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Abstract. We examined the relationship between songbird relative abundance and local
and landscape-scale habitat variables in two predominately mid- to late-successional man-
aged National Forests in the southern Appalachian Mountains, USA. We used partial-
regression analysis to remove correlations between habitat variables measured at different
spatial scales (local habitat and square landscape regions with sides of 0.5, 1, and 2 km)
and between landscape composition (proportion of different land cover types) and pattern
(spatial arrangement of land cover) variables. To account for spatial autocorrelation, we
used autoregressive models that incorporated information on bird abundance in the spatial
neighborhood surrounding each sample point. Most species, especially Neotropical mi-
grants, were significantly correlated with at |east one landscape variable. These correlations
included both composition and pattern variables at 0.5-2 km scales. However, landscape
effects explained only a small amount of the variation in bird abundance that could not be
explained by local habitat. Our results are consistent with other studies of songbird abun-
dance in large managed forests that have found weak or moderate landscape effects. These
studies suggest that songbird abundance in forested landscapes will primarily reflect the
quantity of different habitats in the landscape rather than the spatial arrangement of those
habitats. Although some studies have suggested consolidating clearcuts in large managed
forests to reduce edge and landscape heterogeneity, much of the current evidence does not
support this management recommendation. An important future challenge in avian con-
servation is to better understand how the importance of landscape effects variesin relation
to (1) the amount of suitable habitat in the landscape, and (2) land use patterns at broader
spatial scales.

Key words: forest fragmentation; landscape composition; landscape pattern; managed forests;
Neotropical migrants; partial-regression analysis, songbirds; southern Appalachians, spatial auto-

correlation; spatial autoregressive models.

INTRODUCTION

Land transformation is the most prominent compo-
nent of human-induced global change (Vitousek et al.
1997). An important consequence of land use change
is habitat fragmentation, which affects fine-scale eco-
logical processes such as pollination (Aizen and Fein-
singer 1994), seed dispersal (Aldrich and Hamrick
1998), and animal movement (Haddad 1999), as well
as ecosystem processes such as nutrient cycling (Saun-
ders et al. 1991) and disturbance dynamics (Franklin
and Forman 1987). Songbirds (Passeriformes) have
served as model organisms in a number of studies in-
vestigating the individual, population, and community
level consequences of forest fragmentation (e.g., Am-
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buel and Temple 1983, Blake and Karr 1987, Temple
and Cary 1988, Verboom et al. 1991, Villard et al. 1995,
Boulinier et al. 1998, Zanette et al. 2000; reviewed by
Rolstad [1991]). Coinciding with the proliferation of
songbird/fragmentation studies has been a growing
awareness that birds, in general, respond to their en-
vironment at multiple spatial scales (Wiens and Ro-
tenberry 1981, Orians and Wittenberger 1991, Pearson
1993). However, the relative importance of different
scales (e.g., local vs. landscape) may vary according
to the proportion of suitable habitat in the landscape
and the regional context (McGarigal and McComb
1995, Flather and Sauer 1996, Donovan et al. 1997,
Schmiegelow et al. 1997).

Current dogma in the avian conservation literature
suggests that sink populations (Pulliam 1988) of forest-
breeding Neotropical migrants in fragmented land-
scapes are maintained by immigration from source pop-
ulations in large forests (Robinson 1992, Donovan et
al. 1995, Robinson et al. 1995, Simons et al. 2000).
Many large forests in North America are managed for
timber or other wood products, and proper management
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of these forests is critical to the conservation of Neo-
tropical migrant songbirds and other forest-dependent
species. However, there is currently an inadequate
knowledge of the landscape-scale effects of manage-
ment in large forests to offer sound management rec-
ommendations, and conclusions based on studies in
highly fragmented (e.g., agricultural) landscapes might
not be relevant to more continuous forests (McGarigal
and McComb 1995, Hagan et al. 1997).

At the scale of individual forest stands (local scale),
management will inevitably improve the habitat for
some species and degrade it for others (Annand and
Thompson 1997, Hagan et al. 1997). It is less clear
whether changes within agiven stand will affect habitat
use in surrounding stands (landscape scale) in large
managed forests. If only local effects are important in
determining habitat use, the abundance of different spe-
cieswill simply reflect the availability of different hab-
itats, regardless of how these habitats are arranged in
space (Andrén 1994). In contrast, if landscape com-
position or pattern is important, different spatial ar-
rangements of the same habitats will result in different
species abundances. Landscape composition and pat-
tern both depend on the spatial arrangement of habitats,
but at different levels of resolution. At a coarse scale,
the proportion of each habitat within some predefined
area determines landscape composition. Given these
proportions, habitat configuration at a finer scale (e.g.,
patch size, shape, and connectivity) determines land-
scape pattern. In general, the cost and effort of effective
management will be least when local effects predom-
inate and the spatial arrangement of habitats can be
ignored, will increase when landscape composition is
important and the coarse-scale arrangement of patches
must be considered, and will be greatest when land-
scape pattern matters and habitats must be managed at
fine spatial scales. Given the limited resources avail-
able to managers, it is important to be able to predict
when landscape composition and/or pattern are likely
to be important.

Recent studies conducted in large managed forests
in Europe (Raivio and Haila 1990, Enoksson et al.
1995, Edenius and Elmberg 1996, Jokimaki and Huhta
1996) and North America (Rosenberg and Raphael
1986, McGarigal and McComb 1995, Hagan et al.
1997, Schmiegelow et al. 1997, Penhollow and Stauffer
2000) suggest that songbird distributions are affected
by landscape composition and/or pattern even within
relatively unfragmented landscapes. Although land-
scape effects were not strong in most cases, these stud-
ies varied considerably in terms of the type and mag-
nitude of species responses to landscape disturbance or
heterogeneity. For example, Rosenberg and Raphael
(1986) and McGarigal and McComb (1995) found pos-
itive effects of landscape heterogeneity on the abun-
dance of most species that responded to the landscape,
Hagan et al. (1997) found the opposite trend, and Jok-
imaki and Huhta (1996) found that response to land-
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scape heterogeneity depended on the species’ habitat
guild. Unfortunately, failure to experimentally or sta-
tistically control for correlations between local and
landscape scale habitat variables makes it difficult to
compare some of these studies. In addition, although
a number of studies have investigated songbird re-
sponse to landscape effects in large managed forests,
few studies have been conducted in any one region.
Additional studies are needed to understand how the
type and strength of response to landscape effects in
managed forests depend on (1) the amount of suitable
or preferred habitat in the landscape (Andrén 1994),
(2) land cover in the surrounding region (McGarigal
and McComb 1995, Flather and Sauer 1996, Schmie-
gelow et al. 1997), and (3) the life histories of the
species involved (Hansen and Urban 1992).

We studied the relationship between bird relative
abundance and local habitat, landscape composition,
and landscape pattern in two National Forests in the
southern Appalachian Mountains of the southeastern
United States. While much of the early and highly in-
fluential work relating forest fragmentation to songbird
abundance was conducted in the deciduous forests of
the eastern USA (e.g., Robbins 1979, Whitcomb et al.
1981, Askins and Philbrick 1987, Robbins et al. 1989,
Askins et al. 1990), we are aware of only one study
(Penhollow and Stauffer 2000) examining landscape
effects on songbird abundance in a forested landscape
in the eastern deciduous forests. The southern Appa-
lachian region is mostly forested, contains the largest
network of federal lands in the eastern USA, and is
among the most diverse temperate ecosystems in the
world (Southern Appalachian Man and the Biosphere
[SAMAB] 1996). Thus, the southern Appalachians are
likely to play an important role in maintaining future
biodiversity in the eastern USA, and there is a need to
better understand the landscape-scal e impacts of forest
management within this region.

In our analysis, we were particularly concerned with
two statistical issues that have received inadequate at-
tention in many previous studies relating bird abun-
dance or presence/absence to landscape composition
and pattern: (1) correlations between groups of ex-
planatory variables (e.g., loca and landscape vari-
ables), and (2) positive spatial autocorrelation, which
is the tendency for nearby points in space to be more
similar to each other than random pairs of points (Le-
gendre and Fortin 1989).

Correlations among explanatory variables often
make it difficult to distinguish between local- and land-
scape-scale habitat effects or between landscape com-
position (e.g., amount of forest cover) and landscape
pattern (e.g., forest fragmentation) effects. Determin-
ing the relative importance of these factorsisimportant
for conservation and management, and failure to ac-
count for their covariances may lead to incorrect in-
terpretations of ecological data. Correlationsamong ex-
planatory variables may be avoided through careful
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study design (see Pearson [1993] for local vs. land-
scape, McGarigal and McComb [1995] for landscape
composition vs. pattern), but this is often logistically
difficult in landscape-scale studies. When groups of
explanatory variables are correlated, asthey arein most
observational studies, correlations may be removed by
partial-regression analysis (Legendre and Legendre
1998), although this requires the investigator to make
subjective decisions about which variables are most
important. McGarigal and McComb (1995), Trzcinski
et al. (1999), and Villard et al. (1999) used partial-
regression analysis to determine bird response to land-
scape pattern after controlling for landscape compo-
sition. Statistically controlling for correlations between
local and landscape variables has received relatively
less attention, despite the fact that the problem was
articulated in an early study investigating bird com-
munity response to forest patch size (Ambuel and Tem-
ple 1983). Finally, studiesthat sample entire landscapes
without subsampling at local scales, or that pool local
subsamples, can not distinguish between local and
landscape effects. One cannot know the effect of hab-
itat at a given scale if only that scale is studied (Saab
1999).

