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Abstract Realistic representation of vegetation’s response to drought is important for understanding
terrestrial carbon cycling. We evaluated nine Earth system models from the historical experiment of the
Coupled Model Intercomparison Project Phase 5 for the response of gross primary productivity (GPP) and leaf
area index (LAI) to hydrological anomalies. Hydrological anomalies were characterized by the standardized
precipitation index (SPI) and surface soil moisture anomalies (SMA). GPP and LAI in models were on average
more responsive to SPI than in observations revealed through several indicators. First, we find higher mean
correlations between global annual anomalies of GPP and SPI in models than observations. Second, the
maximum correlation between GPP and SPI across 1–24month time scales is higher in models than
observations. And finally, we found stronger excursions of GPP to extreme dry or wet events. Similar to GPP,
LAI responded more to SPI in models than observations. The over-response of models is smaller if evaluated
based on SMA instead of SPI. LAI responses to SMA are inconsistent among models, showing both higher
and lower LAI when soil moisture is reduced. The time scale of maximum correlation is shorter in models than
the observation for GPP, and themarkedly different response time scales amongmodels for LAI indicate gaps
in understanding how variability of water availability affects foliar cover. The discrepancy of responses
derived from SPI and SMA among models, and between models and observations, calls for improvement in
understanding the dynamics of plant-available water in addition to how vegetation responds to
these anomalies.

1. Introduction

Terrestrial ecosystems have been absorbing ~25–30% of anthropogenic CO2 emissions over the past several
decades, acting as an important negative feedback mechanism in the carbon-climate system [Le Quere et al.,
2009]. Earth system models (ESMs) are vital tools to understand the strength and variability of the global ter-
restrial carbon sink and its feedback to future climate change. Models used in the most recent coupled
carbon-climate experiment, the Coupled Model Intercomparison Project Phase 5 (CMIP5), incorporate diverse
mechanisms driving vegetation dynamics and terrestrial carbon cycling in response to climate change and
variability, increasing CO2 and, in a few models, nitrogen limitation [Taylor et al., 2011]. Considering the large
spread among these models and the uncertainty with respect to associated processes, it is important to cri-
tically evaluate these models against observations [Friedlingstein et al., 2014].

Water is a primary resource limiting plant uptake of atmospheric CO2. Water-related climate extremes, such
as drought, have been reported to significantly alter large-scale vegetation processes, reduce the terrestrial
carbon sink strength, or even convert terrestrial ecosystems into temporary carbon sources [Ciais et al.,
2005; Phillips et al., 2009; Zhao and Running, 2010]. Fluctuations in vegetation CO2 uptake contribute mark-
edly to the interannual atmospheric CO2 variability, and much of those fluctuations are attributable to plant
water availability [Reichstein et al., 2013; Zscheischler et al., 2013; Poulter et al., 2014; Zscheischler et al., 2014a,
2014b]. The importance of drought impacts on vegetation processes, and terrestrial carbon cycling is widely
recognized and has been studied in the context of manipulative drought experiments, eddy-covariance
tower networks, remote sensing, and process-based models [Schwalm et al., 2010; Zhao and Running, 2010;
Potter et al., 2011; Beier et al., 2012; Chen et al., 2013; Vicente-Serrano et al., 2013; Liu et al., 2014;
Zscheischler et al., 2014b; Knapp et al., 2015; Lei et al., 2015]. However, the degree to which CMIP5 models
accurately represent drought impacts remains largely unknown. Piao et al. [2013] reported an overestimation
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of the slope of gross primary productivity (GPP) versus precipitation from 10 process-based terrestrial bio-
sphere models. However, additional analyses are needed to gain a more complete understanding of how
models compare to real ecosystems in terms such as time scale, vulnerability, and resistance that reflect dif-
ferent facets of drought response.

Responses to drought incorporate various aspects of vegetation activity from molecular, physiological to
phenological, or ecological processes [Reyer et al., 2013; Niu et al., 2014] which can be characterized by differ-
ent metrics. For example, the response of vegetation to drought is often delayed [Reichstein et al., 2013; Frank
et al., 2015]. Lagged tree mortality is reported some period after severe droughts [Bigler et al., 2007; Phillips
et al., 2010; Anderegg et al., 2013], and grasslands appear to have lower aboveground net primary production
following dry years despite normal precipitation [Sala et al., 2012]. The lagged or legacy effect of drought can
directly alter vegetation status after the removal of drought stress as well as indirectly affect the response of
vegetation to other environmental variables [Frank et al., 2015]. Time lags between the initialization of water
scarcity and the detection of its impacts [Vicente-Serrano et al., 2014] are therefore an important metric that
reflects the time-dependent characteristic of drought response. Vulnerability refers to the susceptibility of
vegetation to adverse effects caused by water anomalies [Reyer et al., 2013], while the resistance describes
the degree to which vegetation tolerates drought stress [Farooq et al., 2009]. For process-based models,
the drought response is an emergent property that integrates various processes in modeled carbon and
water cycles and a realistic representation of different aspects is important for modeling drought responses
[Reichstein et al., 2013; Niu et al., 2014].

Drought is generally described as an extended period of water scarcity. Drought responses of the carbon
cycle are complex partly due to the multifaceted nature of drought. Precipitation is one of the main determi-
nants of plant water availability. However, simple precipitation metrics do not provide a complete character-
ization of drought, such as their duration, extent, cumulative severity, and timing [McKee et al., 1993; Chen
et al., 2013]. Droughts are frequently quantified by drought indices that adjust precipitation to better reflect
water availability to plants. The Palmer drought severity index (PDSI) [Palmer, 1965] and the standardized pre-
cipitation index (SPI) [McKee et al., 1993] are two of the mostly widely used indices. PDSI is based on soil water
balance by accounting for water supply (precipitation) and demand (potential evapotranspiration); however,
PDSI is a complex index that sometimes yields inconsistent results among alternative calculation methods
[Trenberth et al., 2014]. In contrast, SPI is based solely on precipitation anomalies and has become increasingly
popular in studies of ecosystem’s drought response [Sims et al., 2002; Ji and Peters, 2003;World Meteorological
Organization (WMO), 2012; Orlowsky and Seneviratne, 2013] because it provides a simple and consistent
characterization of droughts at multiple temporal scales and to compare locations that have different
precipitation regimes.

Although meteorological drought indices, such as SPI, are useful indicators of water deficits and surpluses,
dryness or wetness experienced by plants is more directly linked to soil moisture conditions. Factors other
than meteorological conditions, such as soil and vegetation characteristics, affect soil moisture dynamics
and thus vegetation processes [Porporato et al., 2004; Weng and Luo, 2008]. Previous global-scale studies
were constrained by the availability of observations, as soil moisture is highly variable across space and time
and is difficult to measure on a large scale [Seneviratne et al., 2010]. Recent soil moisture products from space-
borne passive and active microwave sensors have become available for 30+ years [Dorigo et al., 2014].
Despite being limited to the surface soil column (less than 10 cm depth) [Liu et al., 2011], which may be
“decoupled” from the root zone soil moisture in some cases [Capehart and Carlson, 1997; Seneviratne et al.,
2010], remotely sensed soil moisture products provide an additional valuable source of information for study-
ing drought-carbon responses.

