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abstract: We use a two-species model of plant competition to
explore the effect of intraspecific variation on community dynamics.
The competitive ability (“performance”) of each individual is as-
signed by an independent random draw from a species-specific prob-
ability distribution. If the density of individuals competing for open
space is high (e.g., because fecundity is high), species with high
maximum (or large variance in) performance are favored, while if
density is low, species with high typical (e.g., mean) performance are
favored. If there is an interspecific mean-variance performance trade-
off, stable coexistence can occur across a limited range of interme-
diate densities, but the stabilizing effect of this trade-off appears to
be weak. In the absence of this trade-off, one species is superior. In
this case, intraspecific variation can blur interspecific differences (i.e.,
shift the dynamics toward what would be expected in the neutral
case), but the strength of this effect diminishes as competitor density
increases. If density is sufficiently high, the inferior species is driven
to extinction just as rapidly as in the case where there is no overlap
in performance between species. Intraspecific variation can facilitate
coexistence, but this may be relatively unimportant in maintaining
diversity in most real communities.

Keywords: coexistence, competition, drift, individual variation, neu-
tral theory, trade-off.

The importance of niche differences in promoting species
coexistence has played a central role in ecological theory
(MacArthur and Levins 1967; Levin 1970; MacArthur
1972; Tilman 1982, 1988; Chesson 2000). Niche differences
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can often be formulated in terms of interspecific trade-
offs in the ability to exploit different environments or
resources (MacArthur 1972; Tilman 1982), in the suscep-
tibility to different predators or pathogens (Janzen 1970;
Connell 1971), or between different aspects of perfor-
mance, such as competitive and colonizing abilities (Skel-
lam 1951; Levins and Culver 1971; Horn and MacArthur
1972; Hastings 1980; Tilman 1994). An alternative expla-
nation for species coexistence is provided by neutral the-
ory, which has demonstrated that diversity can be main-
tained by immigration or speciation in stochastic models
in which all individuals are ecologically equivalent, so that
species abundances are subject to neutral drift (Hubbell
1997, 2001; Chave 2004).

Inferences about the importance of different trade-offs
in structuring community dynamics are often based on
interspecific comparisons of key aspects of individual per-
formance, such as growth and mortality (Horn 1971; Baz-
zaz 1979; Kitajima 1994; Pacala et al. 1994; Lusk and Smith
1998; Kobe 1999; Davies 2001). These comparisons are
typically based on species means and treat intraspecific
variation as noise (Clark et al. 2003). However, rather than
sampling errors, intraspecific variation (fig. 1) may reflect
important individual-level differences due, for example, to
adaptive genetic variation (Williams 1975) or variable (and
possibly unmeasurable) features of the environment (Clark
et al. 2003). Regardless of its underlying cause, intraspecific
variation might in some cases overwhelm interspecific dif-
ferences along a given niche axis (Clark et al. 2003). Hub-
bell (2005) suggests that broad interspecific overlap in per-
formance (fig. 1B) could lead to neutral community
dynamics, whereas Clark et al. (2003) argue that such over-
lap might render interspecific differences along a given
trade-off axis “too weak to matter” (p. 29), so that ad-
ditional trade-offs are required for coexistence. While these
interpretations differ, both view intraspecific variation as
a force that blurs interspecific differences.

The notion that intraspecific variation could blur in-
terspecific differences is intuitively appealing, but how
strong is the effect? Consider a simplistic example where
seeds of two plant species (call them “species 1” and “spe-
cies 2”) disperse into an open site that is the size of a
single adult. Assume that individual seeds vary along a
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Figure 1: A, Gaussian distributions of individual performance for two species with a mean-variance trade-off. Species 2 has the higher mean
performance but the lower variance. B, Gaussian distributions of individual performance for a superior and an inferior species. Both species have
the same variance; species 2’s mean performance is 0.5 standard deviations higher than species 1’s.

single performance axis (from weak to strong competitors)
and that the site is captured by the single best-performing
seed that arrives. Furthermore, assume that species 2 has
the higher mean seed quality (i.e., higher mean individual
performance) but that the two species’ probability distri-
butions of individual performance are otherwise identical.
The probability that species 2 wins the site depends on
the amount of intraspecific variation relative to the mean
interspecific difference and also on the number of arriving
seeds of each species (app. A in the online edition of the
American Naturalist). If both species have n arriving seeds,
then, for a given n, the probability that species 2 wins the
site decreases (to a minimum of 1/2) as intraspecific var-
iation increases (fig. 2). Alternatively, for a given level of
intraspecific variation, the probability that species 2 wins
the site increases with n. If n is sufficiently large, then
species 2 is nearly assured of winning the site, regardless
of the level of intraspecific variation (fig. 2).

The preceding example suggests that we should be cau-
tious in attempting to infer community dynamics from
distributions of individual performance alone. The ex-
ample supports the claim that intraspecific variation can
blur interspecific differences but also demonstrates that
the strength of the effect depends on the density of com-
petitors.

In this article, we use a two-species model of plant
competition to explore the effect of intraspecific variation
on community dynamics. The model builds on the ex-
ample above but allows for stochasticity in seed rain and
focuses on landscape-scale (rather than single-site) dy-
namics. Throughout, we assume that variation in perfor-
mance reflects fixed, nonheritable properties of individ-
uals. (In “Discussion,” we outline special conditions under
which environmentally induced variation may be treated
as if it were due to properties of individuals.) Like the

example above, the model exhibits a range of behaviors,
depending on the density of individuals competing for
open space. If there is an interspecific mean-variance
trade-off in individual performance (fig. 1A), then high
competitor density favors the high-variance species, low
density favors the high-mean species, and intermediate
density leads to stable coexistence. In the absence of this
trade-off, one species is superior (fig. 1B). In this case, the
dynamics shift toward what would be expected in the neu-
tral case as intraspecific variation increases and/or as com-
petitor density decreases. For any competitor density, if
intraspecific variation is sufficiently high, then the com-
petitive dynamics between a superior and an inferior spe-
cies are nearly neutral. Alternatively, for any level of in-
traspecific variation, if competitor density is sufficiently
high, the inferior species goes extinct rapidly relative to
the neutral case.

A Plant Competition Model with Intraspecific Variation

We seek a minimally complex model that allows us to
explore the interacting effects of intraspecific variation and
competitor density on community dynamics. Consider a
landscape comprised of a number of identical sites that
are either vacant or occupied by one adult. Assume that
all adults are identical, so that individual variation is ex-
pressed only in juveniles, which vary along a single per-
formance axis (from weak to strong competitors). Each
juvenile is assigned a performance value by an independent
random draw from a species-specific probability distri-
bution (fig. 1). Because we consider only two life stages
(juvenile and adult), all aspects of juvenile performance
(germination, growth, and survival) are subsumed by a
single index, which we refer to as “seed quality.” We con-



Intraspecific Variation and Species Coexistence 809

Figure 2: The probability that an open site is won by the superior of
two species increases with the number of juveniles per species that com-
pete for the site (n) and with the mean interspecific performance dif-
ference (d). In this example, the amount of intraspecific variation relative
to the mean interspecific difference decreases linearly with d, which is
scaled so that represents the case where both species have the samed p 0
performance distribution and the case where the inferior species’d p 1
maximum performance is equal to the superior species’ minimum per-
formance (i.e., no interspecific overlap). The site winner is the single
juvenile with the highest performance among 2n random draws (n draws
from each species’ distribution). For any , if n is sufficiently large,d 1 0
then the superior species is likely to win the site. For analytical tractability,
both species are assumed to have uniform performance distributions with
equal variance. The lower panels show examples of performance distri-
butions for two values of d.

Figure 3: Equilibrium total adult density, , approaches 1 (all sites oc-X̂
cupied) if fecundity b (seeds per adult) is high relative to adult mortality
m. Conversely, as (app. B in the online edition of the Amer-X̂ r 0 b r m

ican Naturalist). We calculated by numerically solving equation (1) forX̂
total plant density, , whereX { � x p (1 � m)X � [1 � (1 � m)X]Wjj

is the probability that at least one seed, of any species,�bXW p 1 � e
arrives at an open site, assuming Poisson seed rain.

sider seed quality to be a fixed property of an individual
until it dies or becomes an adult.