Spatial autocorrelation may also be problematic in
many field studies. Despite considerable attention in
the ecological literature for over a decade (e.g., Le-
gendre and Fortin 1989, Borcard et al. 1992, L egendre
1993), spatial autocorrelation has been essentially ig-
nored in regression models of species response (Au-
gustin et al. [1996] and Klute et a. [in press] are rare
exceptions). Positive autocorrelation in a response var-
iable may lead to overestimating the effects of auto-
correlated explanatory variables in regression models
that assume independent errors (Haining 1990:166,
Gumpertz et al. 1997). Autocorrelation in species abun-
dance (or any response variable) is not problematic per
se, and is expected when the environment is spatially
structured (Legendre 1993). The problem arisesin clas-
sical statistics when species abundance is autocorre-
lated due to factors not accounted for by the model,
resulting in spatially autocorrelated errors. This situ-
ation may result from astatistical problem (e.g., amiss-
ing explanatory variable that is itself autocorrelated,;
Haining 1990:332) or contagious processes (Legendre
1993), such as conspecific attraction (Smith and Pea-
cock 1990), that cannot fully be explained by environ-
mental variables. Some studies attempt to avoid spatial
autocorrelation by sampling nonoverlapping landscape
regions. However, if the landscape is autocorrelated
over a broad spatial scale, the physical separation of
samples will not ensure their statistical independence.
Furthermore, to the extent that such studies are suc-
cessful at avoiding autocorrelation, they will not be
able to recover the fine-scale structure of species dis-
tributions, which may be biologically informative (So-
kal and Oden 1978b, Rossi et a. 1992, Legendre 1993).

To address these concerns, we used partial-regres-
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Fic. 1. The southern Appalachians region, defined as the
Southern Appalachian Man and the Biosphere (1996) (SA-
MAB) assessment area. Federal lands constitute 15% of the
region. Our study area consists of the French Broad Ranger
district of Pisgah National Forest (North Carolina) and the
Nolichucky Ranger district of Cherokee National Forest (Ten-
nessee).

sion analysisto remove correlations between local hab-
itat, landscape composition, and landscape pattern var-
iables, and we used spatial autoregressive models
(Haining 1990, Cressie 1993) to control for autocor-
relation. To determine if results from initial partial re-
gressions (which gave precedence to local habitat ef-
fects) were sensitive to the order in which variables
were entered in the models, we re-ran the analysis,
giving precedence to landscape effects. We believe our
modeling approach would be useful for many studies
investigating landscape effects on species abundance.

METHODS
Sudy area

The southern Appalachians region (defined here as
the Southern Appalachian Man and the Biosphere [ SA-
MAB] 1996 assessment area) comprises 14.8 X 106 ha
from West Virginia and Virginia to northern Alabama
and Georgia (Fig. 1). Although regional forest cover,
currently 70% (SAMAB 1996), has largely recovered
following extensive deforestation in the early 1900s
due to industrial logging (Eller 1982, Yarnell 1998),
species composition has shifted since preindustrial
times as a result of logging, fire suppression (Buckner
and Turrill 1999), and introduced species, such as the
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chestnut blight (Endothia parasitica; SAMAB 1996)
and the balsam woolly adelgid (Adelges piceae; Ra-
benold et al. 1998), ahomopteran pest of high elevation
Fraser fir (Abies fraseri). Present forest cover is com-
posed primarily of mid- (40-80-yr-old, 50%) and late-
successional (>80-yr-old, 20%) forests, with relict
stands of old growth (SAMAB 1996). About two thirds
of the region’sforests are broad-leaved deciduous hard-
woods. The 16% of the southern Appal achiansin public
ownership contains 23% of the region’'s forests and
63% of the region’s late-successional forests (SAMAB
1996). Seventy-five percent of these public lands are
under the jurisdiction of the U.S. Forest Service (SA-
MAB 1996).

Our 60000-ha study area (35°40'00"-36°07'30" N,
82°37'30"-83°07’'30" W) ranged 380-1460 m in ele-
vation and comprised the French Broad Ranger district
of Pisgah National Forest (North Carolina, USA) and
the Nolichucky Ranger district of Cherokee National
Forest (Tennessee, USA) (Fig. 1). Forest cover in the
study area, by stand age, is as follows: =9 yr, 5%; 10—
19 yr, 4%; 20—-39 yr, 5%; 40—69 yr, 27%, and =70 yr,
59% (Hermann 1996). Most of the younger (<20-yr-
old) stands are small (~10 ha) regenerating clearcuts
that are scattered throughout the landscape.

The majority of the study area consists of deciduous
mesic hardwood forest. Canopy species on mesic sites
include (in descending order of importance) Liriod-
endron tulipifera, Quercus rubra, Acer rubrum, Betula
lenta, Tsuga canadensis, Magnolia fraseri, A. sac-
charum, Fagus grandifolia, Aesculus octandra, Tilia
heterophylla, and Betula alleghaniensis. The understo-
ry of mesic forests ranges from woody thickets of Rho-
dodendron maximum on acidic soils to a diverse her-
baceous assemblage on circumneutral soils (Schafale
and Weakley 1990). The remainder of the study area
consists of xeric forests, including deciduous hard-
woods (Q. coccinea, Q. prinus, Q. alba, and Oxyden-
drum arboreum), evergreen pine (Pinus rigida, P.
echinata, P. pungens, and P. virginiana), and mixed
pine-hardwood forests. Kalmia latifolia is the domi-
nant shrub on most xeric sites.

Bird counts

More than 1250 point locations were sampled from
mid-May to the end of June in 1997-1999. Prior to
analysis, we eliminated points with loud stream noise,
heavy cloud cover, or any missing habitat data. This
resulted in a data set of 1177 points. Each point was
sampled in two of the three years of the study by a
total of 22 observers. All observers were trained and
field-tested prior to collecting data, and whenever pos-
sible (>95% of points) the two counts at each point
were conducted by different observers. Observerswere
regularly rotated to different parts of the study area.

Given the steep topography of our study area, we
sampled most points on low-traffic roads (primarily old
logging roads) (n = 570 points) and hiking trails (n =
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557 points). We also sampled 50 points along off-road
transects (typically three points per transect, 200 m
between successive points), so that we could quantify
road and trail effects. The location of each point was
determined using a global positioning system (GPS)
with differential correction (GeoExplorer |1, Trimble
Navigation, Sunnyvale, California, USA; Trimble Nav-
igation 1996). Nearly every road or trail in the study
area longer than one kilometer was sampled, but we
avoided sampling parallel roads or trails that were sep-
arated by <200 m. On each road or trail, the first point
was located by pacing enough 50-m increments to sep-
arate the point by 250 m from points on intersecting
roads or trails. Additional points were located by pac-
ing 250 m between successive points until the road or
trail terminated. If the road or trail was very sinuous,
50 m increments (beyond the initial 250 m) were paced
until most or all birds from the previous point were
not audible. (Individuals detected at multiple points
were recorded only once.) Because the roads we sam-
pled varied in the amount of canopy disturbance, we
classified roadside vegetation at each point (see Meth-
ods: Local habitat variables). In preliminary analyses,
we also investigated the importance of road width and
the width of the canopy break (if any) above the road
as explanatory variables of bird abundance. These var-
iables did not qualitatively affect our results and were
omitted from subsequent analyses. Trailsweretypically
<1 m wide without any canopy disturbance caused by
the presence of the trail.

Points were sampled for 10 min using the variable
circular plot method (Reynolds et al. 1980). Counts
were done between sunrise and the hour of 1015 and
were not conducted if it was raining. All males seen
or heard during the sample period were recorded. Fe-
males were recorded only if a conspecific male was not
detected at the point, so that only one bird per potential
breeding pair was recorded. We recorded if each in-
dividual was detected during the first three minutes,
next two minutes, and/or last five minutes of the 10-
min count. For species with similar male and female
vocalizations (e.g., American Crow and Blue Jay; see
Table 1 for scientific names), we only recorded every
other detection. The horizontal distance from the ob-
server to the initial detection location of each individ-
ual was estimated, and subsequent movements were
mapped onto data sheets. To improve distance esti-
mates, a circle with 50-m radius was sited by the ob-
server using a laser range-finder (Yardage Pro 400,
Bushnell, Overland Park, Kansas, USA) prior to each
sample period. Birds flying over the observer were re-
corded without a distance estimate. Individuals de-
tected at adjacent pointswere only recorded at the point
with the lowest distance estimate.

Local habitat variables

We measured local habitat to (1) control for poten-
tially confounding correlations between local and land-
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TaBLE 1. Common and scientific names of 25 study species, species codes, habitat guilds, number of individuals observed

across two samples at 1177 points, and R? values for multiple logistic regression models of singing rates on local and

landscape-scal e habitat variables.

Species Habitat Number

Common name Scientific name code guildt observedt R?§
Acadian Flycatcher]| Empidonax virescens ACFL L 333
American Crow Corvus brachyrhynchos AMCR G 836 0.01
Black-and-white Warbler| Mnioctilta varia BAWW G 677
Black-throated Blue Warbler|| Dendroica caerulescens BTBW L 1313 0.04
Black-throated Green Warbler|| Dendroica virens BTGW L 1016 0.02
Blue-headed Vireq| Vireo solitarius BHVI L 783 0.03
Blue Jay Cyanocitta cristata BLJA G 432 0.04
Canada Warbler|| Wilsonia canadensis CAWA G 178 0.15
Carolina Chickadee Poecile carolinensis CACH G 429
Chestnut-sided Warbl er|| Dendroica pensylvanica CSWA E 677
Dark-eyed Junco Junco hyemalis DEJU G 534 0.03
Eastern Towhee Pipilo erythrophthalmus ETOW E 637
Eastern Wood-Peweg|| Contopus virens EAWP G 155
Hooded Warbler|| Wilsonia citrina HOWA G 1176 0.01
Indigo Bunting| Passerina cyanea INBU E 859 0.01
Northern Paruld)| Parula americana NOPA L 103
Ovenbird|| Seiurus aurocapillus OVEN L 1903 0.02
Red-eyed Vireo| Vireo olivaceus REVI L 2418
Rose-breasted Grosbeak|| Pheucticus ludovicianus RBGR E 160 0.14
Scarlet Tanager|| Piranga olivacea SCTA L 625
Tufted Titmouse Baeol ophus bicolor TUTM G 278
Veery|| Catharus fuscescens VEER G 218
White-breasted Nuthatch Stta carolinensis WBNU L 251
Wood Thrush|| Hylocichla mustelina WOTH L 224 0.04
Worm-eating Warbl er|| Helmitheros vermivorus WEWA G 288

T E, early-successional species; G, generalist; L, late-successional species.

F All detections included for American Crow and Blue Jay; detections =75 m from observer for all other species.