In this paper, we evaluate drought responses of CMIP5 models and compare these responses to those esti-
mated from observation-based data products. We quantify different facets of the response of GPP and leaf
area index (LAI) to drought, including correlations, time scales, cumulative anomalies, and sensitivities to
extreme dry/wet events. We use the meteorological drought index SPI at time scales from 1 to 24months
to characterize dry/wet anomalies. We also test the response of GPP and LAI to both modeled and data-
derived soil moisture anomalies. Our study goes beyond previous CMIP5 evaluation studies which either
focus on hydrology [Orlowsky and Seneviratne, 2013] or terrestrial carbon cycling alone, or the relationship
of carbon cycling with climate variables such as precipitation and temperature [Shao et al., 2013] by exploring
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the response of terrestrial carbon cycling to drought by including time scales of responses and by evaluating
the response to extreme events.

2. Methods
2.1. Data
2.1.1. CMIP5 Models and Experiments
CMIP5 provides a standard set of model simulations based on common protocols [Taylor et al., 2011]. We
selected nine ESMs from the historical experiment, which prescribe changing climate and greenhouse gas
concentrations that are consistent with observations from 1850 to 2005 (Tables 1 and 2). ESMs were chosen
based on the availability of monthly GPP, LAI, and relevant climate and soil moisture data required for our
analysis. Where ESMs were represented in CMIP5 by multiple model versions, we randomly selected one
model version for inclusion in our analysis, because we expected greater variation among different ESMs than
among the different versions of each ESM. For models with multiple available realizations, only the first
ensemblemember was used (“r1i1p1,”which indicates the first run under the first set of initial conditions with
the first set of physical parameters [Taylor et al., 2011]). Model output data were downloaded from the
Program for Climate Model Diagnosis and Intercomparison data server.

The terrestrial components of these ESMs differ in their representations of plant functional types (PFTs), land
use change, soil characteristics, carbon and nitrogen dynamics, and the spatial resolution (Table 2). Despite
differences in model structure and parameterization, the models share many similarities in their treatments
of terrestrial carbon and water cycles. Plant species with similar characteristics are represented in aggregate
by PFTs. For each PFT, GPP is the accumulation of gross photosynthesis over a given time period.
Photosynthesis is simulated according to modified versions of Farquhar’s biochemical model for C3
[Farquhar et al., 1980; Collatz et al., 1991] and Collatz et al. [1992] for C4 plant, except in Spatially Explicit
Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM) where photosynthesis is simplified as a
Michaelis-Menten type function of photosynthetically active radiation [Sato et al., 2007]. Net primary produc-
tion (the difference between GPP and autotrophic respiration) is allocated to different vegetation tissues,
such as leaves, roots, and stems. LAI depends on carbon allocation to leaves, leaf lifespan and phenology,
and specific leaf area (m2 kg C�1), which is a PFT-specific constant in most models, but varies across the ver-
tical canopy gradient in some cases (e.g., Community Land Model, version 4, with the Coupled Carbon–

Table 1. CMIP5 Models Used in This Study With Complete Model Expansions

Models Model Expansion

Earth System Models
BCC-CSM1.1 Beijing Climate Center, Climate System Model version 1.1
CanESM2 Second Generation Canadian Earth System Model
CESM1-BGC Community Earth System Model, version 1.0-Biogeochemistry
GFDL-ESM2G Geophysical Fluid Dynamics Laboratory Earth System Model with GOLD ocean component (ESM2G)
HadGEM2-ES Hadley Centre Global Environmental Model, version 2 (Earth System)
INM-CM4.0 Institute of Numerical Mathematics Coupled Model, version 4.0
IPSL-CM5A-LR L’Institut Pierre-Simon Laplace Coupled Model, version 5A, coupled with NEMO, low resolution
MIROC-ESM Model for Interdisciplinary Research on Climate, Earth System Model
NorESM1-ME Norwegian Earth System Model, version 1 (intermediate resolution)

Land Surface Models or Vegetation Models
BCC-AVIM1.0 Beijing Climate Center Atmosphere Vegetation Interaction Model Version 1.0
CLASS Canadian Land Surface Scheme
CTEM Canadian Terrestrial Ecosystem Model
CLM4 Community Land Model, version 4
CLM4-CN Community Land Model, version 4, with the Coupled Carbon–Nitrogen Cycle
LM3 Land Model, version 3
LM3V Land Model, version 3, with Vegetation and Carbon Cycling
JULES Joint United Kingdom Land Environment Simulator
TRIFFID Top-down Representation of Interactive Foliage and Flora Including Dynamics
LSM Land Surface Model
ORCHIDEE Organizing Carbon and Hydrology in Dynamic Ecosystems
MATSIRO Minimal Advanced Treatments of Surface Interaction and Runoff
SEIB-DGVM Spatially Explicit Individual-Based Dynamic Global Vegetation Model
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Nitrogen Cycle (CLM4-CN) [Thornton and Zimmermann, 2007]). Carbon frommortality (including disturbance)
and from leaf, root, and stem turnover enters litter or soil pools that are subjected to decomposition.
Decomposition is represented as a first-order decay process that is modified by soil moisture and tempera-
ture [Todd-Brown et al., 2013].

Coupling between vegetation dynamics and precipitation in these models depends on how soil hydrology is
represented (e.g., soil depth and number of vertical soil layers; Table 2), the down-regulation of LAI and/or
leaf-level photosynthesis due to soil water stress, and the stomatal conductance, which regulates the land-
atmosphere exchange of carbon and water vapor (transpiration) and which depends on the atmospheric
water demand and the surface energy budget. The formulation of stomatal conductance generally follows
the Ball-Woodrow-Berry model [Ball et al., 1987] or a modified version [Leuning, 1995]. Soil water stress func-
tions that down-regulate GPP vary among models, as detailed in Text S1 in the supporting information.
Effects of water availability on other vegetation processes—such as phenology, establishment, carbon alloca-
tion, respiration, and mortality—also differ among models.
2.1.2. Observation-Based Data Products
We compiled global observation-based data products to estimate the responses of GPP and LAI to precipita-
tion anomalies and soil moisture anomalies. These observation-based GPP and LAI responses provide means
to evaluate the corresponding responses in CMIP5 models. Below, we describe the observation-based data
products we used in this work: GPP, LAI, precipitation, and soil moisture.

As an observation-based GPP data set, we used the 1982–2005 model tree ensemble (MTE) global gridded
GPP product (Table 3), which is derived from the FLUXNET global eddy-covariance tower network [Jung et al.,
2011]. The MTE upscaling approach consists of a set of trained regression trees and 29 candidate predictors,
such as the fraction of absorbed photosynthetically active radiation (FAPAR, derived from remote sensing),
climate, and land cover. Although there is uncertainty in the MTE-GPP gridded time series, this data-derived
product has gained acceptance in global GPP analyses [Anav et al., 2013; Piao et al., 2013; Zscheischler et al.,

Table 2. Primary Characteristic of the Land Carbon Cycle Component of the Nine Participating Models in This Studya

ESMs BCC_CSM1.1 CanESM2 CESM1-BGC GFDL_ESM2G HadGEM2-ES INM-CM4.0

IPSL-
CM5A-
LR MIROC-ESM NorESM1-ME

Abbreviation
in this study

BCC CAN CESM GFDL HAD INMCM4 IPSL MIROC NOR

Land model BCC-AVIM1.0 CLASS CLM4 LM3 JULES LSM ORCHIDEE MATSIRO CLM4
Vegetation
model

- CTEM CLM4CN LM3V TRIFFID - - SEIB-DGVM CLM4CN

DGVM No Yes No Yes Yes Yes No Yes No
N cycle No No Yes No No No No No Yes
No. PFTs 15 9 15 5 5 11 13 13 15
No. soil layers 10 3 15 20 4 23 7 6 15
Soil depth 3.4 4.1 43.7 10 3 15 3.9 14 43.7
Fire No Yes Yes Yes No No Yes Yes Yes
Human
activities