Each year, each adult produces b seeds and has prob-
ability m of dying. The total number of seeds produced
each year by species i is bxiN, where xi is the proportion
of sites occupied by species i adults and N is the total
number of sites in the landscape. For large N and assuming
random dispersal, the distribution of seed rain (number
of seeds landing on a site) is Poisson, with mean bxi. Here-
after, we assume Poisson seed rain unless stated otherwise.
Of the seeds arriving at an open site in a given year, assume
that only the best one survives and that it immediately
becomes an adult; seeds landing on occupied sites die. In
the large-N limit, the stochastic model can be summarized
by the following deterministic difference equation:

x p (1 � m)x � 1 � (1 � m) x W , (1)�i, t�1 i, t j, t i, t[ ]
j

where xi, t and are the proportion of sites occupiedxi, t�1

by, or the “adult density” of, species i at years t and t �
, respectively; the term in brackets is the proportion of1

sites open for colonization; and Wi, t is the probability that
species i wins an open site, which depends on b, xj, t, and
the species-specific seed quality distributions. Hereafter,
we omit the subscript “t” except when needed for clarity.
Total adult density, , has a globally stable equi-X p � xjj

librium, , with if (app. B in the online editionˆ ˆX X 1 0 b 1 m

of the American Naturalist; fig. 3). With Poisson seed rain,
. The model just described can accom-�bX� W p 1 � ejj

modate any number of species, but in this article, we re-
strict our attention to the two-species case.

Analytical Results

For some special cases, we have obtained analytical results
for the behavior of the stochastic model, which becomes
deterministic in the large-N limit (eq. [1]). In the following
section, we compare these analytical results to stochastic
simulations of the model, where we are not restricted to
special cases. We first present a general invasion criterion:
to invade when rare, species i must have a higher per capita
probability of winning an open site than the resident j
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(app. C in the online edition of the American Naturalist):

˜ ˆW Wi j
1 . (2)

˜ ˆx xi j

Hereafter, we use the tilde (∼) and the hat () to referˆ
to invading and equilibrium populations, respectively. We
can gain insight into the model’s behavior by considering
the high and low mean seed rain limits, where mean seed
rain, , is the expected total number of seeds arriving atˆbX
an open site (i.e., the density of individuals competing for
open space). Mean seed rain increases with fecundity, b,
both directly and through the effect of b on (fig. 3).X̂

We first examine the high–seed rain case. Let c be seed
quality (or seed “competitive ability”) and f(c) be a prob-
ability density function (PDF). In appendix C, we show
that for sufficiently high mean seed rain, species i is dom-
inant (i.e., it can invade but cannot be invaded by species
j) if there is some seed quality, c ′, beyond which f (c) ≥i

, with strict inequality for at least some open set onf (c)j

. Loosely translated, this means that high seed rain′c 1 c
favors the species with the higher maximum possible seed
quality, or, if the seed quality distributions are unbounded
(e.g., Gaussian), the species whose PDF has the fatter right
tail (e.g., species 1 in fig. 1A). The conditions for species
i’s dominance hold for uniform PDFs if species i has the
higher maximum seed quality and for Gaussian PDFs if
species i has the higher variance. If the PDFs have the
same shape and variance but different means, the con-
ditions hold if species i has the higher mean (e.g., species
2 in figs. 1B, 2).

Next, consider the case where mean seed rain, , isˆbX
low enough that nearly all open sites receive zero, one, or
two seeds. In this case, the condition for species i’s dom-
inance is that the probability that a single species i seed
beats a single species j seed is greater than 1/2 (app. C).
For probability distributions that are uniform or sym-
metric and unimodal (e.g., Gaussian), this condition is
satisfied if and only if the mean seed quality of species i
is greater than that of species j (app. C). More generally,
species i will dominate at low seed rain if it has the higher
typical seed quality, where the precise definition of “typ-
ical” will depend on the shapes of the seed quality dis-
tributions.

The above results imply that if there is an interspecific
mean-maximum (or mean-variance) seed quality trade-
off (fig. 1A), then the species with the higher mean dom-
inates at low seed rain, while the species with the higher
maximum (or variance) dominates at high seed rain. In
appendix D in the online edition of the American Natu-
ralist, we show that this trade-off leads to stable coexistence

at intermediate seed rain. Our coexistence proof involves
demonstrating negative frequency dependence, but we do
not yet have an intuitive explanation for why the frequency
dependence occurs. A special case of our model is anal-
ogous to a competition-colonization trade-off, which pro-
vides a partial explanation for coexistence (app. D).

Finally, we note that if there is no interspecific mean-
maximum (or mean-variance) seed quality trade-off and
if the seed quality distributions are symmetric and of the
same shape (e.g., both are Gaussian), then one species is
dominant (it can invade but cannot be invaded by the
competing species) for positive mean seed rain, ˆbX 1 0
(app. E in the online edition of the American Naturalist).

Probability of Winning an Open Site

To study the model in more detail, we require expressions
for Wi, the probability that species i wins an open site. In
a two-species system, we have

∗ ∗W p P(n 1 0, n 1 0, c 1 c ) � P(n 1 0, n p 0)i i j i j i j

∗ �bx �bxi jp W � (1 � e )e , (3)i

where ni is the number of species i seeds arriving at an
open site and is the quality of species i’s best seed∗ci

arriving at an open site. The second term in equation (3)
is the probability that species i wins by default under Pois-
son seed rain. The first term is the probability that seeds
of both species are present and that species i wins,

� � �bx n �bx ni i j je (bx ) e (bx )i j∗W p � �i [ n ! n !n p1 n p1i j i j

� ci

n �1 n �1i j# n f (c )[F(c )] n f (c )[F (c )] dc dc ,� i i i i i � j j j j j j i]
�� ��

(4)

where fi(c) is the PDF for species i’s seed quality and Fi(c)
is the cumulative density function, that is, the probability
that a seed’s quality is less than c. Terms of the form

are the probability densities that a species’n�1nf(c)[F(c)]
best seed at an open site has quality c. To see this, note
that seeds all have quality lower than c with prob-n � 1
ability and that there are n ways for this to happen.n�1[F(c)]
The double integral is the probability that species i wins
an open site, given particular values of Poisson seed rain
ni and nj, which are summed over all values greater than
0.

There is no closed-form expression for F(c) for most
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Figure 4: A, Uniform probability density functions of seed quality with a mean-maximum trade-off: , , , andmin max min maxc p 0 c p 1 c p 0.5 c p1 1 2 2

. B, Analytical results (assuming an infinite landscape) for the performance distributions in A: dominance of species 2 at low mean seed rain,0.9
dominance of species 1 at high mean seed rain, and coexistence at intermediate seed rain. Species i can invade if (eq. [G1]), with coinvasionR̃ 1 1i

occurring where both curves are above the dotted line. C, Combinations of mean seed rain and species 2 mean seed quality, , leading to dominancec̄2

of species 1 (with and ), coexistence, or dominance of species 2 (with ). The seed rain coexistence region expandsmin max max minc p 0 c p 1 c � c p 0.41 1 2 2

as increases (note logarithmic Y-axis). The example in A and B corresponds to in C.¯ ¯c c p 0.72 2

common continuous probability distributions, preclud-
ing a closed form for Wi. However, for the special case
of uniformly distributed seed quality, we have f(c) p

and . We nowmax min min max min1/(c � c ) F(c) p (c � c )/(c � c )
consider two scenarios of competition between species with
uniform seed quality distributions, relying on closed forms
for Wi (app. F in the online edition of the American Nat-
uralist). In the first scenario, there is an interspecific mean-
maximum performance trade-off. We illustrate the general
results presented above that low seed rain favors the species
with the higher mean performance, high seed rain favors
the species with the higher maximum, and coexistence
occurs at intermediate seed rain. In the second scenario,
we consider competition between a superior and an in-
ferior species, and we focus on how the extinction rate of
the inferior species depends on mean seed rain (i.e., com-
petitor density) and on the level of intraspecific variation.

Uniform Seed Quality Distributions with
a Mean-Maximum Trade-Off

Figure 4A shows an example of species with a mean-max-
imum seed quality trade-off, where species 1 has the higher
maximum and species 2 has the higher mean. To examine
invasion success as a function of mean seed rain, we rewrite
the invasion criterion (eq. [2]) as

˜ ˜W /xi iR̃ { 1 1. (5)i ˆ ˆW /xj j

Using the closed forms for Wi (app. F), we can obtain
closed forms for (app. G in the online edition of theR̃i

American Naturalist) and determine the mean seed rain
values that allow species 1 and 2 to invade (fig. 4B). Species
2 can invade but cannot be invaded by species 1 at low
seed rain. At high seed rain, the converse is true, and at
intermediate seed rain, both species can invade a resident
population of the other species (fig. 4B; app. D).

