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Local and global approaches to 
spatial data analysis in ecology

 

Introduction

 

Geographic analyses in ecology may be sepa-
rated into those that attempt generalizations
to achieve ‘global’ insights, and those that
attempt to explore and document local vari-
ation. Ecological studies at the broad scale
usually set out to test specific hypotheses (such
as the effect of energy on species richness)
and focus on establishing global relationships
before examining local residual variation. How-
ever, geographical pattern in model residuals
(Jetz & Rahbek, 2002; Fig. 1c) can also lead to
important insights. In a recent issue of 

 

Global
Ecology and Biogeography

 

, a study by Foody
(2004) illustrates how a method for estimating
local variation in model parameters, geograph-
ically weighted regression (GWR, Fothering-
ham 

 

et al

 

., 2002), may enhance data exploration.
Standard global methods, such as linear or
logistic multiple regression, estimate a single
parameter for each explanatory variable. In
contrast, GWR allows parameter values to
vary continuously in geographical space, and
local parameter values are estimated by assign-
ing higher weights to nearby observations than
more distant ones. The user varies the ‘band-
width’ in GWR, which determines the rate at
which weights decrease with distance.

 

GWR

 

Foody uses GWR to analyse the same 1599
bird species distributions that we used to inves-
tigate the ‘global’ determinants of avian spe-
cies richness above and beyond local variation
(Jetz & Rahbek, 2001, 2002). Foody’s fine-scale
(small ‘bandwidth’) GWR analysis explained
over 90% of the variation in species richness
(compared to 50–60% in the global model),
a value that declined towards coarser scales
(larger ‘bandwidths’), and most steeply so for
narrow-ranged species. Single predictors such
as precipitation or temperature retained high
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 values even at coarse scales in GWR. Foody
concludes that global regression models may
misrepresent local conditions and yield much
weaker relationships than GWR. We are

concerned about the statistical and conceptual
validity of this comparison, and suggest that
GWR is a useful supplement but not an
alternative to global modelling. In the follow-
ing, we compare GWR to spatial regression
models, examine Foody’s conclusions, and dis-
cuss the benefits and limitations of GWR for
large-scale ecology.

 

Non-stationarity

 

Observed geographical patterns and rela-
tionships in ecology, unlike physical laws
that are universal, tend to be spatially variable
(‘non-stationary’). Even if the underlying eco-
logical processes are universal, the realized
patterns will vary with local conditions. When
mapping the residuals of a traditional, non-
spatial regression, they tend naturally to form
‘clumps’, i.e. neighbouring residuals tend to
be more similar than distant ones (Legendre,
1993; Lennon, 2000; Diniz-Filho 

 

et al

 

., 2003).
This non-independence violates a core assump-
tion of standard linear and logistic regression
models and affects both the significance and
(less appreciated) values of model parameters
(Cressie, 1993; Jetz & Rahbek, 2002; Lichstein

 

et al

 

., 2002; Diniz-Filho 

 

et al

 

., 2003), as well as
model selection (e.g. by stepwise procedures).
Failure to account for spatial autocorrelation
limits the in-depth interpretation of almost
all geographical analyses in ecology to date.

 

Spatial autocorrelation

 

Various techniques have been developed that
incorporate the spatial covariance structure
of error terms (Cliff & Ord, 1981; Cressie, 1993;
Selmi & Boulinier, 2001; Lichstein 

 

et al

 

., 2002).
By accounting for spatial autocorrelation,
these models yield unbiased statistical tests
and capture much of the local variation in the
response. They can thus be considered ‘semi-
local’ (Fotheringham 

 

et al

 

., 2002), even though
their parameter estimates are global. To date,
geographically weighted regression analyses,
such as the one presented by Foody (2004), tend
not to address the issue of spatial autocorrela-
tion in model residuals, but apparently
techniques to do so are under development
(Fotheringham 

 

et al

 

., 2002). By allowing para-

meters to vary locally, GWR models, particu-
larly those with small bandwidths, are likely
to capture much of the spatial pattern in the
residuals. However, significant levels of auto-
correlation tend to remain (Fotheringham

 

et al

 

., 2002), which may limit the validity of
the regression statistics. It is important to
note that while GWR accounts for ‘spatial
non-stationarity’ in parameter estimates (the
issue that some residuals are larger than
others), it does not directly address autocor-
relation (the issue that neighbouring residuals
tend to be similar). In some cases, GWR may
capture all of the spatial dependence in the
residuals, but this is a rather unparsimonious
method of modelling autocorrelation, as GWR
models tend to have large numbers of effec-
tive parameters. In contrast, autoregressive
or other models that account for autocorre-
lation directly (e.g. Selmi & Boulinier, 2001;
Lichstein 

 

et al

 

., 2002) typically require only
one extra parameter compared to non-spatial
models.