§ ““Max-rescaled” R? in SAS PROC LOGISTIC (Statistical Analysis System 1999) uses the discrete model correction of
Nagelkerke (1991), which allows for a maximum R? of 1. Empty cells indicate that there were no significant variables in the

logistic regression model.
|| Neotropical migrant.

scape variables, and (2) to determinethe rel ativeimpact
of local vs. landscape effects on species abundance.
Vegetation at each point was sampled within a circular
plot of 10-m radius (Table 2). For points located on
roads or trails, the center of the vegetation plot was
moved 10 m off the road or trail into the surrounding
vegetation. Canopy height, defined as the height of the
tallest treein the plot, was measured with alaser range-
finder. Trees were sampled from the center of the plot
with a wedge prism (basal area factor 20) (Avery and
Burkhart 1983), and each tree counted in the prism
(including those outside the 10-m radius plot) was as-
signed to one of two diameter at breast height (dbh)
classes: 0—25 or >25 cm. The percent cover (i.e., per-
centage of ground surface shaded by foliage) of five
vegetation layers (canopy, subcanopy, tall shrub/sap-
ling, low shrub/seedling, and herbaceous) was visually
estimated and assigned to one of 10 cover classes (%):
<0.1, 0.1-1, 1-2, 2-5, 5-10, 10-25, 25-50, 50-75,
75-95, and >95. For the canopy, subcanopy, and tall-
shrub/sapling layers, we calculated the percent cover
of all plant species by multiplying each species’ per-
centage contribution to the layer (visually estimated)
by the midpoint of the layer’s cover class. *‘ Importance
values’ for each species within each plot were then
calculated as follows:

Importance value
= 3 (percent cover in canopy, subcanopy, and
tall-shrub layers)
+ 10(no. stems counted in wedge prism).

The mean of the summed canopy, subcanopy, and tall-
shrub cover class midpoints for all species combined
was 130.9% per point, and the mean number of wedge
prism stems was 4.7. Thus, our importance values are
weighted primarily by foliage cover, and somewhat |ess
so by stems, which sometimes included species poorly
represented by the cover data (e.g., large diameter trees
whose canopies were outside the plot). Moisture values
for each vegetation plot were calculated as a weighted
average of importance values, where the weights were
moisture values assigned to each plant species (gen-
erally following Whittaker [1956]).

To quantify gradients in plant species composition,
vegetation plots were ordinated by nonmetric multi-
dimensional scaling (NMDS) using PC-ORD (version
3.18, MjM Software, Gleneden Beach, Oregon, USA,;
McCune and Mefford 1997). Nonmetric multidimen-
sional scaling uses an iterative algorithm to position
plots in afixed number of dimensions so that the rank
order of distances between all pairs of points in the
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TaBLE 2. Habitat variables used in regression models.

Variable code Variable definition
Local habitat
ELEV Elevation
ELEV? (Elevation)?
MOIST Site moisture value based on weighted average of plant species mois-
ture values. Low values, xeric; high values, mesic
MOIST? (Site moisture value)?
TOPO (4) Topographic position (ravine, flat, slope, or ridge)
EDGE (6) Edge category (sapling/sapling, sapling/pole, sapling/saw, pole/pole,

RD/TR/OFF (3)

pole/saw, or saw/saw)
Point located on road, trail, or off-road
Road bordered by Rubus, other shrub species, or no shrubs

841

Nonmetric multidimensional scaling (NMDS) axis 1: A. rubra and A.

saccharum (negative axis 1 scores) to Q. coccinea (positive scores)

RDVEG (3)

CAN Percent canopy cover

SUBCAN Percent subcanopy cover

TALLSH Percent tall shrub/sapling cover

LOWSH Percent low shrub/seedling cover

HERB Percent herbaceous cover

DBH>25 Number of >25-cm dbh trees in wedge prism sample
MAXHT Height of tallest tree

NMDS1

NMDS2 NMDS axis 2: L. tulipifera (negative axis 2 scores)
NMDS3

NMDS axis 3: T. canadensis and R. maximum (negative axis 3

scores) to Q. prinus (positive scores)

Landscape composition

Shannon diversity index for stand age classes (LCAGE1-5)

LCAGE1 =9-yr-old forest
LCAGE2 10-19-yr-old forest
LCAGE3 20-39-yr-old-forest
LCAGE4 40-69-yr-old forest
LCAGES5 =70-yr-old forest
LCMESIC=40 =40-yr-old mesic hardwood forest
LCHARD Hardwood (mesic and xeric combined)
LCDIV
Landscape pattern
LPCORE Core area: =40-yr-old forest, 100-m buffer
LPCWE Contrast-weighted edge
LPNUMPA Number of patches
LPMSI

all patches

Mean shape index = (patch perimeter)/(\/patch area); averaged for

Notes: For categorical variables, the number of categoriesis given in parentheses. Landscape
variables (both cover and pattern measures) were quantified within square regions at three
different scales (500-m sides = 25 ha, 1-km sides = 100 ha, and 2-km sides = 400 ha) centered

on each sample location.

ordination space corresponds as closely as possible to
the rank order of their species compositional differ-
ences (Minchin 1987, Legendre and Legendre 1998:
444). We used the Bray-Curtis coefficient (Legendre
and Legendre 1998:287), as recommended by Minchin
(1987), to calculate compositional differences between
plots in terms of plant species importance values. We
ran the ordination 10 times to ensure that our results
were not sensitive to the initial random configuration
of the plots (Legendre and L egendre 1998:446). Studies
with simulated plant communities (e.g., Minchin 1987,
Wentworth and Ulrey 2000) have shown that NMDS
consistently recovers known data structures more ef-
fectively than other ordination methods, such as prin-
cipal component and detrended correspondence anal-
ysis, which make unrealistic assumptions about the
shape of plant species response curves along environ-
mental gradients (Minchin 1987). Unlike other ordi-
nation methods, where the percentage of variation ex-

plained by each axis suggests the number of retained
axes, the appropriate number of dimensions for an
NMDS ordination is the number beyond which there
isaminimal decreasein ‘‘stress,” which quantifiesthe
lack of fit between ordination distances and species
compositional differences (Legendre and Legendre
1998:448). In our analysis, the stress sequence was
51.2, 27.3, 21.2, 16.7, and 15.5 as the number of di-
mensions increased from one to five; we selected a
three-dimensional solution. Because NMDS axes are
arbitrary (Legendre and Legendre 1998:445), a vari-
max rotation (Johnson and Wichern 1982:426, Legen-
dre and Legendre 1998:478) was used to help interpret
the ordination axes. The varimax rotation maximizes
the variance of species correlations with the ordination
axes, resulting in groups of species with very high and
very low axis correlations. Plots with positive scores
(positions) along a given axis tend to have high im-
portance values for plant species that are positively
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correlated with that axis. The three rotated NMDS axes
(Table 2), representing gradients in plant species com-
position, were used as explanatory variables in sub-
sequent models of bird relative abundance.

In addition to the above vegetation plot variables,
several additional local variables wererecorded at each
sample point (Table 2): (1) Stands were assigned to one
of three age classes (sapling = 0-10 yr, pole = 10—
40 yr, or saw timber >40 yr) for both sides of the road
or trail, resulting in six different edge categories (sap-
ling/sapling, sapling/pole, sapling/saw, pole/pole, pole/
saw, and saw/saw) that grossly described the habitat
within a >75-m radius of each point. (2) Because
shrubby vegetation growing along roadsides, particu-
larly Rubus spp., provides quality nesting habitat for
some early-successional birds in our study area (J. W.
Lichstein, T. R. Simons, and K. E. Franzreb, unpub-
lished data), roadside vegetation was designated as Ru-
bus, other, or none. (3) The topographic position at each
point was designated as ravine, flat, slope, or ridge. (4)
Elevation was queried from a digital elevation model
(DEM) (Hermann 1996).

Landscape variables

We quantified landscape composition and pattern
surrounding each sample location at three spatial
scales: 25, 100, and 400 ha, corresponding to squares
with sides of 500 m, 1 km, and 2 km, respectively. We
quantified variables that described landscape compo-
sition in terms of stand age and broad community type
(e.g., hardwood vs. pine/mixed), and landscape pattern
in terms of the spatial arrangement of different stand
ages (e.g., edge length and contrast). Previous studies
indicate that these types of variables might be impor-
tant in explaining bird abundance patternsin large man-
aged forests (e.g., McGarigal and McComb 1995, Pen-
hollow and Stauffer 2000). Landscape variables were
calculated from land cover data in the Southern Ap-
palachian Assessment GIS Data Base (Hermann 1996),
which includes polygon coverages of forest stands (dig-
itized from 1:24 000 scale aerial photographs) within
all National Forests in the Southern Appalachian As-
sessment area (SAMAB 1996). Although this GIS da-
tabase was compiled several years prior to our study,
there was almost no logging in our study area during
or several years prior to our fieldwork. The few sample
points that were affected by logging during the study
were excluded from our analysis. We reclassified the
stands in the GIS database into categories appropriate
for our analysis and converted the polygon coverages
into the following raster (grid) coverages (cell size =
10 X 10 m) using ARC/INFO (version 7.2.1; Environ-
mental Systems Research Institute 1998): (1) stand age
(five classes; Table 2); (2) hardwood vs. pine/mixed;
(3) =40-yr-old mesic hardwood; and (4) core area
(=40-yr-old forest located =100 m from younger forest
and =100 m from non-National Forest land). Although
we did not have land cover datafor non-National Forest
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TaBLE 3. Weights used to calculate the landscape variable
‘‘contrast-weighted edge.”

Stand age class (yr)

Stand
age class (yr) 0-10 10-19 20-39 40-69 =70
0-10 0 0.2 0.4 1.0 1.0
10-19 0 0.2 0.7 0.7
20-39 0 0.2 0.3
40-69 0 0
=70 0

Note: Weights define the contrast across an edge between
two different stand age classes.

lands, they tended to be more disturbed (e.g., open
pasture or early-successional forest) than adjacent Na-
tional Forest (J. W. Lichstein and T. R. Simons, per-
sonal observations). We used a large (100-m) buffer
when calculating core area to minimize the correlation
between core area and other landscape variables that
involved =40-yr-old forest. We cut three squareregions
(sides = 500 m, 1 km, and 2 km), centered on each of
the 1177 sample points, from each of the four grids
using ARC/INFO. All landscape variables used in our
analysis were quantified within these squares using
PATCH ANALYST (Elkie et al. 1999), an extension
to ARC/VIEW (version 3.2; Environmental Systems
Research Institute 1999).