Figure 4C shows combinations of mean seed rain and
species 2’s mean seed quality, , leading to dominance ofc̄2

either species or to coexistence. The range of mean seed
rain values resulting in coexistence expands as increasesc̄2

(fig. 4C; note logarithmic Y-axis) and as species 2’s seed
quality range, , decreases (results not shown).max minc � c2 2

Uniform Seed Quality Distributions with
a Superior and an Inferior Species

If species 2 has both the higher mean and the higher
maximum seed quality, then it can invade but cannot be
invaded by species 1 for positive mean seed rain, ˆbX 1 0
(app. E). In this case, the interesting question is how fast
species 1 is driven to extinction. If we perturb the system
from the stable equilibrium, , then theˆˆ ˆ(x , x ) p (0, X)1 2

timescale of extinction of species 1 is determined by the
eigenvalues of the stability matrix (May 1974).

At the high–seed rain limit (or, equivalently, the high-
fecundity limit), the eigenvalues for the present case (su-
perior and inferior species with uniform seed quality dis-
tributions) are and 0; that is, species 1’s extinction1 � m

rate depends only on the adult mortality rate because spe-
cies 2 wins all open sites. This result holds as long as species
2 has the higher maximum seed quality; if mean seed rain
is high enough, then regardless of the level of intraspe-
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Figure 5: The effective advantage of the superior species increases as
fecundity, b (seeds per adult), increases and intraspecific variation de-
creases. Species 1 and 2 have uniform seed quality distributions with
equal variance; a2 is species 2’s mean seed quality advantage in standard
deviation units. Larger values of a2 reflect lower levels of intraspecific
variation relative to the mean interspecific difference; the performance
distributions are nonoverlapping if . A, At high fecundity, species1/2a 1 122

1’s extinction rate, which depends on the dominant eigenvalue (l∗) of
the stability matrix at the equilibrium , is independentˆˆ ˆ(x , x ) p (0, X)1 2

of and is limited only by the adult mortality rate: ∗a 1 0 lim l p2 br�

, with in this example. In contrast, the system is neutral1 � m m p 0.01
to first order at the low-fecundity limit: . B, Extinction time∗lim l p 1brm

(one time steps) in deterministic simulations of equa-generation p 1/m
tion (1) in a landscape of sites (extinction was considered toN p 1,000
occur if the proportion of sites occupied by species 1 fell below ).N/2
As fecundity increases from , where both species are drivenb p m p 0.01
to extinction, species 1’s extinction time first increases (because b is low
enough for the dynamics to be nearly neutral yet high enough for per-
sistence of species 2) and then decreases as species 2’s effective advantage
increases. The inset expands the region of the plot near .b p m

cific variation, any advantage in maximum seed quality
translates into a large effective advantage (fig. 5A). This
population-level result, where seed rain is a Poisson ran-
dom variable, mirrors our previous result for a single open
site where we ignored stochasticity in seed rain (fig. 2).

At the low–seed rain limit (or, equivalently, the low-
fecundity limit), both eigenvalues are 1; that is, the system
is neutral to first order, regardless of the seed quality pa-
rameters (fig. 5A), because seeds of both species rarely co-
occur at open sites. Note that neither species can persist
at this limit, because as (fig. 3; app. B). ButX̂ r 0 b r m

as long as mean seed rain is not too close to 0 (i.e., b not
too close to m), coexistence time should increase as mean
seed rain decreases and the dynamics become more nearly
neutral (fig. 5B).

Stochastic Simulations

To determine the sensitivity of our analytical results to
demographic stochasticity and the shape of the seed quality
distributions, we ran stochastic simulations with uniform
and Gaussian seed quality distributions. Each combination
of landscape size (100 or 1,000 sites), adult mortality rate
( or 0.1), fecundity (see below), and seed qualitym p 0.01
parameters (see below) was simulated 1,000 times. In all
cases, results for and 0.1 were qualitatively sim-m p 0.01
ilar, and we report results only for . At the be-m p 0.01
ginning of each simulation, each species occupied half of
the sites. Each year (time step) consisted of mortality fol-
lowed by colonization. Mortality was implemented by con-
verting each occupied site to an open site with probability
m. Colonization was implemented as follows: for each spe-
cies at each open site, the number of arriving seeds was
a random draw from a Poisson distribution with mean
bxi, where xi is the proportion of sites that species i oc-
cupied before mortality. The quality of each seed was a
random draw from a species-specific probability distri-
bution. Open sites were immediately converted to occu-
pied sites of the species with the highest seed quality pres-
ent or remained open if no seeds arrived.

We simulated scenarios with a mean-variance trade-off
and scenarios with a superior and an inferior species (same
variance, different means). In the former scenarios, we
considered coexistence to occur if both species persisted
for 1,000 generations, where a generation is defined as

years. Simulations with a superior and an inferior1/m
species were run until one species went extinct.

Species with a Mean-Variance Seed Quality Trade-Off

For the uniform seed quality distributions in figure 4A,
our analytical results (eq. [G1] in the online edition of the
American Naturalist) predict coinvasion for ˆ5.9 ! bX !

, exclusion of species 1 below this range, and exclusion8.9
of species 2 above this range (fig. 4B). We tested these
predictions (which assume an infinite landscape) with sto-
chastic simulations by varying fecundity, b, from 5 to 10
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Figure 6: Stochastic simulation results agree with the analytical predictions of dominance of species 2 (higher mean seed quality) at low fecundity,
dominance of species 1 (higher maximum, or variance in, seed quality) at high fecundity, and coexistence at intermediate fecundity; demographic
stochasticity prevents coexistence in small landscapes (100 sites). A, B, Stochastic simulations for uniform distributions shown in figure 4A. Coexistence
occurs across most of the analytically predicted seed rain range (fig. 4B) in the larger landscapes (1,000 sites). Expected abundance was calculated
by numerically solving equation (1) (using the closed forms in app. F in the online edition of the American Naturalist) for equilibrium adult densities
and then multiplying these by the number of sites. C, D, Simulations for the Gaussian distributions shown in figure 1A, with , ,2c̄ p 0 j p 11 1

, and . Mortality rate, m, is 0.01 for all panels; results were similar for . Fecundity (b; seeds per adult) and mean seed rain2c̄ p 0.5 j p 0.25 m p 0.12 2

( ; seeds per open site) are approximately equal in these simulations because (fig. 3).ˆ ˆbX X ≈ 1

in increments of 0.5. For these combinations of b and m

(0.01 or 0.1), (fig. 3), so predictions for canˆ ˆX 1 0.999 bX
be evaluated by varying b. Coexistence rarely occurred in
landscapes of 100 sites, where demographic stochasticity
should be important, although the relative performance
of the two species was consistent with the analytical pre-
dictions; that is, the species with the higher mean seed
quality dominated at low b, and the species with the higher
maximum dominated at high b (fig. 6A). In landscapes of
1,000 sites, coexistence occurred across most of the ana-
lytically predicted fecundity range (fig. 6B). To aid in
interpreting the simulation results, we calculated the ex-
pected equilibrium density, , of each species by numer-x̂
ically solving for the equilibria to equation (1) using equa-
tions (F4) and (F5) in the online edition of the American
Naturalist. Coexistence tended to occur when expected
abundance ( times the number of sites) was relativelyx̂
high for both species (fig. 6B).

To examine the behavior of the model with Gaussian
seed quality distributions, we set , ,2¯ ¯c p 0 j p 1 c p1 1 2

, and , as in figure 1A. The analytical results20.5 j p 0.252

were borne out: species 2 (higher mean seed quality) was
dominant at low b, species 1 (higher variance) was dom-
inant at high b, and coexistence occurred for intermediate
b in the larger landscapes (fig. 6C, 6D).