 

Model performance

 

Foody (2004) points out that GWR analy-
ses explain a considerably larger proportion
of the variation in species richness than con-
ventional (global) regression, particularly at
fine scales (small ‘bandwidths’). This is not
surprising: allowing parameters to vary locally
is statistically analogous to including site
factors with numerous levels (each with one
degree of freedom), which precludes mean-
ingful 
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 comparisons between GWR and
global models, or between GWR models with
different bandwidths. Consider the extreme
case where the intercept is allowed to vary at
the resolution of the data. The 
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 will be one,
even without including any explanatory vari-
ables in the model. A more relevant index of
model performance for GWR is the Akaike
Information Criterion (AIC), which accounts
for model complexity. According to AIC
comparisons, GWR models did perform
better than global models (Foody, 2004; Fig. 1
caption), but unfortunately, the degree to
which this result may be driven by spatial auto-
correlation and how it varies across variables
and scale is left unexplored.
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Limitations of GWR

 

The primary feature that distinguishes GWR,
local variation in parameter values, is argu-
ably its primary limitation for testing hypo-
theses. For example in Fig. 2 of Foody’s paper,
parameter estimates for the explanatory
variables NDVI (a remotely sensed measure of
the greenness of vegetation), precipitation, and
temperature all range from negative to positive.
Clearly, we can not make any general infer-
ences from this analysis about how these
variables affect species richness. It is possible
that the effects of these variables really do vary
locally, making attempts to uncover general,
underlying relationships futile. It seems more
likely however, that the relationships are in
fact global, but appear to vary locally due to
missing variables or interactions terms (e.g.
the effect of temperature on species richness
may switch from positive to negative depend-
ing on precipitation). Strong correlations
between the local parameter estimates in
Foody’s Fig. 2 (NDVI and temperature para-
meters are positively correlated with each
other, and negatively correlated with the local
intercepts) are also statistically problematic and
suggest that local variation in the parameters
may simply reflect excessive flexibility of GWR.
Rather than attempting to explain all of the
variation in a response by allowing the para-
meters to vary locally, it seems more useful to fit
global parameters, corrected for autocorrela-
tion (Jetz & Rahbek, 2002; Lichstein 

 

et al

 

.,
2002), and to appreciate that the effects of
environmental factors will vary locally depend-
ing on interactions with other variables. By
including interaction terms, global methods
do allow for local variation in the realized
effects of variables. Unlike GWR, global
methods also allow one to test biological
hypotheses and to make predictions that can
be tested in other geographical regions (GWR
can interpolate within a region, but cannot
extrapolate to other regions).

 

Potential benefits of GWR

 

One benefit of GWR may be as a graphical
tool for data exploration. Mapping local vari-
ation in parameter estimates may facilitate the
identification of missing variables or inter-
action terms (e.g. variation in the effect of
temperature on richness depending on local
precipitation). Another potential benefit of
GWR is that it provides a framework for eval-
uating how the strengths of relationships
change with the spatial resolution of the anal-

ysis. Jetz & Rahbek (2002) found that predict-
ability in species richness of African birds was
greater for wide-ranged than for narrow-ranged
species. GWR may shed additional light on
this pattern. For example, Foody’s Fig. 4 shows
that at small bandwidth, species richness of
narrow-ranged species is almost as predict-
able as that of wide-ranged species. As band-
width increases, predictability declines faster
for narrow compared to wide-ranged species,
so that at large bandwidths, wide-ranged spe-
cies are more predictable, consistent with the
original analysis (Jetz & Rahbek, 2002). Just
as Foody’s Fig. 4 compares the scale depend-
ence of 
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 for different response variables, one
can use GWR to compare the scale depend-
ence of 
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 for different explanatory variables
with the same response (e.g. Fig. 1 in Foody,
2004). However, a potential pitfall in all of
these comparisons is that the increasingly
inflated GWR 
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s at small bandwidths may
obscure real differences in predictability
between models; i.e. at very small band-
widths, any random variable will have high 
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in GWR. A useful way to compare 
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 across
bandwidths in GWR might involve two steps:
(1) Generate a large number of random
variables and calculate their mean 
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 for
each bandwidth. This curve then serves as a
null expectation. (2) Re-scale the curves
in Foody’s Fig. 4 as proportional deviations
from the null expectation. Variables that
unlike the three mostly broad-scale predictors
tested by Foody are known to act at distinctly
different scales should be most fruitful for
such a comparison.

 

Conclusions

 

We conclude that the local approach offered
by geographically weighted regression is
unsuitable for the general inference that only
global models allow. Furthermore, standard
GWR models do not adequately address spa-
tial autocorrelation and must be interpreted
with caution. GWR is thus not an alternative,
but rather a complement to global spatial
regression modelling. Its power in illustrating
local performance of predictor variables and
their interaction with scale makes it a useful
tool for ecological analyses at the broad scale.
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