Crop Crop Crop, pasture,
wood harvest

Crop, pasture,
wood harvest,

deforest

Crop, pasture Deforestation Crop,
pasture

Crop, pasture,
wood harvest

Crop, pasture,
wood harvest

Land use
emissions

Prescribed Computed Computed Computed Computed,
prescribed

Prescribed Computed Computed Computed

Historical span 1850–2012 1850–
2005

1850–2005 1861–2005 1860–2005 1850–2005 1850–
2005

1850–2005 1850–2005

Resolution
(lat × lon)

2.8° × 2.8° 2.8° × 2.8° 0.9° × 1.3° 2.0° × 2.5° 1.3° × 1.9° 1.5° × 2° 1.9° × 3.8° 2.8° × 2.8° 0.9° × 1.3°

Reference [Ji et al.,
2008; Wu
et al.,
2013]

[Arora and
Boer,
2010]

[Thornton
et al., 2002;
Gent et al.,

2011]

[Shevliakova
et al., 2009;
Dunne et al.,

2012]

[Cox, 2001;
Jones et al.,

2011]

[Bonan, 1996;
Volodin et al.,

2010]

[Krinner
et al.,
2005;

Dufresne
et al.,
2013]

[Sato et al.,
2007;

Watanabe
et al., 2011]

[Thornton
et al., 2002;
Tjiputra

et al., 2013]

aDGVM refers to the dynamic change of vegetation coverage with plant competition; No. PFTs stands for the number of plant functional types implemented in
models; No. soil layers refers to the number of soil layers.
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2014a] and provides a longer temporal record than satellite-derived GPP products [Mao et al., 2012].
Although the MTE-GPP product does not explicitly account for cumulative effects of forcing variables, and
therefore may underestimate time lags in the GPP-drought response, cross validation of GPP monthly
anomalies indicated a reasonable degree of predictive power (e.g., correlation of 0.72 when predicting
site-level data that is excluded from the training data). In section 4, we further discuss how limitations of
the MTE-GPP product may affect our results.

We used two global LAI data sets in our analysis: GLOBMAP [Liu et al., 2012] and GLASS [Xiao et al., 2014]. The
GLOBMAP LAI product (available from http://www.globalmapping.org/globalLAI/) fuses the Moderate
Resolution Imaging Spectroradiometer (MODIS) and advanced very high resolution radiometer LAI products,
which are extracted from MOD09A1 (the MODIS land surface reflectance data set) and Global Inventory
Modeling and Monitoring Study normalized difference vegetation index, respectively. The second global
LAI product we used, GLASS, is generated with physical inversion techniques by using the general regression
neural networks (GRNNs) method [Xiao et al., 2014]. The GRNNs are trained with fused MODIS and CYCLOPES
LAI products [Friedl et al., 2002; Baret et al., 2007] and the MODIS reflectance values for each MODIS biome.
GLASS LAI is then retrieved from MODIS reflectance data based on the trained GRNNs.

To quantify the GPP response to precipitation (which we converted to the standardized precipitation index;
see section 2.2), we used the monthly Global Precipitation Climatology Centre (GPCC) precipitation data set
(Table 3), because this is the precipitation data set used to create the griddedMTE-GPP data product. By using
the same precipitation data set used to create MTE-GPP, we preserve (as close as possible) the information
content in the original FLUXNET data set and minimize the effects of precipitation uncertainty on our GPP
analysis (see section 2.4 for further explanation). In contrast, uncertainty in actual precipitation is expected
to affect our analysis of observation-based LAI (see section 2.4). Thus, we used four different global monthly
precipitation data sets based on rain gauge measurements, remote sensing, or combination of these to
derive observation-based precipitation indexes for LAI analyses (Table 3).

To quantify GPP and LAI responses to soil moisture dynamics, we used a recently generated multidecadal
soil moisture data set, ECV_SM, which is a merged product from passive and/or active microwave remote
sensing data [Liu et al., 2011]. We judged ECV_SM to be the best available option, as a global soil moisture
data set based on in situ measurement is not available. ECV_SM has relatively fine spatiotemporal cover-
age and preserves the short term (e.g., seasonal and interannual) as well as long-term dynamics of the
microwave remote sensing data from which it is derived. ECV_SM has been evaluated against the
Global Land Data Assimilation System-Noah land surface model, the land surface component of Max-
Planck-Institut-ESM (JSBACH), and the ERA-Interim reanalysis data with respect to the trend (1988–2010)
and anomalies [Dorigo et al., 2012; Loew et al., 2013], and against ground measurements for the interann-
ual and intra-annual dynamics in different regions [Liu et al., 2011; Dorigo et al., 2014; Pratola et al., 2014;
Zeng et al., 2015]. ECV_SM (v02.1) used in this study combines retrievals of soil moisture from six passive
(scanning multichannel microwave radiometer, Special Sensor Microwave Imager, Tropical Rainfall
Measuring Mission Microwave Imager, Advanced Microwave Scanning Radiometer–EOS (AMSR-E),

Table 3. Observation-Based Data Sets Used for CMIP5 Model Evaluations

Variable Description Temporal Resolution
Spatial
Resolution Reference

MTE_GPP Gross primary productivity derived from FLUXNET observations Monthly, 1982–2011 0.5° × 0.5° [Jung et al., 2011]
GLASS_LAI Satellite derived leaf area index from GLASS 8 days, 1981–2012 0.05° × 0.05° [Liang and Xiao, 2012; Xiao

et al., 2014]
GLOBMAP_LAI Satellite derived leaf area index from GLOBMAP Half month/8 days,

1981–2011
0.07° × 0.07° [Liu et al., 2012]

CRU_PRE Precipitation from CRU TS 3.21 (Climatic Research Unit at the
University of East Anglia)

Monthly, 1901–2012 0.5° × 0.5° [Jones and Harris, 2013]

DELA_PRE Precipitation from University of Delaware v3.01 Monthly, 1901–2010 0.5° × 0.5° [Willmott and Matsuura, 2012]
GPCP_PRE Precipitation fromGPCP v2.2 (Global Precipitation Climatology Project) Monthly, 1979–

current
2.5° × 2.5° [Adler et al., 2003]

GPCC_PRE Precipitation from GPCC v6 (Global Precipitation Climatology Centre) Monthly, 1901–2010 0.5° × 0.5° [Schneider et al., 2011]
ECV_SM Soil moisture from ECV_SM v02.1 Daily, 1978–2013 0.05° × 0.05° [Liu et al., 2011]
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WindSat, and AMSR2) microwave sensors and the scatterometers onboard ERS-1, ERS-2, and METOP-A into
a global data set covering the period of 1979–2013. We chose this merged product as our observation-
based surface (<10 cm depth) soil moisture [Liu et al., 2011].

2.2. Drought Indices

We used monthly series of two standardized drought indices to quantify meteorological and soil moisture
anomalies for both CMIP5 models and observation-based data sets. We used the standardized precipitation
index (SPI) to quantify meteorological anomalies over different time scales. We used the algorithm described
in Lloyd-Hughes and Saunders [2002] to calculate SPI: for each month, precipitation over the current and the
previous (k� 1) months is summed, where k is the time scale of the SPI (1–24months in this study). A two-
parameter Gamma distribution is then fitted to these derived monthly precipitation time series (one monthly
time series for each time scale). Each fitted Gamma distribution is subsequently transformed into a standard
normal distribution. Thus, the resulting SPI time series (one for each time scale) have a mean of 0 and a stan-
dard deviation of 1.