Superior and Inferior Species

For systems with uniform or Gaussian seed quality dis-
tributions, we examined cases where both species had the
same variance but species 2’s mean was higher by a2 stan-
dard deviations. Smaller values of a2 correspond to higher
levels of intraspecific variation relative to the mean inter-
specific difference. We used stochastic simulations to de-
termine how the proportion of contests won by species 2
and the mean extinction time depend on landscape size
(100 or 1,000 sites), mortality rate ( or 0.1), fe-m p 0.01
cundity ( , 0.1, 1, 10, 100, or 1,000 seeds perb p 0.01
adult), and species 2’s mean advantage ( , 0.001,a p 02

0.01, 0.1, 1, or 10 standard deviations). Results for both
landscape sizes were qualitatively similar; results for only
the larger landscapes are presented.
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Figure 7: Stochastic simulations with both uniform (A, C) and Gaussian (B, D) seed quality distributions show that the tendency for species 1 (the
inferior species) to be rapidly excluded increases with fecundity. Species 2’s mean seed quality is higher than species 1’s mean by a2 standard
deviations; both species have the same variance. For a given mean difference, increasing the amount of intraspecific variation leads to broader overlap
in the performance distributions (smaller a2) and shifts the dynamics toward the neutral case ( ). However, for any , if fecundity isa p 0 a 1 02 2

sufficiently high, then species 1 is driven to extinction just as rapidly as in the case where there is no interspecific overlap in performance (uniform
case with ). For all panels, mortality rate is , and landscape size is sites; results were qualitatively similar for the foura p 10 m p 0.01 N p 1,0002

cases with or 0.01 and or 1,000. Fecundity (b; seeds per adult) and mean seed rain ( ; seeds per open site) are roughly equalˆm p 0.1 N p 100 bX
for and (fig. 3).b ≥ 1 m ≤ 0.1

As expected, each species won about half of the neutral
contests ( ), regardless of landscape size or the shapea p 02

of the seed quality distributions (fig. 7A, 7B). For neutral
contests, mean extinction time was shortest at the lowest
fecundity ( ) and rose quickly to an asymptote withb p m

increasing b (fig. 7C, 7D). This pattern follows from the
relationship between equilibrium total adult density, ,X̂
and b: both species are driven to extinction ( ) asX̂ r 0

(app. B), and rises quickly to its asymptotic valueˆb r m X
of 1 with increasing b (fig. 3).

Our analytical results for the model with uniform dis-
tributions predict that for , the dynamics should bea 1 02

independent of a2 for b near m and for high b (fig. 5). For
b near m, the dynamics should be nearly neutral for any
a2, with both species driven to extinction if . Inb p m

contrast, for sufficiently high b, species 1 (with the lower
mean seed quality) should be rapidly excluded relative to
the neutral case, regardless of the level of intraspecific
variation (fig. 5).

As predicted, the simulated dynamics appeared neutral
for all a2 at the lowest fecundity ( ) for both uni-b p m

form and Gaussian cases. For a given , the dynam-a 1 02

ics became increasingly nonneutral as b increased, but
the transition from neutral dynamics to dominance of
species 2 with increasing b was slower in the Gaussian
than in the uniform cases (fig. 7). The prediction that
the dynamics should be independent of at higha 1 02

b, with species 1 being rapidly excluded, was clearly borne
out in the simulations with uniform distributions (fig.
7A, 7C). In the simulations with Gaussian distributions
(fig. 7B, 7D), the increasingly nonneutral dynamics with
increasing b suggest that the same result (i.e., dynamics
independent of a2 for ) would be obtained fora 1 02

sufficiently high b.

Discussion

In this article, we have examined a two-species model of
plant competition in which each individual’s performance
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is assigned by an independent random draw from a
species-specific probability distribution and open space is
captured by the best-performing individual arriving at a
site. Under these conditions, high density of individuals
competing for open space favors the species with the
higher maximum (or larger variance in) performance, low
density favors the species with the higher typical (e.g.,
mean) performance, and intermediate density promotes
stable coexistence if there is an interspecific mean-maxi-
mum (or mean-variance) trade-off (fig. 1A). In the ab-
sence of trade-offs, one species is superior (fig. 1B). In this
case, intraspecific variation shifts the dynamics toward
what would be expected in the neutral case, but the
strength of this effect diminishes as the density of indi-
viduals competing for open space increases. For any level
of intraspecific variation, if competitor density is suffi-
ciently high, then the inferior species will go extinct just
as rapidly as in the case where there is no overlap in
performance (i.e., the case in which all individuals of the
superior species outperform all individuals of the inferior
species). These results demonstrate that a given set of per-
formance distributions can lead to qualitatively different
community dynamics, depending on competitor density.
Therefore, we should be cautious in attempting to infer
dynamics from performance distributions alone.

Because competitor density has a strong effect on the
dynamics of our model, it is desirable to know how these
densities compare to those in real communities. Unfor-
tunately, it is difficult to connect models as simple as ours
to the real world. Our model assumes that all sites are
identical and that competition for open space is an in-
stantaneous process following seed dispersal. Here, com-
petitor density is the number of seeds per open site. What
is the analogous quantity in real communities, where
“open space” comes in many varieties? Even if we were
to focus on a particular kind of open site, it is difficult to
quantify competitor density in real communities. Con-
sider, for example, canopy gaps in forests that are captured
by saplings that were already present before the gap formed
(i.e., “advanced regeneration”). The number of individuals
competing for a gap could be defined as the number of
juveniles present when the gap formed, the number in a
particular size class, or the number (including, perhaps,
those that died before the gap formed) in a particular
cohort or group of cohorts. Each of these definitions has
merit, and each would provide a different answer.

Although it is difficult to compare competitor density
in our model to that in nature, our results suggest that
the capacity for intraspecific variation to blur interspecific
differences may often be weak. In our model, if species
with the same variance in performance but different means
compete in a landscape of 1,000 adult sites and the mean
number of juveniles (of both species combined) competing

per open site is at least 1, then intraspecific variation has
little effect on the dynamics unless species mean perfor-
mances differ by less than 0.1 standard deviations (fig. 7).
In other words, unless intraspecific variation is so great
that the means differ by less than 0.1 standard deviations,
the dynamics are similar to the case in which there is no
interspecific overlap in performance. This result holds
whether distributions of individual performance are uni-
form (fig. 7C) or Gaussian (fig. 7D), assuming that at least
one juvenile (on average) is present per open site in a
landscape of at least 1,000 adult sites. If the performance
distributions are Gaussian, to have a 90% chance of de-
tecting a mean difference of 0.1 standard deviations would
require sample sizes of more than 1,700 per species. Be-
cause sample sizes are typically much smaller than this,
our results suggest that failure to detect a statistically sig-
nificant difference between species means does not imply
that species do not differ importantly in the parameter in
question. Conversely, if field data do reveal a statistically
significant mean difference in an important aspect of per-
formance, then our model suggests that the difference is
likely to matter; that is, if species differences are apparent
in field data, then coexistence is unlikely in the absence
of an interspecific trade-off.

Generality of Our Results

Our analytical results were obtained under simplifying as-
sumptions (e.g., infinite landscape size, uniform perfor-
mance distributions) that allowed for closed-form solu-
tions of the stochastic model. Stochastic simulations
revealed that the stabilizing effect of the mean-variance
trade-off was not strong enough to allow for long-term
coexistence in small landscapes (100 sites; fig. 6A, 6C),
where demographic stochasticity should be important.
None of our other analytical results changed qualitatively
in stochastic simulations with uniform or Gaussian per-
formance distributions. These two distributions (the for-
mer having no tails and the latter having infinite tails)
should bracket many of the cases in real systems. We note,
however, that some of our results do depend on the shapes
of the performance distributions. We have derived general
conditions to predict the competitive dominant in the lim-
iting low- and high-density cases (app. C). But only under
certain conditions (e.g., all species have Gaussian perfor-
mance distributions) do these general results lead to simple
predictions based on means and variances. If the perfor-
mance distributions are skewed, for example, then the
dominant species at low density is not necessarily the spe-
cies with the highest mean.

Our model can accommodate any number of species,
but we have restricted our analysis to the two-species
case. Our results for competition between a superior and
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an inferior species should apply qualitatively to the n-
species case in which variance in performance is a non-
decreasing function of mean performance (e.g., species
have the same variance but different means). We would
expect drift to become more important among similar
species as diversity increases and each species becomes
more recruitment limited (Hurtt and Pacala 1995); but
if we were to pool the worse half and the better half of
the species into two groups, then we would expect these
groups to have dynamics similar (with respect to each
other) to those observed here for two species. In contrast
to the superior/inferior species scenario, where gener-
alization to the n-species case seems straightforward, we
do not know how an interspecific mean-variance per-
formance trade-off (i.e., variance in performance is a
decreasing function of mean performance) would play
out in a multispecies community. This would be an in-
teresting subject for future work.