We considered landscape composition variables to
be those variables that could be calculated solely from
the proportion of different patch types within each
square, without any information on how the patches
were spatially arranged. We calculated eight compo-
sition variables (Table 2): amount of forest in each of
five stand age classes, amount of hardwood, amount of
=40-yr-old mesic hardwood, and the Shannon Diver-
sity Index (based on the proportions of the five age
classes).

We defined landscape pattern variables to be those
variables that could only be calculated if the spatial
arrangement of patches within each square was known.
We calculated four pattern measures (Table 2), with
patches defined by stand age class: amount of core area,
contrast-weighted edge, number of patches, and mean
shape index (a measure of mean patch boundary com-
plexity). Contrast-weighted edge was calculated by
weighting the length of each edge segment according
to the contrast in stand age across the edge (Table 3).

Detectability

Detectability (the probability that a present bird is
detected) (Buckland et al. 1993) may be confounded
with habitat, obscuring patterns in bird abundance. We
conducted two separate analyses to examine how de-
tectability differed across habitats with respect to (1)
distance between individual birds and the observer, and
(2) individual singing rates, which may vary with pair-
ing status (Best 1981). In the first analysis, we used
program DISTANCE (version 3.5; Thomas et al. 1998)
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to estimate effective detection radii for each bird spe-
ciesin six different types of edge habitat and four dif-
ferent topographic positions (see EDGE and TOPO,
Table 2). Based on field observations, we believe that
these two variables had the greatest impact on detect-
ability with respect to distance. Eliminating all obser-
vations with distance estimates >75 m (including fly-
overs) resulted in similar effective detection radii,
within each bird species, across the six edge and four
topographic classes, indicating that within-species de-
tectability was roughly equal in these different habitats
for birds located =75 m from the observer. We did not
perform this analysis for American Crow and Blue Jay
because most detections for these species were fly-
overs. In all subsequent analyses, we included all de-
tections for American Crow and Blue Jay, and only
detections =75 m from the observer for all other spe-
cies.

To examine how singing rates varied with respect to
habitat, we used datafrom different timeintervalswith-
in the 10-min counts to determine if each individual
was detected during the first five minutes and/or the
last five minutes. (Nearly all detections were aural.)
Each individual was classified as being detected in (1)
only one of the five-minute intervals (relatively low
singing rate), or (2) during both intervals (relatively
high singing rate). We used | ogistic regression (Hosmer
and Lemeshow 1989) to model, for each of the 25
species, the probability that individuals were detected
during both five-minute intervals as a function of the
same local and landscape variables used in bird abun-
dance models. We used stepwise selection in SAS
PROC LOGISTIC (version 8; Statistical Analysis Sys-
tem 1999), with significance levels for variables to en-
ter and stay in models set at « = 0.20 and 0.01, re-
spectively.

Bird relative abundance models

Many of the explanatory variables were correlated
with each other, and some of the variation in bird abun-
dance could be explained by multiple factors. There-
fore, we structured our analysis according to an apriori
ranking of parsimony. Because bird species composi-
tion in our study area sometimes differs substantially
over short distances (<100 m) with changes in local
vegetation (J. W. Lichstein and T. R. Simons, personal
observations), we viewed local habitat to be the most
parsimonious explanation for spatial variation in spe-
cies abundance. After local habitat, we ranked land-
scape composition as the next-most parsimonious ex-
planation for bird abundance, and landscape pattern the
least parsimonious (e.g., Trzcinski et al. 1999). Among
the three landscape scales considered, we viewed the
smallest scale (500 m) to be the most parsimonious
explanation for patterns in bird abundance, and the
largest scale (2 km) to be the least parsimonious. Giv-
ing precedence to local over landscape variables may
seem counterintuitive if one considers habitat selection
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by migratory birds to be a hierarchical process (e.g.,
Hutto 1985), in which individuals select habitats at
broad geographical scales and then at increasingly finer
scales. Therefore, we reanalyzed our data, giving pre-
cedence to landscape variables (see Results), to deter-
mine if our qualitative conclusions were sensitive to
the way we structured the analysis.

We fit modelsfor 25 species, including the 23 species
most frequently present at point counts (within 75 m
of the observer), as well as two common avian nest
predators: American Crow and Blue Jay. Based on field
observations and prior to analysis, we classified the 25
species as early-successional, generalist (with respect
to stand age), or late-successional (Table 1; see Hamel
[1992], Hunter et al. [1993], and Franzreb and Phillips
[1996] for habitat preferences of the species in our
study area). For each species, the response variable was
the square root of the counts summed across the two
samples at each of the 1177 point locations. The square-
root transformation is a natural transformation for
count data, which often have a Poisson distribution
(Sokal and Rohlf 1995). In preliminary analyses, our
results were not qualitatively affected by different
transformations (e.g., logarithmic).

Ordinary least-squares (OLS) models.—We began
by fitting ordinary least-squares (OLS) multiple re-
gression models with only local habitat variables. We
included quadratic terms for elevation and moisture
(Table 2), because we expected some species to have
nonlinear responses to these variables. Variables were
selected using stepwise selection in SAS PROC REG
(Statistical Analysis System 1999). Significance levels
for variables to enter and stay in models were « = 0.20
and 0.01, respectively. Categorical variables were cod-
ed as zero/one dummy variables and were automati-
cally included in preliminary models. After running the
stepwise procedure in PROC REG, we further exam-
ined the models in PROC GLM (Statistical Analysis
System 1999), which accepts categorical variables, and
we removed by hand most variables with P > 0.001.
We used a conservative a level because our large sam-
ple size allowed us to detect habitat effects that ex-
plained only a trivial amount of variation in the bird
data, and because the sample points were not spatially
independent.

Having determined a local habitat model for each
species, we then used stepwise selection to add sets of
landscape variablesin the following order: 500-m com-
position, 500-m pattern, 1-km composition, 1-km pat-
tern, 2-km composition, and 2-km pattern. At each
stage in the analysis, we regressed the next set of var-
iables on all variables previously included in the model
for each species, and we used the residuals from these
regressions as explanatory variables (e.g., McGarigal
and McComb 1995, Trzcinski et al. 1999, Villard et al.
1999) in the stepwise procedure. This partial-regression
approach removes correl ations between successive sets
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of variables, giving precedence to variables previously
included in models.

Based on a priori knowledge of habitat use, we re-
stricted the variable selection process to decrease the
likelihood of observing spurious correlations. For ear-
ly-successional species (Table 1), MAXHT, LCAGES3,
LCAGE4, LCAGE5, LCMESIC=40, and LPCORE
were excluded from the selection procedure. RDVEG
was included only for early-successional species. For
late-successional species (Table 1), LCAGEL, LCA-
GE2, and LCAGE3 were excluded from the selection
procedure. For species that nest and forage primarily
in the sapling, subcanopy, and canopy layers (Black-
throated Green Warbler, Blue-headed Vireo, Carolina
Chickadee, Northern Parula, Red-eyed Vireo, Tufted
Titmouse, Scarlet Tanager, and White-breasted Nut-
hatch), LOWSH and HERB were excluded.

Partial R? values were calculated for four groups of
habitat variables: (1) elevation and elevation squared,
(2) all other local habitat variables combined, (3) all
local variables combined (including elevation and el-
evation squared), and (4) all landscape variables com-
bined. Each partial R? was calculated as the difference
in R? between the full model (which contained all sig-
nificant variables) and a reduced model (which lacked
one of the above groups of variables).

Conditional autoregressive (CAR) models.—To de-
termine if spatial autocorrelation was problematic in
our data, we examined Moran’s | correlograms (Sokal
and Oden 1978a, Legendre and Legendre 1998) of OLS
model residuals. Although spatial pattern in residuals
does not necessarily reflect the pattern in the true errors
(Brownie and Gumpertz 1997), the two patterns should
be very similar for large sample sizes (M. L. Gumpertz,
personal communication; n = 1177 in this study).

For species with autocorrelated OLS residuals, we
fit conditional autoregressive (CAR) models with
Gaussian errors (Haining 1990, Cressie 1993, Lichstein
et al. 2002) using the same response (sguare-root trans-
formed counts) and explanatory variablesasinthe OLS
models. The CAR model assumes that the response at
each location i is a function of both the explanatory
variables at i (which determine the mean response at
i), as well as the values of the response at locations j
within the spatial neighborhood of i. An appropriate
spatial neighborhood size (radius) is the maximum dis-
tance at which OL S residuals are autocorrelated (Cres-
sie 1993). Thisdistance may be estimated by examining
a correlogram or semivariogram of the OLS residuals
(Cressie 1993). For the CAR model, the conditional
expectation (E) of theresponseat i, given the responses
at all other locations j (denoted “[all Y, below), is:

E[Y;]all Yiil =wm +p E w; (Y — wy)
j#i

where p,; is the mean at i (determined by the values of
the explanatory variables and their slope coefficients),
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p is a parameter to be estimated that determines the
sign and magnitude of the spatial neighborhood influ-
ence, the w; are predefined weights that determine the
relative impact of each location j oni (in our analysis,
the w; are zero if j is not within the neighborhood of
i and take on the respective values (1/distance;) oth-
erwise), and the Y, — u,; are mean-centered responses
at j. For positive autocorrelation (p > 0), if i is sur-
rounded by locations j that have higher (or lower) spe-
cies abundance than expected from the habitat at j, then
i will also tend to have higher (or lower) abundance
than expected from the habitat at i.