To quantify soil moisture dynamics, we calculated standardized surface soil moisture anomalies (SMA), where
“surface” roughly corresponds to 0–10 cm depth (see below). First, we deseasonalized the observation-based
and simulation results by subtracting the mean monthly values in the soil moisture time series xy,m, wherem
(1,2,…12) indicates the month and y the year. The deseasonalized monthly time series x0y,m is given by

x
0
y;m ¼ xy;m � 1

n

Xn

i¼1
xi;m (1)

where n is the number of years in the analysis. The x0y,m is further standardized to unit standard deviation for
each grid cell to yield SMA. The standardization harmonizes soil moisture between observation-based and
ESM simulations and allows a direct comparison with SPI. Months with soil temperature below 0°C are
excluded from the SMA analysis because the remote-sensing-based soil moisture data (ECV_SM) are con-
strained to temperatures above 0°C. To similarly exclude months with temperature below 0°C from the
CMIP5 models, which have different soil layers and depths (Table 2), we calculated the depth-weighted aver-
age temperature to the layer closest to 10 cm. We chose 10 cm depth for consistency with ECV_SM, which
represents soil moisture no deeper than 10 cm.

2.3. Quantifying Drought Responses

We quantified relationships between response variables (GPP and LAI) and explanatory variables (SPI at 1–
24month time scales and SMA at the 1month time scale) at both global and regional scales. All analyses were
performed for both observation-based data sets and CMIP5 model output. We paired observation-based GPP
and LAI data sets with observation-based SPI and SMA data sets (see section 2.1.2), and we paired GPP and
LAI from each CMIP5 model with SPI and SMA derived from the model’s forcing data (SPI) and output (SMA).
To avoid correlations with confounding variables (e.g., trends in atmospheric CO2 concentration), we
detrended GPP, LAI, SPI, and SMA prior to analysis to remove long-term linear trends, thereby focusing our
analysis on short-term (e.g., monthly or interannual) anomalies. All analyses covered the period of 1982–
2005. All global CMIP5 model output and observation-based data set were re-gridded to a common spatial
resolution of 1° × 1° and a common land mask (derived from the observation-based GPP data set described
above) using the nearest neighbor method, which we assume conserves drought responses. Most of the data
sets were available at a monthly temporal resolution; variables reported at finer temporal resolution were
upscaled to monthly values.

At the global scale (all grid cells combined), we calculated the correspondence between annual GPP and SPI
anomalies (time scales from k= 1–24months) for the period of 1982–2005. Monthly GPP and SPI series (time
scales from k=1–24months) were averaged over a year to obtain annual GPP and SPI anomalies. The Pearson
correlation coefficient was used to quantify correlations between GPP and SPI anomalies. A similar procedure
was applied to LAI for both CMIP5 models and observation-based data sets.

To understand the regional pattern of vegetation in response to water anomalies and the characteristic time
scale of responses, we quantified responses of GPP and LAI to SPI for different geographic regions and also
arid versus humid grid cells defined by the Köppen-Geiger climate classification [Kottek et al., 2006] (Figure S1
in the supporting information). We separated GPP (or LAI) anomalies into 12 series (one per month) and
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correlated each series with 1 to 24month SPIs, respectively. In each grid cell, we only included data points
where monthly GPP or LAI was at least 25% of the maximummonthly value (across years) so that our analysis
focuses on months with relatively high GPP or LAI corresponding roughly to the growing season in each grid
cell and year. This yielded a maximum of 288 (24 SPI time scales by 12months per year) correlation analyses
per grid cell. For each grid cell, we used the maximum correlation coefficient (out of a maximum possible of
288) as an indicator of the sensitivity of vegetation activity to water anomalies, where “sensitivity,” broadly
reflects “vulnerability” and “resistance” to drought (see section 1). As an index of the time scale of vegetation’s
response to water anomalies, we determined for each grid cell the SPI time scale at which the greatest GPP
and LAI sensitivities occurred.

In order to quantify sensitivities of GPP and LAI to extreme droughts or extreme wet events, we defined
extreme events as 3month SPI less than �2 (extreme dry) and greater than 2 (extreme wet) [McKee et al.,
1993]. The 3month SPI can be considered as a short-term drought indicator and is a common temporal scale
in drought assessment [Ji and Peters, 2003;WMO, 2012; Zscheischler et al., 2014b]. We further aggregated the
extreme dry (or wet) conditions that are adjacent in space and time into extreme dry (or wet) event clusters
(three-dimensional, longitude× latitude × time) following Lloyd-Hughes [2012] and Zscheischler et al. [2014b].
By “adjacent,” we refer to any of the 26 neighbors in three-dimensional (latitude × longitude× time) space.
The size of an extreme event cluster is the integral of SPI over the spatiotemporal domain of the event cluster
(event in short), and the impact of the event is the corresponding integral of GPP (or LAI) anomalies. The GPP
(or LAI) anomalies used here are absolute deviations; i.e., they are detrended and deseasonalized, but are not
standardized so as to preserve the relative magnitude of GPP (or LAI) in different months of the year. In the
following, we use “volume” (km2month instead of km3) interchangeably with the size of an extreme event.
Each extreme event may span different spatial and temporal scales. We sorted these extreme events by
volume in descending order and calculated their cumulative impacts by adding each individual extreme
event’s impact. For example, the cumulative impact of the 100 largest extreme events on GPP is the sum
of all GPP anomalies over the spatiotemporal domain spanned by these 100 largest extreme events. The
mean ratio (for all global events combined) between GPP (or LAI) anomalies and SPI in extreme dry events
is used as an indicator of the global drought sensitivity, and the mean ratio for extreme wet events is used
an indicator for the global wet sensitivity.

For the soil moisture anomaly (SMA) analysis for each grid cell, we separated monthly GPP (or LAI) anomalies
into 12 series (one per month) and correlated each series with the corresponding SMA series. As with SPI, we
used themaximum correlation in each grid cell as an index of vegetation sensitivity to SMA. We implemented
an analysis of extreme SMA events as explained above for SPI. We defined extreme dry conditions as SMA less
than �2 and extreme wet conditions as SMA greater than 2. We then quantified the size of events (three-
dimensional, longitude× latitude × time) and responses and calculated their global ratios.

2.4. Measurement Error Models

Most previous assessments of ecosystem response to water availability have ignored uncertainty in the
explanatory variables. Errors in response variables (GPP and LAI in our study) introduce noise, but no sys-
tematic bias into standard regression analyses. In contrast, errors in explanatory variables (e.g., SPI) bias
the estimated response slopes (e.g., the slope of LAI versus SPI) toward zero if these errors are ignored
[Fuller, 1987; Lichstein et al., 2014]. Errors in precipitation (and thus SPI) and other forcing data do not
affect our analyses of CMIP5 models, because the environmental conditions experienced by vegetation
in each CMIP5 model are known without error; i.e., although the forcing data include errors, the conditions
experienced by the modeled vegetation are known, and thus, errors do not affect the GPP or LAI slopes
estimated from CMIP5 model output. In contrast, these slopes will be biased toward zero in
observation-based analyses if there is uncertainty in precipitation or soil moisture data products. As with
CMIP5 models, uncertainty in precipitation does not affect our analysis of the MTE-GPP data product,
because we used the same precipitation product (GPCC) used by Jung et al. [2011] to create the MTE-
GPP product. In contrast, uncertainty in precipitation does affect our analysis of observation-based LAI
data sets, because these are based on satellite reflectance rather than precipitation-based algorithms.
Precipitation uncertainty is expected especially after 1991, when fewer meteorological stations are avail-
able compared to 1950–1990 [Trenberth et al., 2014]. Uncertainty in soil moisture is also expected to affect
our analyses of GPP and LAI. However, in contrast to precipitation—where multiple data sets provide a

Global Biogeochemical Cycles 10.1002/2016GB005480

HUANG ET AL. EVALUATE DROUGHT RESPONSE OF CMIP5 MODEL 7



straightforward means of quantify-
ing uncertainty (Table 3)—only a
single soil moisture data set was
available. Thus, we restricted our
analysis of measurement errors to
the response of observation-based
LAI to SPI. For simplicity, we further
restricted this analysis to global LAI
(as opposed to grid-level LAI ana-
lyses). Although incomplete, this
analysis allows an initial exploration
of how errors in explanatory vari-
ables can affect estimated
responses of vegetation activity to
water anomalies, and how these
errors can affect the comparison
of observation-based and CMIP5
responses.