Our model involves a number of additional simplifi-
cations that could limit the generality of our results. We
now discuss three assumptions that seem particularly im-
portant: global seed dispersal, “winner-takes-all” compe-
tition, and uncorrelated variation among individuals.

Global dispersal. Our model accounts for fecundity lim-
itation and stochasticity in seed rain but ignores the
distance-dependent component of recruitment limitation
(Ribbens et al. 1994; Clark et al. 1998; Nathan and Muller-
Landau 2000). Exploring how local dispersal affects our
results would be an interesting topic for future research.
In particular, we do not know whether our coexistence
result (stable coexistence at intermediate density in the
presence of a mean-variance trade-off) holds under local
dispersal.

Winner-takes-all competition. The effect of intraspecific
variation on community dynamics depends on the nature
of competition. In our model, competition for each open
site is limited to a discrete set of individuals, with the
competitive environment varying from site to site because
of stochasticity in the number and quality of individual
competitors. Each site is captured in its entirety by the
single best-performing individual present. This winner-
takes-all form of competition allows the effects of intra-
specific variation to be manifested strongly. These effects
may disappear in models with different assumptions about
the nature of competition. For example, consider a model
in which each open site is partitioned in proportion to
the relative competitive abilities (c) of the individuals pres-
ent; that is, species j captures a proportion of each open
site equal to , where c is assumed to be positive,� c / � cij iki ik

the numerator sums the performances of species j indi-
viduals present at the site, and the denominator sums over
all individuals of all species present. Under many circum-

stances, we would expect intraspecific variation to have
little or no effect on the dynamics of this system.

Our model is a variant of the discrete-cell model
described by Skellam (1951) and subsequently modified
by numerous authors (e.g., Chesson and Warner 1981;
Shmida and Ellner 1984; Pacala and Tilman 1994; Hurtt
and Pacala 1995; Muko and Iwasa 2000; Hubbell 2001).
This model is a useful caricature for light-limited plant
communities, where competition is strongly size asym-
metric, and the winner-takes-all assumption seems rea-
sonable. Sale (1977) argues that this model is also appli-
cable to territorial coral reef fishes. Our results may not
apply to other types of systems.

Uncorrelated variation among individuals. Our model as-
sumes that individual performance is nonheritable and
behaves as an independent random draw from a species-
specific probability distribution. Nonheritable variation in
performance may be caused by numerous environmental
factors, including predators/herbivores, disease, and spatial
variation in resources, temperature, wind, etc. Most en-
vironmental factors that affect individual performance can
generate variation that is uncorrelated among individuals,
as well as structured variation. Our results apply only to
the component of variation that is uncorrelated among
individuals (i.e., unstructured variation).

To see that structured and unstructured environmentally
induced variation can lead to different dynamics, consider
the setting assumed by our model, in which juveniles com-
pete for sites, each of which is the size of a single adult.
Furthermore, assume that all variation in juvenile perfor-
mance is due to species-specific responses to the environ-
ment. First, consider the case where all sites are identical
but each site is comprised of many spatially uncorrelated
microsites. In this case, microsite effects on juvenile per-
formance will generate variation that is independent
among individuals, and the dynamics will be the same as
in our model (where variation is assumed to reflect in-
trinsic properties of individuals). In the second case, as-
sume that within each site, microsites are identical, but
that the environment varies among sites. In this case, var-
iation will be correlated among the individuals competing
for a site, which will be captured by the species present
that performs best in that environment. Our model does
not apply to this situation. Here, coexistence would depend
on interspecific trade-offs across environments (e.g., Dens-
low 1980; Tilman 1982; Pacala and Tilman 1994; Muko
and Iwasa 2000; Silvertown 2004).

Intraspecific Variation and Species Coexistence

The preceding examples demonstrate that it is important
to specify exactly what is meant by “intraspecific” or “in-
dividual” variation. It is perhaps obvious to some readers
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that these terms should refer only to the component of
variation that is due to (1) properties of individuals (and
is thus uncorrelated among them) or (2) environmentally
induced variation that operates at the scale of individuals
(and thus can be treated as if it were due to individual
properties). We do not object to this usage, but in light
of the variety of ways that variation can arise and the
variety of ways that it can affect dynamics, it seems im-
portant to clarify exactly what is meant by these terms in
a given context.

Our results demonstrate two ways in which random
independent intraspecific variation can facilitate species
coexistence. First, if one species competes against a second
species that has a lower mean but a higher variance in
individual performance, then stable coexistence occurs
over some range of intermediate competitor density. Sec-
ond, if superior and inferior species compete (e.g., the
same variance in individual performance but different
means), then intraspecific variation can blur the interspe-
cific differences; that is, the dynamics shift toward what
would be expected in the neutral case as the amount of
intraspecific variation increases. Here, intraspecific varia-
tion acts as an equalizing mechanism that can prolong
unstable coexistence or, if stabilizing mechanisms are also
present, facilitate stable coexistence (Chesson 2000).

Although random independent variation can facilitate
coexistence, we do not know whether this is an important
factor in most real communities. First, stable coexistence
of two species with a mean-variance performance trade-
off occurs only over a limited range of competitor densities
(fig. 4C). Even if competitor density is within this range,
the stabilizing effect of this trade-off appears to be rela-
tively weak (i.e., long-term coexistence rarely occurred in
small landscapes, where demographic stochasticity is im-
portant; fig. 6). Furthermore, we do not know if this trade-
off can lead to multispecies coexistence. Second, although
random independent intraspecific variation can blur in-
terspecific differences between superior and inferior com-
petitors, the strength of this effect diminishes as compet-
itor density increases. In our model, the capacity for
intraspecific variation to blur interspecific differences is
weak even for modest competitor densities unless there is
so much variation that species means would be difficult
to distinguish from field data. Finally, much of the intra-
specific variation in nature is structured (Kobe 1996, 2006;
Wright et al. 1998; Ogle et al. 2006), and this structured
variation may in some cases overwhelm the effect of un-
structured variation on community dynamics. Under-
standing the combined effects of different forms of vari-
ation (e.g., variation that is uncorrelated among individ-
uals vs. variation that is spatially structured) on com-
munity dynamics is an important area for future work.
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Appendix A from J. W. Lichstein et al., “Intraspecific Variation and
Species Coexistence”
(Am. Nat., vol. 170, no. 6, p. 807)

Single-Site Competition with n Draws from Each of Two Uniform Performance
Distributions
We derive an expression for the probability that a superior species wins a single site, where the site winner is the
individual with the highest performance, or “competitive ability” (c), amongn random draws from each of two
species’ performance distributions. Both performance distributions are assumed to be uniform, with finite width
w. Without loss of generality, we assume that species 1 has minimum performance of 0. Species 1’s probability
density function (PDF) is thus for and otherwise, with cumulative densityf (c) p 1/w 0 ≤ c ≤ w f (c) p 01 1

function (CDF) for , for , and 1 for . Species 2 has PDFF (c) p c/w 0 ≤ c ≤ w F (c) p 0 c ! 0 F (c) p c 1 w1 1 1

for and otherwise, and it has CDF for ,f (c) p 1/w d ≤ c ≤ d � w f (c) p 0 F (c) p (c � d)/w d ≤ c ≤ d � w2 2 2

for , and for .F (c) p 0 c ! d F (c) p 1 c 1 d � w2 2

We assume that . The neutral case is , where both species capture the site with probability 1/2. Ifd ≥ 0 d p 0
, species 2 is the superior species. If , there is no overlap in the performance distributions, so speciesd 1 0 d ≥ w

2 wins the site with probability 1. For , the probability that species 2 wins the site is0 ! d ! w P p v � 1 �2 2

, wherev2 is the probability that species 2 wins with a performance no greater thanw (species 1’sn[1 � (d/w)]
maximum possible performance) and is the probability that species 2 has at least one individualn1 � [1 � (d/w)]
with performance greater thanw. For v2, we have

w c2

n�1 n�1v p nf (c )[F (c )] nf (c )[F (c )] dc dc2 � 2 2 2 2 � 1 1 1 1 1 2

d 0

w c w2
n�1 n�1

n c � d n c n2 1 n n�1p dc dc p c (c � d) dc ,� � 1 2 � 2 2 22n( )( ) ( )( ) ( )w w w w w
d 0 d

which is easily solved for a givenn. To see thatv2, and therefore P2, depends only onn and the ratio , wed/w
define and rewritev2 in terms ofx:x { c /d2

w/d w/d
2n

n dn n�1 n n�1v p (dx) (dx � d) d dx p n x (x � 1) dx.2 � �2n( ) ( )w w
1 1
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Appendix B from J. W. Lichstein et al., “Intraspecific Variation and
Species Coexistence”
(Am. Nat., vol. 170, no. 6, p. 807)