The significance of each variable in CAR models
was assessed with alikelihood ratio test (LR) for nested
models (Haining 1990, Hilborn and Mangel 1997):

LR = —2(leq — ltu)

where |, and |, are the log-likelihoods of the reduced
and full models, respectively, and LR has an approx-
imate x? distribution. R? values for CAR models were
calculated as follows (Nagelkerke 1991):

R =1 exp[—2/n(l, — 1y)]

where n is the sample size, 1, is the log-likelihood of
the model of interest (i.e., the alternative hypothesis),
and |, isthe log-likelihood of the null model containing
only an intercept (which fits the mean response and
ignores autocorrelation). For OLS models, this R?
yields the identical value as the traditional R2. As with
the OLS models, partial R? values for groups of habitat
variables in the CAR models were calculated as the
difference in R? between the appropriate full and re-
duced CAR models. We calculated partial R? values for
p (i.e., the improvement in model fit due to including
autocorrelation) as the difference between CAR and
OLS model R? values. Finally, we calculated total R?
values for p (i.e., the proportion of variation in the
response that can be explained by autocorrelation
alone), where |, was the log-likelihood of a model con-
taining only an intercept and p. All spatial analyses
were performed with S-PLUS (Kaluzny et al. 1998,
Mathsoft 1999). Detailed instructions for fitting CAR
models and computing correlograms in S-PLUS are
provided in a supplement to Lichstein et al. (2002:
Supplementary Material).

ReEsuLTs
Heterogeneity of sampled landscapes

Despite the high proportion of =40-yr-old forest in
our study area, our sample pointswerelocated in arange
of landscape conditions. Younger (<20-yr-old) forest
comprised =30% of the landscape in 500 X 500 m
squares surrounding 152 points, and =40% of the land-
scape surrounding 73 points (Fig. 2).

Singing rates

Singing rates did not vary with respect to any local
or landscape variables for 12 of the 25 species (Table
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FiGc. 2. Heterogeneity of sampled landscapes in terms of
the percentage of <20-yr-old forest within 500 X 500 m
squares centered on 1177 sample points. Land cover data are
from Hermann (1996).

1). Of the remaining species, only two (Rose-breasted
Grosbeak and Canada Warbler) had model R? values
>5%.

Ordinary least-squares models

Ordinary least-squares (OLS) models accounted for
3-47% of the variation in the counts of the 25 species
considered (Table 4). After controlling for local habitat
variation, 16 species were correlated with at least one
landscape variable in OLS models, with P = 0.001 in
most cases (results not shown). Despite thislarge num-
ber of statistically significant correlations, landscape
variables explained only a small amount of the varia-
tion in the counts after controlling for local habitat
effects, with partial R? values for the combined effect
of landscape composition and pattern ranging 0.5-8%
(Fig. 3). Although OL S total model R? values were low
for many species (Table 4), elevation and other local
habitat variables tended to explain much more of the
variation in the counts than landscape variables (Fig.
3).

Correlograms

With the exception of Carolina Chickadee, correlo-
grams of OLS residuals showed positive spatial auto-
correlation for all 25 species examined, suggesting that
the OL S assumption of independent errors was violated.
The range (maximum lag distance) of autocorrelation
was typically =500 m (19 species), but was >2 km for
Veery (Fig. 4). These distances were used as the neigh-
borhood radii in subsequent conditional autoregressive
(CAR) models, except for the Veery CAR model, in
which a 900-m neighborhood radius performed better
than larger radii in terms of removing positive auto-
correlation in the residuals.

For all 24 species (no CAR model wasfit for Carolina
Chickadee), CAR models removed all, or nearly all, of
the positive autocorrelation in the OLS residuals. For
seven species, CAR models overcompensated for pos-
itive autocorrelation in OLS residuals, resulting in
CAR residuals with mild negative autocorrelation (e.g.,
Eastern Wood-Pewee; Fig. 4), which tends to make
significance tests for explanatory variables conserva-
tive (Haining 1990). Correlograms demonstrating the
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variety of spatial patterns observed in OLS and CAR
residuals are shown in Fig. 4.

Conditional autoregressive (CAR) models

The total amount of variation in the species data
explained by CAR models ranged 6-52% (CAR total
R? values; Table 4), representing improvements of 1—
11% over OLS models (p partial R? values; Table 4).
These improvements in model fit (due to including the
spatial parameter p) were significant for all 24 species
(P = 0.0001 for 23 species; P = 0.0013 for Worm-
eating Warbler). As expected, the parameter estimate
for p was positive for all 24 species. Conditional au-
toregressive models without any habitat variables (i.e.,
models with only two parameters: an intercept and p)
explained 3-26% of the variation in the counts for the
24 species (p total R? values; Table 4). Partial R? values
for p were smaller than the corresponding values for p
total R? because the habitat variables explained some
of the spatial pattern in the species data; thus there was
less autocorrelation to account for when habitat vari-
ables were included in the models.

Aswith OLS models, CAR partial R? valuesfor land-
scape variables tended to be small compared to R? val-
ues for elevation and other local habitat variables (Fig.
3). The largest partial R? value for landscape effectsin
CAR models was 4.5% (Chestnut-sided Warbler; Fig.
3A). Values of R? for all variable types tended to be
lower in CAR models than in OLS models (Fig. 3).
This reduction in R? values is due to the fact that some
of the variation explained by the habitat variables in
the OL S models was spatially structured on afine scale
(hundreds of meters), and this spatial structure was
accounted for by p and the associated spatial neigh-
borhood effect in the CAR models.

Fifteen landscape variables that were significant in
OLS models (P = 0.001 in most cases) were not sig-
nificant (P > 0.01) in CAR models (see bold variables
in Table 4). After controlling for local habitat, 15 spe-
cies were significantly (P = 0.01) correlated with one
or more landscape composition variablesin CAR mod-
els, and, after controlling for local habitat and land-
scape composition, six species were significantly cor-
related with one or more landscape pattern variables
(Table 4). After controlling for habitat effects at finer
scales, 12 specieswere significantly correlated with one
or more 500-m scale landscape variablesin CAR mod-
els, six species were correlated with one or more 1-km
scale landscape variables, and seven species were cor-
related with one or more 2-km scale landscape vari-
ables (Table 4). Among Neotropical migrants, 15 of 18
species were significantly correlated with one or more
landscape variablesin CAR models, whereas only three
of seven residents and short-distance migrants com-
bined were correlated with landscape variables.

Landscape-only models

These CAR models determine landscape effects on
bird relative abundance after controlling for local hab-
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TaBLE 4. Conditional spatial autoregressive (CAR) models for 25 species at 1177 sample points; see Table 1 for species
codes and Table 2 for habitat variables.

Neighbor
Species R?,, radius CAR parameter estimates 500 1 2 Rvia RPoa FRioa
code OoLst (m)* and significance levels LC§8 LP8§8 m§8 km§& km& p| pT CAR#tT
CSWA 0.47 750 EDGE*** (0.66 sapling/sapling + 0.26 X X 0.05 0.25 0.52

sapling/pole + 0.47 sapling/saw +
0.08 pole/saw — 0.11 saw/saw),
RDVEG*** (0.51 Rubus + 0.07 oth-
er), + 0.17 LCAGEL5h*** + 0.17
ELEV*** + 0.08 LCAGE2.5h*** +
0.06 HERB*** + 0.04 LOWSH* +
0.05 LPCWE-2k
ETOW 0.34 300 EDGE*** (0.66 sapling/sapling + 0.42 X X X -~ 001 010 0.35
sapling/pole + 0.51 sapling/saw —
0.07 pole/saw —0.09 saw/saw), +
0.13 LCAGEL5h*** RD/TR/
OFF*** (0.32 road + 0.18 trail), +
0.08 ELEV*** RDVEG** (0.20 Ru-
bus + 0.12 other), + 0.07 LCA-
GE2.5h** — 0.05 SUBCAN* + 0.05
LOWSH* —0.09 LCAGEL1.1k* +
0.06 LCDIV_1k*
BTGW  0.27 400 —0.23 ELEV*** — 0.11 ELEVZ** + X X X 0.04 015 031
0.12 MOIST*** + 0.10 MAXHT***
+ 0.10 LCMESIC=40.5h*** — 0.12
LCAGE5.2k*** + 0.11 LCME-
SIC=40_2k** + 0.06 LCAGE4.5h*
AMCR  0.07 750 —0.08 ELEV** — 0.08 LPCORE_5h** X X X X 0.04 0.08 0.12
+ 0.06 LCAGE3.5h* + 0.07
LCDIV_.1k* — 0.08 LPCORE-1k +
0.07 LPCWE-2k
RBGR  0.15 500 0.08 ELEV*** + 0.06 LCA- X X -~ 006 012 0.21
GE2.5h*** RDVEG*** (0.12 Rubus
— 0.00 other), + 0.04 LCA-
GE1.5h**, EDGE** (—0.05 sapling/
sapling — 0.02 sapling/pole + 0.10
sapling/saw + 0.04 pole/saw — 0.05
saw/saw)
HOWA 0.22 300 RD/TR/OFF*** (0.23 road — 0.07 X X X X 0.03 010 0.24
trail), — 0.12 ELEV*** — 0.09
ELEVZ*** EDGE*** (0.22 sapling/
sapling + 0.13 sapling/pole + 0.30
sapling/saw — 0.10 pole/saw + 0.01
saw/saw), + 0.07 LOWSH** — 0.08
LPCORE.5h** + 0.07 LCME-
SIC=40.5h* + 0.06 LCDIV* + 0.05
TALLSH* + 0.06 LCAGE2_2k*
BTBW  0.36 750 0.35 ELEV*** + 0.18 MAXHT*** — X X -~ 008 026 044
0.11 ELEV#** + 0.11 LCME-
SIC=40.5h*** — 0.08 NMDS3***,
TOPO*** (0.28 ravine + 0.43 flat +
0.09 slope)
EAWP 0.13 500 0.08 ELEV*** + 0.06 MAXHT*** + X X X X 0.02 0.07 0.15
0.05 LCAGE2_1k**, RD/TR/OFF*
(0.16 road + 0.09 trail), + 0.03
LCAGE3.1k* — 0.04 LCHARD_1k*
— 0.03 LPCORE_5h* + 0.03
NMDS3, TOPO (—0.09 ravine —
0.08 flat — 0.01 slope), EDGE (0.18
sapling/sapling + 0.02 sapling/pole
— 0.01 sapling/saw + 0.03 pole/saw
+ 0.02 saw/saw)
REVI 0.16 500 —0.13 ELEVZ*** + 0.09 MAXHT*** X X X 0.05 0.12 0.20
+ 0.09 LPCWE_1k** + 0.12
LPCWE_2k* — 0.06 NMDS1*, RD/
TR/OFF* (—0.04 road — 0.19 trail),
TOPO (—0.12 ravine — 0.06 flat +
0.02 slope)
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Species
code