To account for errors in SPI when esti-
mating global LAI responses from the
observation-based data sets, we used
measurement error models (MEMs)
[Fuller, 1987]. To implement MEMs
for the observation-based global SPI
analyses, we estimated uncertainty
in global SPI (all grid cells combined)
by quantifying variation among mul-
tiple observation-based SPI data sets
as follows: For each year, the uncer-

tainty of global SPI is estimated as the standard deviation among the four global SPIs derived from GPCC,
Global Precipitation Climatology Project (GPCP), University of Delaware (DELA), and Climatic Research Unit
(CRU) data sets (Table 3). For simplicity, we assumed no measurement error for LAI in the MEMs.

3. Results
3.1. Sensitivity of Global GPP and LAI to SPI

CMIP5 models generally have higher correlations between global annual GPP and water anomalies com-
pared to observation-based data sets (Figure 1a). However, the difference diminishes as SPI time scale
increases and approaches zero with the SPI time scale of 24months. In addition, differences among CMIP5
models—indicated by 95% confidence intervals—increase with SPI time scale.

As with GPP, correlations with SPI are higher for LAI in CMIP5 models compared to observation-based LAI
data sets (Figure 1b). Global LAI is generally less responsive to water anomalies than GPP in both CMIP5 mod-
els and observation-based data sets, as indicated by lower correlation coefficients (Figure 1). Correlations
between observation-based LAIs and SPIs are weak with the mean correlation coefficients less than 0.2 for
each SPI time scale and most of the observation-based correlations showing nonsignificant
(P> 0.05) relationships.

Accounting for errors in precipitation data sets using measurement error models (MEMs) increased the esti-
mated slope of observation-based global annual LAI versus global annual SPI (Figure 2). For the GLASS LAI
data set, MEM slopes were greater than CMIP5 slopes for all of the 1 to 3month SPI time scales, whereas
ordinary least squares (OLS) slopes that ignore errors in x were similar for GLASS and CMIP5. The
GLOBMAP LAI data set yielded shallower slopes than GLASS, such that OLS slopes based on GLOBMAP were
consistently shallower than for CMIP5, and the MEM slope from GLOBMAP was steeper than CMIP5 only for
the 1month SPI time scale (Figure 2).

Figure 1. Pearson correlation coefficients between detrended global annual
gross primary productivity (GPP, a), or leaf area index, (LAI, b) and the
standardized precipitation index (SPI) over 1982–2005. The x axes are SPI
time scales indicating drought severity at different temporal scales
(1–24months). The black dots represent result from CMIP5 models
(multimodel mean) and the red dots from observations. The shaded areas
correspond to the 95% confidence limits among CMIP5models (nine in total)
or for the observation-based LAI responses (eight in total, two LAI data sets
by four precipitation data sets).
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3.2. Sensitivities and Time Scales of Grid-Cell GPP and LAI Responses to SPI

Maximum correlations (largest magnitude) between GPP (or LAI) and SPI out of up to 288 correlations per
grid cell (24 SPI time scales × up to 12 growing season months, depending on location) provide indices of
a location’s sensitivity to water anomalies. These sensitivities in CMIP5 models tend to be stronger than in
the observation-based MTE-GPP data set (Figures 3a and 3b and 4a). Higher GPP-SPI sensitivities in CMIP5
models compared to MTE-GPP are apparent across a large portion of the global land surface, where themulti-
model mean correlation is greater than 0.75 (Figure 3a). Although MTE-GPP shows comparable or higher
GPP-SPI sensitivity than CMIP5 models in some regions (e.g., Alaska; Figure 3b), sensitivities are higher for
CMIP5 models when averaged over the global land surface and in both arid and humid regions (Figure 4
a). High GPP-SPI sensitivity is generally consistent across CMIP5 models despite some regional differences
(Figure S2). Both CMIP5 models and MTE-GPP yielded some negative GPP-SPI correlations, particularly in
the northern high latitudes (Figures 3a and 3b).

As with GPP, LAI-SPI sensitivities (i.e., maximum correlations) tended to be higher for CMIP5 models than for
the observation-based data sets (two LAI data sets × four precipitation data sets) (Figures 3c and 3d and 4b).
There was considerable variability in LAI-SPI sensitivities among CMIP5 models and among the observation-
based data sets (Figure S3). LAI-SPI sensitivities in the GLOBMAP LAI data product were similar to those in
some CMIP5 models and were higher than those in the GLASS LAI data product (Figure S3).

The observation-based data set for GPP exhibits more grid cells with both short (e.g., <3months) and long
(e.g., >18months) SPI time scales compared to CMIP5 models (Figures 5a and 5b). When SPI time scales
are averaged across the globe, time scales with maximum correlations are shorter in CMIP5 models com-
pared to observation-based data set for GPP (CMIP5 models: mean, 7.06months; observation-based GPP:
8.75months; Figure 4). However, LAI has a longer average time scale in CMIP5 models (mean, 10.47months)
compared to the mean of the observation-based data sets (8.64months) (Figure 4). The overall shorter mean
time scale of modeled GPP response holds for both arid and humid regions (Figure 4), and the longer mean
time scale in modeled LAI is also consistent between arid and humid regions (Figure 4). Individual CMIP5
models varied strongly with respect to LAI response time scale (Figure S5). The mean response time scale
of LAI is as low as 3.7months in the Institute of Numerical Mathematics Coupled Model, version 4.0

Figure 2. LAI responses to SPI. The y axis units are the change in LAI (m2m�2) per SPI change (unitless). The CMIP5 model
(filled in blue) indicates LAI responses with the multimodel mean ordinary least squares regression slopes from the nine
CMIP5 models; OLS (filled in red or green) indicates the mean ordinary least squares regression slopes from the
observation-based data sets (four global precipitation data sets); MEM (filled in slashed red or green) are slopes of
observation-based data set estimated from the measurement error model taking into account error in x in SPI. The error of
SPI is estimated as the standard deviation of the mean annual SPI among four versions of SPI derived from four precipi-
tation data sets (Table 3). The observation-based LAI data sets are from GLASS (OBS1) and GLOBAMP (OBS2). Results are
shown for SPI with 1month (SPI1), 2 month (SPI2), and 3month (SPI3) time scales.
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(INMCM4) and as high as 14.3months in NOR (NorESM1-ME), indicating large uncertainties in model-derived
LAI response time scale.