Global Stability of Total Adult Density
Total adult density is . From equation (1),X { � xii

X p (1 � m)X � [1 � (1 � m)X ]W , (B1)t�1 t t t

where Wt, the probability that at least one seed lands on an open site, is , assuming Poisson seed rain.�bXt1 � e
At equilibrium, . We now show that if and Xt and m are within theirˆ ˆ ˆ ˆX p (1 � m)X � [1 � (1 � m)X]W b 1 m

biologically meaningful ranges ( and ), then there is a globally stable equilibrium, , inˆ0 ≤ X ≤ 1 0 ! m ! 1 X 1 0t

the interval . We first show that there is at least one equilibrium by the following three properties of0 ! X ≤ 1t

: first, ; second, , where ; and third,′ ′g(X ) { X g(0) p 0 g (0) p 1 � b � m 1 1 g (X ) { dX /dX g(1) p 1 �t t�1 t t�1 t

. Together, these three properties ensure that g(Xt) crosses the line at least once. That there is�bme ! 1 X p Xt�1 t

only one such equilibrium follows from the fact that g(Xt) is concave down: ′′ 2 2g (X ) { d X /dX pt t�1 t

. That this equilibrium is globally stable follows from the fact that g(Xt)
�bXt�be {2(1 � m) � b[1 � X (1 � m)]} ! 0t

is monotonically increasing: . It is easy to show with graphical′ �bX �bXt tg (X ) p [1 � (1 � m)X ]be � (1 � m)e 1 0t t

methods (e.g., Murray 1993, p. 38) that if there is a unique equilibrium, , and g(Xt) is concave down andX̂
monotonically increasing, then Xt will monotonically approach from either direction.X̂

Note that , so . In contrast, if , then , which, together′ˆlim g(1) p 1 lim X p 1 b ! m g (0) p 1 � b � m ! 1br� br�

with the properties and , shows that in this case, for , and so the′′g(0) p 0 g (X ) ! 0 g(X ) ! X 0 ! X ≤ 1t t t t

globally stable equilibrium is .X̂ p 0
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Appendix C from J. W. Lichstein et al., “Intraspecific Variation and
Species Coexistence”
(Am. Nat., vol. 170, no. 6, p. 807)

Invasion Criteria
General Invasion Criterion

Speciesi (with ) can invade speciesj (with ) if , or, from equation (1), ifˆ˜ ˆ ˜ ˜ ˜x ≈ 0 x p X (x � x )/x 1 0i j i, t�1 i, t i, t

W̃iˆ�m � [1 � (1 � m)x ] 1 0. (C1)j x̃i

For the resident at equilibrium, , soˆˆ ˆ ˆx p (1 � m)x � [1 � (1 � m)x ]Wj j j j

Ŵjˆ�m � [1 � (1 � m)x ] p 0. (C2)j x̂j

Combining equations (C1) and (C2) gives the general invasion criterion (eq. [2]).

Low–Seed Rain (Low-Fecundity) Invasion Criterion

Consider the case where mean seed rain, , is low enough (b close tom) that nearly all open sites receive no,ˆbX
one, or two seeds and we can ignore the few sites receiving more than two seeds. The invasion criterion (eq.
[2]) for speciesi is, then,

P(n p n p 1)P(c 1 c ) � P(n p 1 or 2)P(n p 0) P(n p n p 1)P(c 1 c ) � P(n p 1 or 2)P(n p 0)i j i j i j i j j i j i
1 ,

˜ ˆx xi j

where is the probability that speciesi hask seeds at an open site, and ) is the probability thatP(n p k) P(c 1 ci i j

a single random draw from speciesi’s seed quality distribution is better than a single draw from speciesj’s
distribution. With Poisson seed rain, the invasion criterion is

˜ ˆx xi j˜ ˆ ˜ ˆ�b(x �x ) �b(x �x )i j i jˆ ˜e x P(c 1 c ) � 1 e x P(c 1 c ) � .j i j i j i2 2

Substituting and (because ) gives as the invasion criterion.
ˆ˜ ˆ�b(x �x ) �bX ˆ1 2x̃ ≈ 0 e p e ≈ 1 bX ≈ 0 P(c 1 c ) 1 1/2i i j

Coinvasion is not possible in the low–seed rain case, because if , then .P(c 1 c ) 1 1/2 P(c 1 c ) ! 1/2i j j i

We now show that if the seed quality probability density functions (PDFs) are symmetric about their mean,
then (i.e., speciesi has the higher mean seed quality) implies , which becomes a strict¯ ¯c 1 c P(c 1 c ) ≥ 1/2i j i j

inequality, , under certain conditions, including cases where the PDFs are uniform or symmetricP(c 1 c ) 1 1/2i j

and unimodal. First, note that

� �

¯ ¯P(c 1 c ) p f (c)F (c) dc p f (2c � c)F (2c � c) dc,i j � i j � i i j i

�� ��
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wherefi(c) is the PDF for speciesi’s seed quality,Fj(c) is the cumulative density function (CDF) for speciesj’s
seed quality, and is speciesi’s mean seed quality. Equality of the above two integrals implies that they arec̄i

equal to their mean:

�

1
¯ ¯P(c 1 c ) p f (c)F (c) � f (2c � c)F (2c � c) dc.i j � i j i i j i2

��

Symmetry offi(c) implies , so we can rewrite the above as¯f (c) p f (2c � c)i i i

�

1
¯P(c 1 c ) p f (c)[F (c) � F (2c � c)] dc.i j � i j j i2

��

Symmetry offj(c) implies , so¯F (c) � F (2c � c) p 1j j j

� �

1 1 1 1
¯ ¯ ¯ ¯P(c 1 c ) p f (c){1 � [F (2c � c) � F (2c � c)]} dc p � f (c)[F (2c � c) � F (2c � c)] dc ≥i j � i j i j j � i j i j j2 2 2 2

�� ��

if . The above expression becomes a strict inequality, , if the PDFs are uniform or¯ ¯c 1 c P(c 1 c ) 1 1/2i j i j

symmetric and unimodal or if the PDFs are symmetric and there is some range ofc for which both andf (c) 1 0i

.f (c) 1 0j

High–Seed Rain (High-Fecundity) Invasion Criterion

We can express the invasion criterion (eq. [2]) on a per seed basis, because both species have the same per adult
fecundity,b; for speciesi to invade, it must have a higher per seed probability of winning an open site than the
resident. Speciesi’s per seed probability of winning an open site in a residentj environment is

�

Z p f (c)F (c) dc, (C3)ij � i j

��

whereFj(c) is the CDF for the quality of the best speciesj seed present at a given open site:

�

nF (c) p P(n)[F (c)] , (C4)�j j
np0

where P(n) is the probability that speciesj hasn seeds present at an open site,Fj(c) is the CDF for the quality of
a single speciesj seed, and [Fj(c)]n is the probability that alln speciesj seeds have quality lower thanc. In
appendix D, we make use of the fact thatF is a concave-up function ofF(c) if for some , asP(n) 1 0 n 1 1
occurs for any reasonable distribution ofn. Under Poisson seed rain with meany, equation (C4) is

� �y ne y n y[F (c)�1]jF (c) p [F (c)] p e . (C5)�j jn!np0

The criterion for speciesi to invade a residentj is , or, from equations (C3) and (C5),Z 1 Zij jj

� �

yF (c) yF (c)j jf (c)e dc 1 f (c)e dc, (C6)� i � j

�� ��
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which holds for sufficiently high mean seed rain,y, if there is somec′ such that for , with strict′f (c) ≥ f (c) c 1 ci j

inequality for some open set on . To see this, we rewrite equation (C6) as′c 1 c

′c �

yF (c) yF (c)j j[ f (c) � f (c)]e dc � [ f (c) � f (c)]e dc 1 0.� i j � i j

′�� c

If for , with strict inequality for some open set on , then the second integral is positive,′ ′f (c) ≥ f (c) c 1 c c 1 ci j

and, becauseFj(c) increases withc, the second integral will be greater in magnitude than the first integral (which
can be negative) ify is sufficiently high. Thus, if , with strict inequality for some open set on ,′f (c) ≥ f (c) c 1 ci j

then speciesi is dominant (it can invade but cannot be invaded by speciesj) at high mean seed rain. For
bounded (e.g., uniform) PDFs, the conditions for speciesi’s dominance hold if speciesi has the higher
maximum seed quality. For Gaussian PDFs, the conditions hold if speciesi has the larger variance.