Neighbor
R radius
OoLst (m)*

CAR parameter estimates 500 1 2
and significance levels LC8 LP8 m8& km§ km§

Rzpanid
pll

2
R total

2
R total

pl CAR#HT

INBU

ACFL

VEER

NOPA

OVEN

BHVI

BLJA

BAWW

CAWA

WOTH

CACH

DEJU

SCTA

TUTM

WEWA

WBNU

0.32 500

0.31 500

0.25 900

0.06 500

0.14 900

0.06 500

0.03 500

0.08 300

0.17 500

0.03 400

0.05 NA

0.20 300

0.04 300

0.05 300

0.11 300

0.04 500

EDGE*** (0.59 sapling/sapling + 0.40 X X
sapling/pole + 0.27 sapling/saw —
0.05 pole/saw — 0.16 saw/saw), +
0.09 HERB***, TOPO*** (—0.26
ravine — 0.23 flat — 0.11 slope),
RDVEG*** (0.24 Rubus + 0.07 oth-
er), + 0.08 LCAGE2.5h*** + 0.08
LCAGE15h** — 0.07 NMDS1**,
RD/TR/OFF** (0.33 road + 0.20
trail), — 0.05 SUBCAN*
TOPO*** (0.31 ravine + 0.41 flat + X X
0.02 slope), — 0.12 ELEV*** —
0.09 NMDS3*** + 0.06
MAXHT*** + 0.05 LCME-
SIC=40.5h** — 0.04 NMDS2** +
0.05 LCAGE4.5h*
0.15 ELEV*** + 0.06 ELEVZ*** — X X X
0.06 LCAGE2_2k* — 0.03 NMDS3*
— 0.04 LCAGE2_1k* + 0.03 LCA-
GE1-2k
0.04 LCAGE4.5h*** — 0.04 ELEV** X X
— 0.03 NMDS3**, RD/TR/OFF
(—0.01 road — 0.06 trail), — 0.02
NMDS2
—0.16 ELEVZ*** + 0.11 CAN*** — X X
0.10 LCHARD_2k*** TOPO**
(—0.26 ravine — 0.20 flat — 0.06
slope), + 0.07 ELEV*
EDGE*** (—0.13 sapling/sapling — X X
0.16 sapling/pole — 0.07 sapling/saw
+ 0.09 pole/saw + 0.17 saw/saw), +
0.09 ELEV*** + 0.05 LPCORE_5h*
— 0.06 LPCWE_2k
—0.06 LCAGE4.2k** — 0.05 MOIST*, X X
EDGE (0.10 sapling/sapling — 0.00
sapling/pole — 0.11 sapling/saw —
0.15 pole/saw — 0.08 saw/saw)
—0.12 ELEV#** TOPO* (0.07 ravine - X X
— 0.04 flat + 0.15 slope), + 0.06
LPCWE_1k* + 0.05 NMDS2*
0.11 ELEV*** — 0.05 NMDS3*** + X X
0.05 ELEVZ*** + 0.04 NMDS1***
—0.04 LCAGE2_2k* + 0.03
LOWSH*, TOPO* (0.12 ravine +
0.02 flat + 0.04 slope)
—0.04 NMDS2** — 0.03 ELEV? —
0.03 MOIST? + 0.03 LCME-
SIC=40.5h
—0.12 ELEV***
0.23 ELEV*** + 0.08 ELEV#** RD/
TR/OFF* (0.09 road — 0.03 trail)
—0.06 ELEV?**, TOPO* (—0.16 ravine
— 0.21 flat — 0.02 slope), RD/TR/
OFF (- road — 0.12 trail)
—0.06 ELEV*** RD/TR/OFF**
(—0.02 road — 0.13 trail), —0.04
CAN* — 0.03 NMDS2*
—0.14 ELEV***, EDGE* (0.06 sap-
ling/sapling + 0.19 sapling/pole +
0.03 sapling/saw + 0.11 pole/saw
—0.00 saw/saw), + 0.03 NMDS2
RD/TR/OFF*** (—0.14 road — 0.24
trail), + 0.05 MAXHT**, TOPO*
(—0.16 ravine — 0.10 flat — 0.06
slope)

0.05

0.04

0.10

0.08

0.08

0.03

0.03

0.02

0.11

0.05

NA

0.01

0.03

0.02

0.01

0.03

0.15

0.13

0.24

0.10

0.13

0.04

0.03

0.04

0.18

0.06

NA

0.07

0.04

0.03

0.04

0.04

0.36

0.35

0.35

0.15

0.22

0.09

0.06

0.10

0.27

0.08

NA

0.21

0.07

0.07

0.12

0.07
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TaBLE 4. Continued.

Notes: Species are listed in decreasing order of landscape partial R? values in CAR models (Fig. 3A). Variables in CAR
models are listed in decreasing order of significance. Equations for CAR parameter estimates and significance levels are
characterized as follows: A single significance level is reported for categorical variables (offset by commas); parameter
estimates for the levels within categorical variables (offset by parentheses) are relative to “‘ridge’” for TOPO, to ‘‘ pole/pole’
for EDGE, to ‘‘off-road’” for RD/TR/OFF, and to ‘‘no shrubs” for RDVEG. The suffixes ‘‘_5h,” “‘_1k,” and ‘‘_2k’’ denote
landscape scales of 500 m, 1 km, and 2 km, respectively. Landscape variables that were significant in ordinary least-squares
(OLS) models (P = 0.001 in most cases), but not significant in CAR models (P > 0.01), appear in bold.

* P = 0.01, **P = 0.001, ***P = 0.0001.

T Reyq OLS” values are overall R? values for ordinary |east-squares models in which correlations between local habitat,
landscape composition, and landscape pattern were successively removed by partial-regression analysis.

T ““Neighbor radius,”” asjudged from correlograms of OLS residuals, is the distance beyond which locations had no effect
on each other in CAR models.

§ The symbol ** X' appears in columns LC, LB, 500 m, 1 km, and 2 km for CAR models with at least one significant
landscape composition, landscape pattern, 500-m scale landscape (composition or pattern), 1-km landscape, and 2-km land-
scape varlable respectively. If no respective significant variable exists, ellipses () appear.

[ RPoartial p ' (partial R? for the spatial parameter p) is the improvement in R? of CAR models over OLS models.

"R p’ values are R? values for CAR models containing only an intercept and p. R? p measures how much variability
in species abundance can be explained by autocorrelation alone, without any habitat variables.

# " R,a CAR” values are R? values for CAR models containing both p and the habitat variables in the equations.

T R CAR = RPy OLS + R%,.44 p; due to rounding errors, numbers in the table do not always fulfill this equality.
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Fic. 3. Partial R? values for (A) all landscape composition and pattern variables combined after controlling for local
habitat, (B) all local variables excluding elevation (ELEV and ELEV?) after controlling for elevation, and (C) elevation after
controlling for other local variables. Landscape variables were regressed on local variables (including elevation) before being
added to bird abundance models. Species are listed in order of decreasing landscape sensitivity, defined as the partial R? for
landscape variables in CAR models. Species codes are as in Table 1.
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Lag distance (km)

Fic. 4. Moran's | correlograms (Sokal and Oden 1978a, Legendre and Legendre 1998) of residuals from ordinary least-
squares (OLS; left) and conditional autoregressive (CAR; right) models for selected species. Moran’s | varies from approx-
imately —1 to 1, with negative and positive values indicating negative and positive autocorrelation, respectively. When there
is no spatial pattern in the data, Moran’s | is close to zero for large sample sizes (n = 1177 here). The lag distance (x-axis)
is the midpoint of the distance class within which all possible pairs of points are used to calculate Moran’s|. All lag distance
classes contained >1000 pairs of points, giving high power to detect values of Moran’s | that were significantly different
from the value expected under the null hypothesis of no spatial autocorrelation (two-sided randomization test, 1000 per-
mutations). Closed circles indicate that Moran’s | is significantly different (P = 0.01) from null expectation. Open circles
indicate that Moran's | is not significantly different from null expectation. Ordinary least-squares residuals for Carolina
Chickadee were not autocorrelated, so a CAR model was not fit.

itat and spatial autocorrelation, and are thus conser-
vative with respect to landscape effects. Therefore, we
fit OLS models with only landscape variables to de-
termine the maximum amount of variation in the bird

data that could be explained by the landscape. For each
species, landscape variables were added in the order
described above (Methods: Bird relative abundance
models: Ordinary least-squares (OLS) models). As be-



850

: :
w i

ACFL g

o
=
<t
w

FiGc. 5.

JEREMY W. LICHSTEIN ET AL.

Ecological Applications
Vol. 12, No. 3

[ Local
B Landscape

<
=
|
=

[ Local partial
B Landscape partial

] | I\ 5 '-H' .[_lyl—l |H .H.
SESSESEZZEES?
OC>Fa@a>ZoxYoS5Saa
z 0 FO02000F 22

Species

(A) R? values for ordinary least-squares (OLS) models containing only local habitat variables (including ELEV

and ELEV?) vs. only landscape variables (landscape composition and pattern combined). (B) R? values for OLS models
showing the partial effect of local variables (after controlling for landscape variation) vs. the partial effect of landscape
variables (after controlling for local variation). Species are listed in order of decreasing landscape effects in conditional
autogressive (CAR) models (Fig. 3A). Species codes are as in Table 1.

fore, each new set of landscape variables was regressed
on previously included landscape variables, and the
residuals were used as explanatory variables.

Values of R? from OL S landscape-only models (Fig.
5A) were higher than landscape partial R? values from
OLS and CAR models that controlled for local habitat
(Fig. 3A). Nevertheless, for most species, R? values
from OLS landscape-only models were considerably
lower than those from OLS models containing only
local variables (Fig. 5A). Of the four species with the
highest landscape-only R? values, three were early-suc-
cessional species (Chestnut-sided Warbler, Eastern To-
whee, and Indigo Bunting) (Fig. 5A).

