1 | 0.92 |
| East | M211 | Adirondack-New England Mixed forest - Coniferous Forest - Alpine Meadow | 5108 | 2554 | 0.00022 | 0.53 | 0.16 | *** | 0.81 | 0.03 | - | - | - | - | - | - | - | - | 14.6 | 3.0 | 155.7 | 10.1 | 179.8 | 19.8 | 1.6 | 0.1 | 0.98 |
| East | M221 | Central Appalachian Broadleaf Forest - Coniferous Forest - Meadow | 5186 | 2593 | 0.00087 | 0.88 | 0.14 | *** | 0.82 | 0.04 | - | - | - | - | - | - | - | - | 31.8 | 2.6 | 122.4 | 4.6 | 103.1 | 4.1 | 1.3 | 0.1 | 0.98 |
| East | M223 | Ozark Broadleat Forest Meadow | 602 | 301 | -0.00036 | -0.08 | 0.26 | ns | 0.90 | 0.10 | 298.7 | 41.7 | 95.8 | 18.9 | - | - | - | - | - | - | - | - | - | - | - | - | 0.88 |
| East | M231 | Ouachita Mixed Forest | 680 | 340 | 0.00069 | 0.57 | 0.50 | ns | 0.86 | 0.11 | 315.8 | 62.8 | 147.8 | 33.1 | - | - | - | - | - | - | - | - | - | - | - | - | 0.93 |

## SI References

1. A. Azzalini, Statistical Inference Based on the likelihood (Chapman \& Halll, 1996) https:/doi.org/10.1201/9780203738627 (February 17, 2023).
2. W. H. McNab, et al., "Description of ecological subregions: sections of the conterminous United States" (U.S. Department of Agriculture, Forest Service, 2007) https:/doi.org/10.2737/wo-gtr-76b.
3. D. T. Cleland, et al., Ecological Subregions: Sections and Subsections for the conterminous United States. Gen. Tech. Rep. WO-76D 76D (2007).
4. J. Hartung, G. Knapp, S. K. Bimal, "Methods of Combining Effect Sizes" in Statistical MetaAnalysis with Applications, (John Wiley \& Sons, Ltd, 2008), pp. 35-41.