The above results for the low– and high–seed rain cases imply that if there is an interspecific mean-maximum
or mean-variance seed quality trade-off, the identity of the dominant species switches with seed rain, with the
high-mean species dominant at low seed rain and inferior at high seed rain.
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Appendix D from J. W. Lichstein et al., “Intraspecific Variation and
Species Coexistence”
(Am. Nat., vol. 170, no. 6, p. 807)

Coexistence of Species with a Mean-Variance Performance Trade-Off
Our model assumes that both species have random, global dispersal and the same adult fecundity and mortality
rates; therefore, , whereZii is speciesi’s per seed probability of winning an open site in its own residentZ p Zii jj

environment (see eq. [C3]). We now show that the mean of the two invading species’ per seed probabilities of
winning an open site is always greater than the resident per seed probability of winning an open site: (Z �ij

. The implication of this result is that if the identity of the dominant species switches as mean seedZ )/2 1 Zji ii

rain, , varies from low to high values (as occurs when there is an interspecific mean-maximum or mean-ˆy { bX
variance seed quality trade-off; see app. C) and if theZ’s are continuous functions ofy, then there must be some
value ofy at which ; that is, either species can invade when rare.Z p Z 1 Zij ji ii

We now show that , or . For convenience, we assume thatfi(c) and fj(c), the(Z � Z )/2 1 Z Z � Z � 2Z 1 0ij ji ii ij ji ii

seed quality PDFs, are continuous on (��, �). From equation (C3),

� � � � �

Z � Z � 2Z p f F dc � f F dc � 2 f F dc p ( f � f )F dc � f (F � F ) dc, (D1)ij ji ii � i j � j i � i i � j i i � i j i

�� �� �� �� ��

wherefi is shorthand forfi(c) andFi is shorthand forFi(c), the CDF of the quality of the best speciesi seed
present at an open site (see eq. [C4]). For the first integral in equation (D1), integration by parts gives

� � �

� ′ ′( f � f )F dc p F (F � F )F � (F � F )F f dc p � (F � F )F f dc, (D2)� j i i i j i �� � j i i i � j i i i

�� �� ��

whereFi is shorthand forFi(c) and . The term is 0 because′ �F { dF /dF F (F � F )F lim F (c) pi i i i j i �� cr�� i

, and . Combining equations (D1) and (D2), we havelim F (c) p 0 lim F (c) p lim F (c) p 1cr�� j cr� i cr� j

� � �

′ ′Z � Z � 2Z p � (F � F )F f dc � f (F � F ) dc p f {F � [F � (F � F )F ]} dc. (D3)ij ji ii � j i i i � i j i � i j i j i i

�� �� ��

By viewing F as a function ofF (see eq. [C4]) and using the notation , we see that the term inF(F ) { Fi i

square brackets in equation (D3) is the value ofF(F) predicted at by linear extrapolation from the pointF p Fj

tangent toF(F) at . BecauseF(F) is concave up (see app. C), the term in square brackets is positive, soF p Fi

the coinvasion criterion, , holds.Z � Z � 2Z 1 0ij ji ii

An important factor limiting the generality of our proof is our assumption that the invader and the resident
experience the seed rain environment in the same way; that is, the probability of competing for an open site
againstn resident seeds is the same for an invading seed and for a randomly chosen resident seed. Clearly, this
is the case for Poisson seed rain, where each seed is randomly and independently dispersed. The assumption also
holds if there is spatial heterogeneity in mean seed rain because of factors such as topography or wind, if these
factors affect all seeds equally. The assumption will not hold if there is within-species clustering, for example,
due to local dispersal or to dispersal of fruits containing multiple seeds.



App. D from J. W. Lichstein et al., “Intraspecific Variation and Species Coexistence”

2

Thus far, we have demonstrated only coinvasion. In the special case where the higher-mean species has zero
variance in seed quality and its competitor has uniformly distributed seed quality, it is easy to show that
coinvasion implies a globally stable internal equilibrium. We have not proved that this result applies in general,
but we suspect that it does, for the following reasons. First, there is no apparent mechanism in our model for
species to overshoot their target density. Second, simulations suggest that parameter combinations that lead to
coinvasion also lead to a stable internal equilibrium (results not shown).

Why does coexistence occur in this model? The above proof relies on negative frequency dependence: the
mean of the two invading species’ per capita probabilities of winning an open site is always greater than the
resident per capita probability of winning an open site. Unfortunately, we do not have an intuitive explanation
for why this frequency dependence occurs. Nevertheless, we can gain some insight as to how coexistence occurs
in our model by considering competition between species 1, with uniformly distributed seed quality on (0, 1),
and species 2, with fixed seed qualityc2, where . A proportionc2 of species 1’s seeds can¯1/2 p c ! c ! 11 2

never win an open site if a species 2 seed is present, and a proportion of species 1’s seeds can never be1 � c2

beaten by a species 2 seed. Define species 1∗ as identical to species 1 but without the inferior seeds; that is,
species 1∗ has fecundity , and all of its seeds are superior to species 2 seeds. Species 1∗ and 2(1 � c )b2

constitute a system with a competition-colonization trade-off, in which species 1∗ is the stronger competitor but
the weaker colonizer (species 2 has fecundityb). This trade-off can lead to stable coexistence (see references in
the introduction to this article). The preceding caricature of our model is not entirely correct; we should not
ignore species 1’s inferior seeds, because any sites that these seeds capture will reduce the space available to
species 2 and will also produce some superior seeds. Nevertheless, viewing the mean-variance seed quality trade-
off as a competition-colonization trade-off provides some intuition as to how coexistence occurs in our model.
This is only a partial explanation of the coexistence mechanism. A more complete explanation will likely depend
on understanding the root cause of the frequency dependence.
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Appendix E from J. W. Lichstein et al., “Intraspecific Variation and
Species Coexistence”
(Am. Nat., vol. 170, no. 6, p. 807)

Competitive Dominance in Systems Lacking a Mean-Variance Performance
Trade-Off
Here, we show that if the seed quality distributions for species i and j are symmetric and have the same shape
(e.g., both are Gaussian), then species i is dominant (it can invade but cannot be invaded by species j) for
positive mean seed rain ( ) if and or if and , where is mean seed quality and2 2 2 2ˆ ¯ ¯ ¯ ¯ ¯bX 1 0 c 1 c j ≥ j c ≥ c j 1 j ci j i j i j i j

j2 is variance in seed quality.
We first show that species i is dominant if and . From equation (C3), the invasion criterion for2 2¯ ¯c 1 c j p ji j i j

species i is

� � �

f (c)F (c) dc 1 f (c)F (c) dc p f (c)F (c) dc, (E1)� i j � j j � i i

�� �� ��

where F(c) is defined in equation (C4) and the equality on the right follows from our assumptions that both
species have randomly dispersed seeds and that all adults have the same fecundity and mortality rate. If ¯ ¯c 1 ci j

and and if fi(c) and fj(c) have the same shape, then for all c, which implies that2 2j p j F (c) 1 F (c) F (c) 1i j j i j

for all c. Thus, inequality (E1) holds, and species i can invade. A similar argument shows that species jF (c)i

cannot invade.
We now show that species i is dominant if and . Species i’s per seed probability of2 2¯ ¯ ¯c p c p c j 1 ji j i j

winning an open site in a species j environment is

� �

¯ ¯f (c)F(F (c)) dc p f (2c � c)F(F (2c � c)) dc� i j � i j

�� ��

� �

F(F (c)) � F(1 � F (c))j jp f (c)F(1 � F (c)) dc p f (c) dc,� i j � i 2
�� ��

where and ; that is, we view F as a function of F or rather¯F(F (c)) { F (c) F(1 � F (c)) { F (2c � c) 1 � Fi i i i

than as a function of c. The third integral above follows from the fact that and¯ ¯f (c) p f (2c � c) F(c) � F(2c �
if the PDFs are symmetric, and the fourth integral follows from the fact that the first and third integralsc) p 1

are equal to their mean. We now rewrite species i’s invasion criterion (eq. [E1]) as

� �

F(F ) � F(1 � F ) F(F ) � F(1 � F )j j i if dc 1 f dc, (E2)� i � i2 2
�� ��

where f and F are shorthand for f(c) and F(c), respectively. Note that F and are the same distance d from1 � F
; that is, . Furthermore, because the PDFs have the same shape, the¯F(c) p 1/2 FF � 1/2F p F1 � F � 1/2F p d

conditions and imply that for all , with for . Here, F(F) is a2 2¯ ¯ ¯ ¯ ¯c p c p c j 1 j d 1 d c ( c d p d p 0 c p ci j i j j i j i
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concave-up function (app. D), so implies (with equality occurring only ford ≥ d F { [F(F ) � F(1 � F )]/2 ≥ Fj i j jj i

), which implies that inequality (E2) is true; that is, species i can invade. By a similar argument, species j¯c p c
cannot invade.