3.3. Extreme Event Analysis Based on SPI

GPP was more responsive to extreme dry and wet events in CMIP5 models than in the observation-based
data set. GPP reductions integrated over all extreme dry events (1982–2005) in CMIP5 models range from
�5.30 to �30.28 GtC, which are larger in magnitude than that of observation-based GPP (�3.00 GtC)
(Figure 6). The integrated increase of GPP during extreme wet events is also higher in CMIP5 models (ranging
from 3.64 GtC to 14.90GtC) compared to observation-based GPP (1.61GtC) (Figure 6). Higher excursions of
modeled GPP during extreme events compared to the observation-based product are not attributable to dif-
ferences in the magnitude of extreme events. The mean total volume of extreme dry events is
16.36 × 108 km2month in CMIP5 models compared to 17.88 × 108 km2month for observation-based GPP dur-
ing the period of 1982–2005. The mean total volume of extreme wet events is 11.83 × 108 km2month in
CMIP5 models compared to 12.75 × 108 km2month for the observation-based GPP. Thus, the global
dry/wet sensitivity (total GPP excursions divided by total volume of extreme dry or wet events) is smaller
for the observation-based data set compared to each of the nine CMIP5 models under study (Figure S6).
The apparent oversensitivity of CMIP5 modeled GPP to extreme events is also unlikely to be caused by differ-
ences between CMIP5 and the observation-based data set in the means or temporal variation of GPP,
because CMIP5 oversensitivities are still apparent when GPP anomalies are normalized for each grid cell
(Figures S7 and S8).

Figure 3. Spatial map of the maximum magnitude Pearson correlation obtained from up to 288 (24 SPI time scales × up to 12 growing-season months per year)
possible statistically significant correlations (P< 0.05) between GPP (or LAI) anomalies and SPI. Shown are averages among models (a and c: CMIP5). For observations
(OBS), results are shown for one analysis of (b) GPP and average among eight (d) LAI-SPIs (two LAI data products × four precipitation data products). The blank
areas in each panel represent either polar frost or arid desert according to the Köppen-Geiger climate classification or locations with no significant correlations. The
analysis is restricted to the growing season for each grid cell, defined as months where mean monthly GPP (or LAI) is at least 25% of its maximum.
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As with GPP, LAI was more responsive in CMIP5 models to extreme dry/wet events than observation-based
data sets. Globally, the reduction of LAI is �11.58 × 107 km2month if integrated over all extreme dry events,
which is larger in magnitude than the mean of the observation-based data sets, �3.86 × 107 km2month
(Figure 6). Further, the mean cumulative (total) increase of leaf area from all extreme wet events is
6.37 × 107 km2month, again higher than the observation-based of 1.56 × 107 km2month (Figure 6). Similar
to GPP, the sensitivity of LAI to extreme dry/wet events is on average stronger in CMIP5 models compared
to observation-based data sets if calculated based on all extreme events. As for GPP, through normalization,
LAI from CMIP5 models still shows a higher mean sensitivity to extreme dry and wet events compared to that
of observation-based data sets, although the differences are marginally nonsignificant (P= 0.06 for both dry
and wet extreme events ) (Figure S8). The difference in sensitivities derived for the two observation-based LAI
data sets (GLOBMAP versus GLASS) is large, especially during extreme wet events, reflecting large uncertain-
ties in observations (Figure S6). However, the sensitivity gap in observation-based LAI is reduced when LAI
anomalies are normalized to 0 means and 1 standard deviations (Figures S6 and S8).

3.4. Correlations of GPP and LAI With Soil Moisture Anomalies

Maximum correlations (largest magnitude) between GPP and SMA (out of 12 possible correlations, one per
growing season month) were higher for CMIP5 models (multimodel mean) than for the observation-based
data set in some regions (e.g., southeastern United States, India, and southeastern China) (Figure 7).
Maximum correlation coefficients vary among CMIP5 models and across regions (Figure S9). CMIP5 models
had a negative GPP-SMA response for a substantial fraction of grid cells, particularly in the northern high lati-
tudes (Figures 7 and S9). These negative correlations were less common in CMIP5 GPP-SPI responses
(Figures 3 and S2).

The multimodel mean maximum LAI-SMA correlations from CMIP5 are smaller compared to those from
observation-based data sets over a large portion of the land (Figures 7c and 7d), in contrast to LAI-SPI

Figure 4. Global and regional averages of (a and b) the maximum correlations and (c and d) the SPI time scales (in months)
at which the maximum correlations are obtained (excluding grid cells with no signification correlations). Maximum
correlations are chosen from up to 288 (see Figure 3 for details) possible statistically significant correlation coefficients
(P< 0.05) between GPP (or LAI) anomalies and SPI for each grid cell. Shown are means and 95% confidence limits among
nine global averages for CMIP5models or eight (two LAI data sets by four precipitation data sets) for the observation-based
LAI responses. For the observation-based GPP (no error bars), only one data set is used. The differentiation between
arid versus humid regions is based on the Köppen-Geiger climate classification [Kottek et al., 2006] (see Figure S1).

Global Biogeochemical Cycles 10.1002/2016GB005480

HUANG ET AL. EVALUATE DROUGHT RESPONSE OF CMIP5 MODEL 11



correlations (Figures 3c and 3d). CMIP5 models vary greatly in the spatial pattern of the maximum LAI-SMA
correlations (Figure S10). While maximum correlations from INMCM4 are predominantly positive and strong,
Model for Interdisciplinary Research on Climate (MIROC) produces negative correlations over a large portion
of the global land (Figure S10).

3.5. Extreme Event Analysis Based on Soil Moisture Anomalies

Modeled GPP reduction during extreme SMA dry events ranges from �0.82 to �25.93GtC, which is more
severe than the observation-based of �0.68 GtC (Figure 8a). Consequently, all of the CMIP5 models have
higher sensitivity to drought (range from 1.5 to 19.34 gCm�2month�1) compared to the observation-based
of 1.28 gCm�2month�1 (Figure S11a). Themean GPP increase in wet extreme events is higher, on average, in
CMIP5models than in observation-based data sets, but the difference is not significant (Figure 8b). When GPP
anomalies are expressed as normalized anomalies, mean excursions in carbon budgets or sensitivities are still
stronger in CMIP5 models compared to observation-based data set (Figures S12 and S13).

The mean response of LAI to extreme SMA dry/wet extremes is weaker in observation-based data compared
to CMIP5 models (Figure 8). However, the differences between observation-based data and CMIP5 models
are not statistically significant (within 95% confidence interval). The cumulative (total) leaf area changes over
1982–2005 range from an increase of 3.18 × 107 km2month to a reduction of �5.15 × 107 km2month during
droughts and from an increase of 10.70 × 107 km2month to a reduction of �5.93 × 107 km2month during
extreme wet conditions among CMIP5 models (Figure 8d). The inconsistent response of LAI in CMIP5 models
to SMA extreme events (Figure 8) contrasts with the more consistent CMIP5 LAI responses to SPI extreme
events (Figure 6). The overall pattern is similar in the analysis of sensitivity to droughts (total leaf area excur-
sions divided by total volume of extreme dry/wet events) (Figure S11). However, GLASS (0.015m2m�2)

Figure 5. (a–d) SPI time scales (in months) at which the maximum correlations in Figure 3 are obtained.
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shows a much stronger sensitivity to wet extremes than GLOBMAP (0.002m2m�2) despite the volume of
extreme wet events being close (9.37 versus 9.10 × 108 km2month from GLOBMAP and GLASS, respectively).
The stronger sensitivity for GLASS compared to GLOBMAP stems largely from differences in the variances in
these two data sets, since the sensitivity is comparable between GLASS and GLOBMAPwhen leaf area anoma-
lies are expressed in normalized anomalies (Figure S13). Normalization of leaf area anomalies does not elim-
inate inconsistent responses (e.g., with both increases and reductions of leaf area in dry conditions) among
CMIP5 models to extreme soil moisture events (Figures S12 and S13).