Partial effect of local variables

Finally, to determine how much of the variation in
bird relative abundance could be explained by local
habitat after controlling for landscape variation, we
added local habitat variables to OLS landscape-only
models using stepwise selection as described above
(Methods: Bird relative abundance models: Ordinary
least-squares (OLS) models). For most species, the par-
tial effect of local variables (after controlling for land-

scape variation) was greater than the partial effect of
landscape variables (after controlling for local varia-
tion; Fig. 5B).

DiscussioN

Landscape effects

Our results suggest that landscape effects are less
important than local factors in determining songbird
species abundance in our primarily mid- to late-suc-
cessional study area. After controlling for local habitat
variation, landscape variables explained only a small
amount of the variation in the species data (Fig. 5B).
In contrast, after controlling for landscape variation,
local variables explained a much greater amount of the
variation in species abundance (Fig. 5B). When local
and landscape variables were considered in isolation
of each other, local variables showed stronger effects
(Fig. BA).

Although landscape effects do not appear to be of
primary importance in our study area, the abundance
of most species was significantly correlated with at
least one landscape variable. Our conditional autore-
gressive (CAR) models were conservative with respect
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to landscape effects. These models only considered the
partial effect of landscape variables after controlling
for local habitat effects and spatial autocorrelation. For
some species, CAR models overcompensated for pos-
itive autocorrelation in ordinary least-squares (OLS)
residuals, resulting in inflated P values (Haining 1990).
However, negative autocorrelation in CAR residuals
was less pronounced than was positive autocorrelation
in OL Sresidual's, and incorporating spaceinto our anal -
ysis improved the models overall. Due to the conser-
vative nature of the analysis, it is doubtful that the
landscape effects we report in CAR models are spu-
rious. Interestingly, Neotropical migrants, which are
thought to be particularly sensitive to forest fragmen-
tation in the eastern United States (Whitcomb et al.
1981), were more frequently correlated with landscape
variables in CAR models (15 of 18 species) than were
short-distance migrants and resident species (three of
seven species). Landscape effects were not limited to
composition effects or to the smallest (500-m) land-
scape scale, but included numerous landscape pattern
and larger scale (1- and 2-km) effects. Nevertheless,
our results suggest that local habitat is more important
than landscape-scale factors in explaining the abun-
dance of most species we considered.

Our results are consistent with other studies in large
managed forests that reported only weak landscape ef-
fects on songbird abundance (Rosenberg and Raphael
1986, Keller and Anderson 1992, Edenius and EImberg
1996, Schmiegelow et al. 1997). In contrast, other stud-
iesin large forests have reported moderate (McGarigal
and McComb 1995, Jokimaki and Huhta 1996, Hagan
et al. 1997, Penhollow and Stauffer 2000) or strong
(Enoksson et al. 1995) landscape effects. Unfortunate-
ly, it isdifficult to determine if the importance of land-
scape effects varied consistently in these studies with
respect to forest cover at landscape or regional scales
because (1) some of the studies mentioned here did not
control for local habitat variation when testing for land-
scape effects, and (2) some of these studies did not
report forest cover data in their study area and/or in
the surrounding region. Nevertheless, there is no ob-
viousdifferencein forest cover at landscape or regional
scal es between studies that reported weak vs. moderate
landscape effects. For example, among studies report-
ing weak landscape effects, mature forest comprised
50—-100% of the sites sampled by Keller and Anderson
(1992) and 45% of the study area in Edenius and EIm-
berg (1996); among studies reporting moderate |and-
scape effects, mature forest comprised 61% of the study
area in Jokimaki and Huhta (1996), 50—-60% in Hagan
et al. (1997), and 66% in Penhollow and Stauffer
(2000). Only one study that we are aware of (Enoksson
et al. 1995) reported strong landscape effects in a for-
ested landscape. Interestingly, the preferred habitat in
that study (deciduous forest) comprised <5% of the
sampled landscapes (Enoksson et al. 1995: Table 1).

In addition to this set of studies, two other studies
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conducted in large managed forests are relevant to the
present investigation. Thompson et al. (1992) com-
pared bird relative abundance between landscapes in
which 20% or 0% of the forest had been recently clear-
cut. After controlling for the amount of older forest,
SiX species were more abundant in cut landscapes, and
one species was more abundant in uncut landscapes.
In a similar study, Welsh and Healy (1993) compared
landscapes in which 35% and 4% of the forest had been
recently cut. Bird diversity and overall abundance were
higher in the more disturbed landscapes. After con-
trolling for the area of older forest, no specieswasmore
abundant in the less disturbed landscapes. Although
these studies did not explicitly test for landscape ef-
fects, both suggest that landscape disturbance had little
or no negative impact on bird abundance, and that dis-
turbance benefited many species, some of which are
considered forest interior breeders (Thompson et al.
1992).

Several studies in large forests that examined land-
scape effects also found positive effects of disturbance
for most species that responded to the landscape (Ro-
senberg and Raphael 1986, McGarigal and McComb
1995; but see Jokimaki and Huhta [1996]). It is im-
portant to point out, however, that it is not necessarily
desirable to manage for maximum species diversity or
abundance at the landscape scale (Welsh and Healy
1993). The availability of different seral stagesin the
surrounding region and the habitat requirements of
landscape-sensitive species should be considered when
making landscape-scale management decisions. In the
southern Appalachians region, for example, early-suc-
cessional forest is more common and | ate-successional
forest is more rare on private compared to public lands
(Southern Appalachian Man and the Biosphere 1996).
Therefore, species dependent on late-successional for-
est should be given special consideration when devis-
ing management plans for public lands in the southern
Appalachians.

In the present study, several late-successional spe-
cies (Black-throated Blue Warbler, Acadian Flycatcher,
Northern Parula, and Blue-headed Vireo) were posi-
tively correlated with the amount of older forest in the
landscape (Table 4), implying a negative effect of land-
scape disturbance. Early-successional species (Chest-
nut-sided Warbler, Eastern Towhee, Rose-breasted
Grosbeak, Indigo Bunting) tended to be most strongly
correlated with the amount of younger forest in the
landscape, implying a positive effect of disturbance.
Red-eyed Vireo (a late-successional species) and
Black-and-white Warbler (a generalist) were positively
correlated with edge density at the landscape scale,
suggesting a preference for heterogeneous landscapes
containing a mix of stand ages (Table 4). To the extent
that landscape effects matter in our study, the species
we considered exhibited diverse landscape responses.
Any management decision will positively affect some
species and adversely affect others (Hagan et al. 1997),



852

and management aimed at particular species should
consider community-wide impacts.

Based on properties of simulated landscapes and a
review of studies investigating patch size and isolation
effects, Andrén (1994) concluded that landscape effects
should arise when the proportion of suitable habitat in
the landscape drops below 10-30%. Above that thresh-
old, species abundances should simply reflect the
amount of available habitat; i.e., local habitat effects
should dominate. However, despite the rarity of early-
successional forest in our study area (=9-yr-old forest
occupies 5% of study area), early-successional birds
did not respond strongly to the amount of early-suc-
cessional forest in the landscape after we controlled
for local habitat (Fig. 3A). Similarly, Rudnicky and
Hunter (1993a) also observed little effect of clearcut
size on the abundance of early-successional bird spe-
cies. In contrast to early-successional forest, mid- to
late-successional forest comprised >80% of our study
area, and this may explain why late-successional spe-
cies responded only weakly to the landscape. Never-
theless, several late-successional species in our study
were significantly correlated with the amount of older
forest in the landscape after we controlled for local
habitat. Other studies conducted in landscapes con-
taining >50% mature forest (e.g., Jokiméki and Huhta
1996, Hagan et al. 1997, Schmiegelow et al. 1997) also
reported negative effects of landscape disturbance on
late-successional songbirds. The above results suggest
that the threshold at which landscape effects arise may
differ for early- and late-successional songbirds, and
that Andrén’s (1994) prediction of a 10—-30% threshold
does not apply to all species. Early-successional spe-
cies may be adapted to locate and utilize small patches
of isolated habitat. In contrast, late-successional spe-
cies may be adapted to breeding in continuous forests
and may be more sensitive to landscape-scale effects.
For both early- and late-successional species, sensitiv-
ity to reductionsin the amount of their preferred habitat
will likely depend on the characteristics of the sur-
rounding landscape matrix (Andrén 1994, Andrén et
al. 1997).

In addition to determining the relative importance of
local vs. landscape effects, another goal of our analysis
was to determine the relative importance of landscape
composition vs. pattern. Among studies conducted in
forested landscapes, McGarigal and McComb (1995)
concluded that landscape composition was more im-
portant than landscape pattern, although a number of
species were significantly correlated with pattern mea-
sures after controlling for the effects of composition.
Hagan et al. (1997) and Penhollow and Stauffer (2000)
also observed a number of correlations with both land-
scape composition and pattern measures, but these au-
thors did not control for correlations between the two
types of variables. Several studies conducted in frag-
mented landscapes have attempted to isolate the effects
of landscape composition and pattern on songbird dis-
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tributions. After controlling for the amount of forest
cover in the landscape, Villard et al. (1999) concluded
that forest fragmentation adversely affected some spe-
cies. However, in a similar analysis, Trzcinski et al.
(1999) concluded that fragmentation had little effect
beyond that explained by forest cover. Based on sim-
ulation studies, Fahrig (1997, 1998) concluded that
fragmentation, independent of habitat loss, would af-
fect population extinction only under a narrow set of
conditions. In the present study, 15 species were sig-
nificantly correlated with landscape composition var-
iables, but only six species were correlated with pattern
measures after controlling for composition. Our results
are in accordance with the above studies: landscape
composition appears to be more important than land-
scape pattern in explaining songbird distributions, but
some species do respond to the spatial arrangement of
patches in the landscape.