We have now shown that species i is dominant if and or if and . To complete2 2 2 2¯ ¯ ¯ ¯c 1 c j p j c p c j 1 ji j i j i j i j

the proof that species i is dominant if and or if and , we need only to show2 2 2 2¯ ¯ ¯ ¯c 1 c j ≥ j c ≥ c j 1 ji j i j i j i j

dominance when and ; that is, inequality (E2) holds if . To see this, note that if , then,2 2¯ ¯ ¯ ¯ ¯ ¯c 1 c j 1 j c 1 c c 1 ci j i j i j i j

for a given c, is even smaller relative to than in the case where , because Fi(c) decreases as¯ ¯ ¯F F c p c ci j ii j

increases.
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Appendix F from J. W. Lichstein et al., “Intraspecific Variation and
Species Coexistence”
(Am. Nat., vol. 170, no. 6, p. 807)

Probability of Winning an Open Site with Uniform Seed Quality Distributions
Without loss of generality, we transform the seed quality axis so that species 1’s seed quality distribution is
uniform on (0, 1). This simplifies the derivation ofWi but has no effect on the dynamics of the model. Species
1’s probability density function (PDF) is thus for and otherwise, with cumulativef (c) p 1 0 ≤ c ≤ 1 f (c) p 01 1

density function (CDF) for , for , and for . For species 2,F (c) p c 0 ≤ c ≤ 1 F (c) p 0 c ! 0 F (c) p 1 c 1 11 1 1

and , with PDF for and otherwise, and CDFmin maxc p L c p U f (c) p 1/(U � L) L ≤ c ≤ U f (c) p 0 F (c) p2 2 2 2 2

for , for , and for . Because of the discontinuities inf1(c � L)/(U � L) L ≤ c ≤ U F (c) p 0 c ! L F (c) p 1 c 1 U2 2

and f2, there are two distinct uniform cases, depending on whether or not one species’ PDF is “nested” within
that of the other species.

Nested Distributions

Here, we deriveWi for the nested case (e.g., fig. 4A), with . We first deriveW1, the probability that0 ! L ! U ! 1
species 1 wins an open site. The probability that seeds of both species are present at an open site and that
species 1 wins is , whereni is the number of speciesi seeds arriving to an open∗ ∗ ∗W { P(n 1 0, n 1 0, c 1 c )1 1 2 1 2

site and is the quality of speciesi’s best arriving seed. Because of the discontinuities inf1 and f2, we break∗ci

into two pieces: , where , and∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗W W p W � W W { P(n 1 0, n 1 0, U ≥ c 1 c ) W { P(n 1 0, n 11 1 1a 1b 1a 1 2 1 2 1b 1 2

. From equation (4),∗0, c 1 U ≥ c )1 2

U c1

� � �bx n �bx n1 1 2 2e (bx ) e (bx )1 2∗ n �1 n �11 2W p n f F n f F dc dc ,� �1a � 1 1 1 � 2 2 2 2 1n ! n !n p1 n p11 2 1 2
L L

wherefi andFi are shorthand forfi(c) andFi(c), respectively. Rearranging gives

U c1

� ��bx n �bx n1 1 2 2e (bx ) e (bx )1 2∗ n �1 n �11 2W p f f n F n F dc dc .� �1a �� 1 2 1 1 2 2 2 1n ! n !n p1 n p11 21 2
L L

Note that terms of the form can be rewritten as
� �bx n n�1v { � [e (bx) /n!]nFnp1

� ��bxF n�1 �bxF ne (bxF) e (bxF)
�bx bxF bx(F�1) bx(F�1)v p e bxe p e bx p e bx. (F1)� �

(n � 1)! n!np1 np0

Substituting forvi, fi, andFi gives

U c1

2b x x1 2∗ bx (c �1) bx (c �U)/(U�L)1 1 2 2W p e e dc dc . (F2)1a �� 2 1U � L
L L

Here, is the probability that and :∗ ∗W n 1 0 c 1 U1b 2 1
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1

� �bx n1 1e (bx )1∗ �bx n �12 1W p (1 � e ) n f F dc ,�1b � 1 1 1 1n !n p11 1
U

which, if we rearrange as above and substitute forv1 (eq. [F1]), f1, andF1, gives

1

∗ �bx bx (c �1)2 1 1W p (1 � e )bx e dc . (F3)1b 1� 1

U

It is straightforward to obtain closed forms for equations (F2) and (F3), giving a closed form forW1:

�b[x (1�L)�x ] �bx (1�U) �b(x �x )1 2 1 1 2x (e � e ) � [x (U � L) � x ](1 � e )2 1 1W p . (F4)1 x (U � L) � x1 2

The derivation forW2 is similar to that forW1, but unlike , need not be broken into two pieces,∗ ∗W W1 2

becausef2 is nested withinf1. A closed form forW2 is

�bx (1�U) �b[x (1�L)�x ]1 1 2x (e � e )2W p . (F5)2 x (U � L) � x1 2

Nonnested Distributions

We presentW1 andW2 for the case where , , , and . Closedmin max min maxc p 0 c p 1 1 1 c p L ≥ 0 c p U 1 11 1 2 2

forms for Wi in the nonnested case can be obtained in a manner similar to that for the nested case above by
changing the limits of integration. In the nonnested case, (eq. [4]) must be broken into two pieces for species∗Wi

2 but not for species 1. Closed forms are

�bx (U�1)/(U�L) bx L �b(x �x )2 1 1 2x (U � L)e � [x (U � L) � x (1 � e )]e1 1 2W p (F6)1 x (U � L) � x1 2

and

�bx (U�1)/(U�L) �b[x (1�L)�x ]2 1 2x (U � L)(1 � e ) � x (1 � e )1 2W p . (F7)2 x (U � L) � x1 2
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Appendix G from J. W. Lichstein et al., “Intraspecific Variation and
Species Coexistence”
(Am. Nat., vol. 170, no. 6, p. 807)

Invasion Criteria for Nested Uniform Seed Quality Distributions
Without loss of generality, we assume that species 1 has and , and species 2 has andmin max minc p 0 c p 1 c 1 01 1 2

(e.g., fig. 4A). The invasion criteria, expressed as ratios (eq. [5]), are, from equations (F4) and (F5),maxc ! 12

ˆbX ˆ ˆ¯ ¯e [bX(1 � c � r /2) � r ] � bX(c � r /2) � r2 2 2 2 2 2R̃ p 1 1ˆ1 bXe � 1

and

ˆ ˆ¯bX(c �r /2) bXr2 2 2e (e � 1)
R̃ p 1 1, (G1)ˆ2 bXr (e � 1)2

where and we have substituted the global attractor for the resident . For particular values ofmax min ˆ ˆr p c � c X x2 2 2 i

fecundity (b) and adult mortality (m), we can numerically solve for (fig. 3). It is then straightforward toX̂
calculate from equation (G1).R̃i

We now examine at the seed rain limits to confirm our general results (app. C). At the high–seed rain limit,R̃i

we have and . Thus, species 1, with the higher maximum seed quality, is˜ ˜lim R p � lim R p 0ˆ ˆbXr� 1 bXr� 2

dominant at this limit. For the low–seed rain limit ( ), we Taylor expand and around . A third-˜ ˜ ˆb r m R R bX p 01 2

order expansion gives and . Thus, the species with the higher mean˜ ˆ ˜ ˆ¯ ¯ ¯ ¯R ≈ 1 � bX(c � c ) R ≈ 1 � bX(c � c )1 1 2 2 2 1

seed quality is dominant near the low–seed rain limit.
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