4. Discussion

Understanding and modeling the response of vegetation to drought are challenging due to the multifaceted
nature of drought and markedly varied sensitivities to drought across land biomes and time scales. Here we
evaluated the drought response of CMIP5models from various perspectives: the overall correlations between
global annual GPP (or LAI) anomalies versus the drought index SPI across time scales from 1month to 2 years,
the maximum correlation and time scale of maximum response from each grid cell and aggregated region-
ally or globally, during three-dimensional (longitude× latitude × time) extreme events, and based on soil
moisture drought.

4.1. Response to Meteorological Drought

GPP in CMIP5 models is generally more responsive (or less buffered) to water anomalies than the
observation-based GPP. This over-response of modeled GPP compared to observation is in line with the find-
ings of Piao et al. [2013], which showed a stronger GPP-precipitation relationship in models. We further con-
firmed the over-response through the correlation with meteorological drought index SPI and through the
analysis of GPP in extreme dry and wet events (events outside 2 standard deviations from the mean).
Previous studies revealed that CMIP5 models tend to overestimate global mean GPP and LAI, and possibly

Figure 6. Cumulative GPP (or leaf area) reductions and increases during extreme dry and wet events, respectively. Extreme dry events are defined as three-dimen-
sional (latitude × longitude × time) clusters with SPI<�2. Likewise, extreme wet events are three-dimensional wet (SPI> 2) clusters. For each panel, the in-box lines
show the cumulative/sum of GPP (or LAI) anomalies spanned by the largest 760 extreme events (sorted by event-size) and the outside horizontal lines indicate
the total from all of extreme events. The points and error bars are means and 95% confidence intervals among CMIP5 models (blue) or observations (red) over all
extreme events. The solid lines represent the CMIP5 models, and the dashed lines are from observation-based data sets. Different colors correspond to different
CMIP5 models or observations.
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the magnitude of absolute GPP (or LAI) anomalies [Shao et al., 2013]. It is possible that the variability of
observation-based GPP is underestimated [Jung et al., 2011; Piao et al., 2013]. However, the higher GPP reduc-
tion in CMIP5 models compared to observation-based data persisted even if GPP anomalies were standar-
dized. This suggests that extreme dry/wet events are more likely to produce GPP excursions in CMIP5
models compared to observation-based data. In addition, the spread of GPP reductions and increases in
extreme dry andwet extreme events is large among CMIP5models, with a 5.72 times difference in GPP reduc-
tions and 4.13 times in GPP increases, respectively. This large spread points to large uncertainties in capturing
meteorological drought responses among CMIP5 models.

Similar to GPP, modeled LAI is on average more responsive to SPI compared to observation-based data, indi-
cated by higher mean global annual correlations, higher mean maximum correlations over a large area of the
global land, and stronger mean excursions and sensitivities to extreme dry or wet events. LAI depends on
GPP and the allocation of GPP to leaves, while GPP is regulated by leaf area through the amount of leaf that
performs photosynthesis. The strong link between GPP and LAI explains their large similarities in response to
water anomalies. The analysis of LAI-SPI relationship provides complementary evidence to our findings based
on GPP, since sources of observation-based LAI data sets are different from GPP.

The concept of drought time scale or legacy effect has been widely applied in drought studies [Vicente-
Serrano et al., 2013; Anderegg et al., 2015; Frank et al., 2015]. Response time scales are inconsistent between
CMIP5 models and observation-based data sets or within individual CMIP5 models. CMIP5 models revealed
overall shorter response time scales to meteorological drought compared to observation for GPP. The time
lag of observed GPP (MTE-GPP) is partly driven by the forcing FAPAR that was used to produce the global

Figure 7. Spatial distribution of the maximummagnitude Pearson correlations between GPP (or LAI) anomalies and surface soil moisture anomalies (SMA) from the
12 possible significant (P< 0.05) correlations (one for eachmonth of the year). Averages are shown for (a and c) CMIP5models and (d) observation-based (OBS) LAI. A
single analysis was performed for (b) observation-based GPP. The blank areas represent either polar frost or arid desert according to the Köppen-Geiger climate
classification or locations with no significant correlations (P> 0.05). The analysis is restricted to the growing season for each grid cell, defined as months where mean
monthly GPP or LAI is at least 25% of its maximum.
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GPP product. As mentioned in Jung et al. [2011], MTE-GPPmay not capture the relevant mechanisms that pro-
duce a true time lag, and time lag imprinted in MTE-GPP is probably underestimated. In this case, the true gap
in time scales between CMIP5 models and the real GPP may be even larger. However, CMIP5 models have
longer mean response time scales compared to observation for LAI. This discrepancy indicates potential
insufficiency in CMIP5 models in capturing drought responses in processes that other than directly regulate
GPP (e.g., leaf longevity and carbon allocation).

The insufficiency in modeled drought response time scale is further confirmed by the difference in arid versus
humid regions. In CMIP5 models, arid regions on average need a slightly longer (or similar) lasting dry con-
dition than humid regions to exhibit a maximum response in GPP, while humid regions exhibit a longer
response time scale in observation-based data set compared to arid regions (Figure 4c). Our classification
of arid and humid regions is broad and did not differentiate between arid and semiarid or humid versus semi-
humid which might obscure the characteristic time scale of drought response across different biomes.
Vicente-Serrano et al. [2013] pointed to the biome-dependent time scale of drought responses; however,
direct biome by biome comparison is not possible due to differences in the numbers and types of PFTs simu-
lated in CMIP5 models. Nevertheless, our broad classification of arid versus humid biomes revealed potential
gaps in models in capturing time scale of drought impacts. Even within CMIP5 models, we found markedly
different response time scale pattern for LAI, and further model developments that address lagged response
may be critical toward predicting carbon flux anomalies during droughts.

4.2. Response to Soil Moisture Drought

GPP and LAI generally respond stronger to meteorological drought in CMIP5 models compared to
observation-based data sets. The stronger response to hydrological anomalies in models is less obvious when
soil moisture anomalies are used instead of SPI. Drought responses of modeled GPP stem largely from the
water stress functions and should also reflect plant water availability. The large spread of the modeled sensi-
tivity of GPP to extreme dry events indicates either differences in water stress functions or a large range of
modeled moisture availability that regulate plant activity, or both. Water stress functions in models vary in
their formulations and parameterizations. Some of themdown-regulate the leaf levelmaximumcarboxylation

Figure 8. (a–d) Cumulative reductions or increases of GPP and LAI in response to surface soil moisture anomalies (SMA). Symbols and extreme events are defined as
in Figure 6 except that dry extremes are defined as surface soil moisture anomalies (SMA) smaller than�2 andwet extremes as SMA greater than 2. The solid lines are
from models, and the dashed lines are from observations. The points and error bars are means and 95% confidence intervals among CMIP5 models (blue) and
observation-based data sets (red). Different colors correspond to different CMIP5 models or observations.
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capacity of Rubisco, while some scale the potential photosynthetic rate; some formulations of down-
regulation are based on soil water conditions alone, while there aremodels that also explicitly take into account
the leaf water demand; some of them are parameterized based on soil matrix potential, while some are based
on volume soil water content (see Text S1 for detailed information). These various forms of water stress func-
tions have the potential to create differences in the response of GPP when water is limiting. Modeled LAI
responds to SPI coherently with reductions in droughts, but SMA droughts are associated with both reduc-
tions and enhancements in different models. Divergent responses of modeled LAI to SMA detected in our
study may stem from processes other than water stress function and plant-available water, such as difference
in the representation of GPP allocation to leaf biomass, leaf phenology, and functions to derive leaf area.