Management implications

Our results have important management implica-
tions. Some authors have recommended consolidating
clearcuts into fewer, larger cuts to decrease edge and
heterogeneity in forested landscapes (e.g., King et al.
1996, Hagan et al. 1997). Our results do not support
this recommendation. The weak landscape effects re-
ported in our study and others (Rosenberg and Raphael
1986, Keller and Anderson 1992, Edenius and EImberg
1996, Schmiegelow et al. 1997) suggest that in many
managed forests, songbird species abundances will pri-
marily reflect the total availability of different habitats
and will only weakly reflect how those habitats are
arranged in space. In addition, several studies in for-
ested landscapes (Rosenberg and Raphael 1986,
Thompson et al. 1992, Welsh and Healy 1993, Mc-
Garigal and McComb 1995) reported many positive and
few negative effects of landscape heterogeneity on spe-
cies abundances. Thus, consolidating clearcuts to re-
duce landscape heterogeneity may result in more neg-
ative than positive effects on songbird abundance. In
addition, large clearcuts may be difficult for species
with poor dispersal ability, such as some forest herbs
(Meier et al. 1995, Pearson et al. 1998), to recolonize
following disturbance. In intensively managed land-
scapes with a low proportion of mature forest, it may
be beneficial to consolidate clearcuts to avoid frag-
menting what little mature forest remains. However,
studies of songbird abundance in more heavily forested
landscapes do not support this management strategy.
Evidence regarding the landscape-scal e effects of man-
agement on songbird nesting success in large forests
is conflicted (see Discussion: Limitations) and cur-
rently inadequate to make broad management recom-
mendations. Given the modest landscape effects on
songbird abundance observed in most studies con-
ducted in forested landscapes, and the fact that studies
in both forested and fragmented landscapes have gen-
erally shown landscape composition to be more im-
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portant than landscape pattern, we suggest that man-
agers in heavily forested areas would benefit songbird
conservation most by managing for habitats that are
rare in the surrounding region and acquiring additional
land rather than devoting their resources to construct-
ing particular landscape configurations.

Limitations

Our study has two primary limitations. First, bird
counts may be poor indicators of habitat quality (Van
Horne 1983), particularly in fragmented landscapes
where forest birds typically have low nesting success
(Braun and Robinson 1996). Several studies reported
that clear-cutting does not reduce nesting success in
large managed forests (DeGraaf 1995, Hanski et al.
1996), while other studies found negative effects of
logging (Yahner and Scott 1988, King et al. 1998) or
reported mixed results (Rudnicky and Hunter 1993b).
Nest-monitoring data from our study area indicate that
nesting success is high enough (40-50% nest survival
rate; Mayfield 1975) to sustain viable populations of
the three species for which we have sufficient data
(Black-throated Blue, Chestnut-sided, and Hooded
Warblers; J. W. Lichstein, T. R. Simons, K. C. Weeks,
and K. E. Franzreb, unpublished data). However, we
do not know if nesting success varies across our study
area in relation to landscape characteristics.

Second, there was a large amount of unexplained
variation in our models, and several factors likely con-
tributed to this. Some breeding pairs were probably
undetected, and some of the birds we did detect may
have been nonterritorial floaters or unpaired males.
However, singing rates were very weakly correlated
with local and landscape variablesfor nearly all species
(Table 1), which suggests that pairing success (within
species) was similar throughout our study area (Best
1981, Gibbs and Faaborg 1990). Thus, whileinaccurate
counts of breeding pairs may have introduced noise
into our models of bird abundance, there was probably
no systematic bias in terms of detecting or failing to
detect habitat effects.

Other likely sources of noise in our models concern
our habitat data. Many local variables were measured
within plots of 10-m radius, which may be too small
an area to describe the vegetation in a songbird terri-
tory. In addition, some of our pointswere located along
edges between different-aged stands, but vegetation
plots were located only in the older stand. To com-
pensate for the lack of vegetation data in the younger
stand, we included edge type in our models and as-
sumed that this categorical variable would adequately
describe the relatively simple structure of early-suc-
cessional habitats. While this assumption may not have
been valid, the lack of vegetation datafrom the younger
stands did not seem to strongly affect our results: our
models were generally more successful for early-suc-
cessional than for late-successional species. Neverthe-
less, the limited scale of our local habitat data un-
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doubtedly contributed to the unexplained variation in
our models. Finally, while we could measure |landscape
variables over arange of scales, we had no control over
the quality of the original land cover data, which was
derived from aregional geographic information system
(GIS) database (Hermann 1996). Thus, both local and
landscape data introduced noise into our analysis, but
we do not believe that this noise biased our qualitative
conclusion that local habitat is more important than
landscape effects in our study area.

Statistical considerations

In our analysis, we sought to address two statistical
issues relevant to many studies investigating landscape
effects on species response: (1) correlations between
local and landscape variables, and between landscape
composition and pattern variables; and (2) spatial au-
tocorrelation. Failure to control for local habitat vari-
ation, either in the design or analysis stages, makes it
difficult to evaluate the magnitude of landscape effects
in many published studies. We used partial-regression
analysis to separate local and landscape scale effects,
and to separate the effects of landscape composition
and pattern (e.g., McGarigal and McComb 1995,
Trzcinski et al. 1999, Villard et al. 1999). Because re-
sults from partial-regression analysis depend on the
order in which variables are entered in the model, we
compared models where local variables were entered
first to models where landscape variables were entered
first (Fig. 5). This approach is advisable when a priori
reasoning cannot determine which group of variables
should be given precedence.

We accounted for spatial autocorrelation in our hab-
itat models to reduce the risk of observing spurious
correlations (Haining 1990). Accounting for spatial au-
tocorrelation in large-scale field studies is particularly
important, because true replication at the landscape
scale is expensive and logistically difficult. In this
study, landscape regions centered on adjacent sample
locations overlapped considerably, ensuring that land-
scape variables would be autocorrelated. However,
even nonoverlapping landscape regions will be spa-
tially autocorrelated if land cover isautocorrelated over
a broad spatial scale. Spatial autocorrelation in ex-
planatory variables is not necessarily problematic in
ordinary least-squares (OLS) regression, which as-
sumes independent errors but makes no assumptions
about autocorrelation in the response or explanatory
variables. It is true that the errors will frequently not
be independent if both the response and explanatory
variables are autocorrelated (Gumpertz et al. 1997), but
this is not necessarily the case. When there is a strong
relationship between the response and explanatory var-
iables, all of the spatial pattern in the response may be
explained, and the stochastic variation at each sample
location may be free to vary independently. In our
study, most landscape variables were autocorrelated
out to several kilometers (Lichstein 2000), but corre-
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lograms of OLS residuals suggest that points need be
separated by only 500 m to be considered independent
for most species. Thus, thereisnot adirect relationship
between the spatial independence of response and ex-
planatory variables.

Conspecific attraction (Smith and Peacock 1990)
may have contributed to autocorrelation in our species
data and may also explain what mild landscape effects
we did observe. Conspecifics may cluster spatially, for
example, to increase opportunities for extra-pair cop-
ulations (Ramsay et al. 1999), which are known to be
common in north temperate breeding songbirds
(Stutchbury and Morton 1995). Conspecific attraction,
for whatever reason, is dependent on the spatial dis-
tribution of habitats in the landscape; i.e., territorial
conspecifics cannot aggregate in space if their habitat
is fragmented into isolated patches. Thus, increased
abundance in landscapes with a high proportion of pre-
ferred habitat may be an indirect result of conspecific
attraction. The potential role of conspecific attraction
in determining landscape effects on songbird abun-
dance, and in determining spatial patterns in species
abundance in general, merits increased attention in fu-
ture studies.

In addition to improving habitat models and quan-
tifying spatial patterns in species abundance, the
available tools for analyzing spatial autocorrelation
have implications for the design of field studies. At-
tempts to avoid autocorrelation by placing sample
points far enough apart so as to be independent are
unnecessary and probably often unsuccessful. In our
study, points separated by <500 m were not indepen-
dent for most species. In one extreme case, points
separated by <2.5 km were not independent (Veery;
Fig. 4). If travel time and effort are substantial, the
trade-off between sampling intensively (many samples
per unit area) and extensively (large aerial coverage)
becomes less important. In some studies, it may be
possible to increase sample intensity considerably with
little loss in extent. Increasing sample intensity offers
several advantages: (1) A large number of noninde-
pendent samples, corrected for autocorrelation, prob-
ably provides more statistical power than a smaller
number of independent samples. Although neighboring
samples were not independent in our study, each point
provided some new information (i.e., Moran's | never
approached one, even for adjacent points; Fig. 4). (2)
The fine-scale spatial pattern of species distributions
can be described quantitatively. These patterns might
suggest new hypotheses or aid in designing studies to
test existing hypotheses.

CONCLUSIONS

Landscape structure appears to have only weak ef-
fects on songbird abundance in the primarily mid- to
late-successional National Forests we studied. In con-
trast to these public forests, private lands in the south-
ern Appalachians are under increasing pressure from a
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growing regional human population (Turner et al. 1996,
Wear and Bolstad 1998). Our results are probably not
applicable to private lands, which tend to be more frag-
mented and may therefore be more susceptible to land-
scape-scale impacts.

Although studies in fragmented landscapes have re-
ported strong effects of patch size, patch isolation, or
landscape-scale forest cover (e.g., Ambuel and Temple
1983, Robbins et al. 1989, Trzcinski et al. 1999), most
studies of songbird abundance in forested landscapes
have reported weak or moderate landscape effects.
Some authors have recommended consolidating clear-
cutsin managed forests to decrease edge and landscape
heterogeneity (King et al. 1996, Hagan et al. 1997).
However, the absence of strong landscape effects in
most studies conducted in forested landscapes implies
that these recommendations might be inappropriate.
Additional studiesin landscapes with different amounts
of early-, mid-, and late-successional forest and in dif-
ferent regional settings are needed to better understand
the landscape-scale effects of forest management on
songbird abundance and nesting success.

Important future challenges in conservation include
(1) identifying thresholds in the proportion of preferred
habitat below which strong landscape effects are likely
to occur; (2) determining how these thresholds differ
depending on the species involved and the character-
istics of the surrounding habitat matrix (Andrén et al.
1997); and (3) understanding how the effects of forest
management and other human disturbances at a given
scale interact with land use at broader scales (Flather
and Sauer 1996, Donovan et al. 1997).
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