One of the impediments toward mechanistic understanding of vegetation’s drought response is the limita-
tion of knowledge and empirical data on plant-available water, which is the actual pool of water that plants
can access to support transpiration. While we found an overestimation of the response of vegetation to
meteorological drought, Rebel et al. [2012] suggested a possible underestimation of the response of vegeta-
tion to drought in Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model
based on the slower decrease of root zone soil moisture after rain compared to surface soil moisture derived
from remote-sensed AMSR-E (Land Surface Parameter Model), while the true plant-available moisture
remained unknown. Although the strong link between surface and root-zone soil moisture is frequently
documented from in situ measurements [e.g., Albergel et al., 2008; Rebel et al., 2012; Ford et al., 2014], it is
unclear to what extent soil water anomalies experienced by plants are captured by surface soil moisture
anomalies since the variability and availability of soil moisture change with depth [Hirschi et al., 2014;
Cheng et al., 2016]. The stronger response of vegetation to SPI compared to SMA detected in our study
may be caused by lack of representation of plant-available water anomaly by surface SMA (<10 cm). And
the response pattern might be different if the whole plant-available water (or deep soil water) is used in eva-
luation instead of using only the surface layer. Root zone water availability is a better proxy of the dry/wet
stress experienced by plant; however, observation-based root zone water is not available in large scale. SPI
is widely used as a drought indicator, and short-term SPI has been shown to have good correlations with soil
moisture availability/anomaly [Sims et al., 2002; Scaini et al., 2015], but only reflect one side of the multiple
processes (e.g., interception and drainage are not captured in SPI) regulating soil water dynamics.
Remotely sensed soil moisture anomalies have been shown to be in line with SPI at specific locations and
have a high response to precipitation [Scaini et al., 2015]. Nevertheless, the difference between evaluation
of the response to SPI and SMA in this study calls for improvement in understanding of plant-available water.
The over-response of vegetation tometeorological drought in this study may incorporate uncertainties in the
treatment of precipitation that ultimately ends up as water that is available for plant uptake.

4.3. Uncertainties

Quantifying responses to SPI based on observation is afflicted with uncertainties if errors in drought and
observation-based data sets are taken into account. We explored the impact of possible errors in SPI on
the model-data comparison. Regression slope of LAI to drought is enhanced when errors in the explanatory
variable SPI are included. The enhancement alters the result of model-observation comparison in some cases.
Ignoring errors in explanatory variable can lead to biased result especially when driver errors are large
[Lichstein et al., 2014]. Our illustration through the response of LAI indicates the necessity of taking into
account of uncertainties in explanatory variables in future model-data comparison. Further, results for tropi-
cal forests derived from observation-based GPP are less reliable: observation-based GPP is obtained from
training the FLUXNET flux tower observations with a large number of sites in temperate ecosystems and
few located in the tropics. The satellite FAPAR, the variable based on which flux tower measurements are
extrapolated, is subject to contamination by cloud especially in tropical forests [Jung et al., 2011]. We use
LAI as a complementary variable to evaluate drought response. LAI errors cannot be excluded, particularly
in tropical forest with the satellite based LAI [Fang et al., 2012]. Compared to CMIP5 models and
observation-based GPP (upscaled to the globe with deterministic algorithm), the noise in LAI products is
likely to be larger, which could render the observation-based LAI correlations lower than CMIP5 models.
The global and regional average of the highest correlations and the SPI time scales at which the highest
correlations are obtained are based on areas with statistically significant (P< 0.05) correlations, which may
bias the global or regional means with some land areas excluded from the calculation.
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In addition to uncertainties mentioned above, the observation-based soil moisture (i.e., ECV_SM) is also error-
prone under dense vegetation especially in tropical forests [Dorigo et al., 2010; Liu et al., 2011]. ECV_SM has
more data gaps compared to CMIP5 models and other observation-based data sets. We have not assessed
how drought responses are affected by data gaps. Other sources, such as model implementations of distur-
bance regimes (e.g., land use change and fire), model resolution and regridding method, may also contribute
to uncertainties in drought response and need to be treated with caution.

4.4. Implications for Future Studies

Efforts are underway to better understand and forecast terrestrial ecosystems’ response to drought, such as
through precipitation manipulation experiments and site-specific model-data intercomparisons [Beier et al.,
2012; Powell et al., 2013; Knapp et al., 2015]. Our study focuses on the performance of large scale drought
response from CMIP5models and serves as a baseline to identify current knowledge gaps in models, to guide
manipulative drought experiments (such as those in Drought-Net:www.drought-net.org) and for future inte-
gration of observations with Earth system models.

Several of our findings are beneficial for future studies. First, multiple perspective evaluation is helpful in pro-
viding a thorough picture on the performance of modeled vegetation’s response to drought. Drought is a
complex phenomenon, and drought impacts are multifaceted. Although modeled GPP is more sensitive
compared to observation-based data on short to medium time scale, the oversensitivity does not hold for
long-term (e.g., 2 years in this study) meteorological drought. Modeled LAI is more responsive to meteorolo-
gical drought; however, the over-response is not true if based on drought quantified by soil moisture. Future
manipulative drought experiments should be designed to provide model relevant measurements that span
different temporal scales, while modelers should consider validating multiple variables and processes, espe-
cially model formulations of plant transpiration/GPP relationships and parametrization that affect LAI (includ-
ing leaf carbon allocation and turnover in response to drought). Second, our results suggest that at short time
scales (e.g., 3months) the GPP response to drought is oversensitive to drought compared to observation. As
the world is projected to experience more severe, frequent, or/and widespread droughts and wet extremes
under future global warming [Dai, 2013; Orlowsky and Seneviratne, 2013], GPP swings in models may even
more deviating from the realistic variability under future climate. The oversensitivity may be improved
through incorporating processes that are currently in lack in most CMIP5 models, such as nitrogen interac-
tions with drought [Huang and Gerber, 2016] and realistic plant community dynamics and functional diversity
[Weng et al., 2015]. Third, work is required to improve mechanistic understandings of how water stress affects
vegetation’s activity. Models vary in their water stress functions which may result in difference in model per-
formance. Manipulative drought experiments with focus on how water stress regulates plant activity across
terrestrial ecosystems are essential to step forward. Fourth, additional focus needs to be put on LAI dynamics.
We found distinct response pattern of LAI among individual models with respect to sensitivity and time scale
in response to SPI (Figure S5), with respect to SMA (Figure S10), and in the response to extreme SMA events
(Figures 8 and S11). Since LAI is a common parameter used to upscale leaf level productivity to the ecosystem
level, accurate simulation of LAI response is beneficial for carbon cycling-drought studies. Finally, empirical
global data sets with low uncertainty is essential in benchmarking models and identifying model insuffi-
ciency. Observation data sets that are afflicted with uncertainties can mislead the evaluation of model’s per-
formance and should be taken into account in future studies. Especially important and urgent is the
generation of a global data set of plant-available water perhaps through integration of radar-based data,
in situ measurements, and hydrologic modeling. While SPI and SMA are commonly used but indirect indica-
tors of water stress experienced by plants, an empirical based data set of plant-available water may be impor-
tant to reveal the actual water stress that regulate vegetation’s response and would help further to evaluate
model performance.

5. Conclusions

We compared drought responses of vegetation activities derived from nine CMIP5 models with observations
based on meteorological drought index SPI and surface soil moisture anomalies (SMA). Several lines of evi-
dence suggest an oversensitivity of CMIP5 models to SPI, including higher mean global annual correlation,
higher maximum correlations, and higher reduction/increase in extreme events for both GPP and LAI.
However, the oversensitivity from CMIP5 models is less apparent based on surface SMA for GPP and even
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in contradictory when the LAI response is evaluated. Future work should be directed toward a better under-
standing of plant-available water and plant stress functions that regulate vegetation activities.
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