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Appendix F.  Statistical methods. 
 

I.  Assessing MCMC convergence 
We simulated three MCMC chains in parallel with the Metropolis-Hastings algorithm to 
generate samples from the joint posterior distribution for each model (Gilks et al. 1996).  
We considered the joint posterior to have converged when the marginal posteriors for all 
parameters of interest had converged according to ‘potential scale reduction factors’ (see 
below) (Brooks and Gelman 1998, Gelman et al. 2004).  The ‘parameters of interest’ 
include all model parameters except for latent variables (Appendix F, Section III), 
although preliminary analyses where we monitored the marginal posterior for each latent 
variable showed that these also tended to converge by the time we terminated the MCMC 
simulation. 
 For each parameter, we calculated two potential scale reduction factors.  The first, 

 (page 297 in Gelman et al. 2004), is based on a comparison of within-chain to 

pooled-chain sample means and variances.  The second, , is the empirical ratio of the 
widths of the central 80% intervals of the pooled- and within-chain samples (Brooks and 
Gelman 1998).  and  converge to 1 as 

VR̂

80R̂

VR̂ 80R̂ ∞→n , where n is the number of posterior 

samples.  We considered the posterior for a parameter to have converged if both  and 

 were < 1.1 (Brooks and Gelman 1998, Gelman et al. 2004).   
VR̂

80R̂
 Convergence was assessed for each parameter every 50,000 MCMC steps.  To 
help guard against the possibility that our joint convergence criterion (  and   < 1.1 
for all parameters) had been fulfilled before the full posterior space had been explored, 
we required that the criterion be met for 10 consecutive 50,000-step intervals before 
terminating the MCMC simulation.  Due to the large number of parameters and the large 
number of simulation steps (> 106) required for some of the models to converge, the 
following procedure was adopted to limit the computer memory requirements:  A 
posterior sample was saved every k MCMC steps, with k = 1 initially.  Once 104 posterior 
samples had been saved, the first half of the samples were discarded, the remaining 
sample was ‘thinned’ by discarding every alternate sample, and k was doubled.  This 
procedure was repeated until the convergence criterion was met for 10 consecutive 
50,000-step intervals.  This procedure ensured that (after the first thinning) the first half 
of the MCMC steps were never used to assess convergence (Brooks and Gelman 1998, 
Gelman et al. 2004), and that the memory requirements never exceeded 104 samples.  
Gelman et al. (2004) suggest that 103 samples should be adequate to assess convergence 
in most cases.   

VR̂ 80R̂
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II.  Proposal distributions 
Values for all parameters were restricted to a finite range that included the biologically 
reasonable values.  New parameter values were proposed on a modified logistic scale: 
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where τ is the current parameter value on the transformed scale; θ is the current parameter 
value on the original scale; and θmin and θmax are, respectively, the lower and upper prior 
bounds for θ (see Supplement 2).  Because τ can take on any real number, new values τ′ 
were assumed to be normally distributed with mean τ (i.e., the current value in the 
MCMC chain) and standard deviation στ: 
 

τ′ = τ + στz                                                         (F2) 
 
where z is a standard normal random variable.  Typically, a new value was proposed for 
each parameter at each MCMC step with probability 0.5, but in some cases, groups of 
correlated parameters were changed in ‘blocks’ to speed convergence (Gilks et al. 1996).  
For each parameter (within each block separately), στ was adjusted during an initial 
‘burn-in’ period (prior to posterior sampling) to achieve an approximate Metropolis-
Hastings acceptance rate of 0.25 (Chib and Greenberg 1995).  Combining (F1) and (F2) 
and solving for the proposed value θ′ yields: 
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Specifying a noninformative prior on the transformed scale (τ) introduces prior influence 
on the θ scale. For example, a diffuse normal prior on τ results in relatively high prior 
weights for values of θ near θmin and θmax compared to intermediate values (i.e., a ‘U’ 
shaped prior).  Therefore, in order to obtain a uniform prior for θ between θmin and θmax, 
we used a transformation of variables to determine the corresponding prior on τ: 
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where θ(τ) is given by (F3); and ( ))(τθp  is the prior for θ on the original scale.  With the 
uniform priors in our analysis, ( ))(τθp  is simply a constant:   p(θ) = (θmax – θmin)–1. 
 
III.  Latent-variable integration 
Here, we show that a latent-variable approach – in which we assign a free parameter (λ) 
for each unknown light level – can be used to effectively integrate over fL (i.e., integrate 
over the uncertainty in light) in equation 12 for each growth observation at each MCMC 
step.  Note that integrating over fL for each growth observation at each MCMC step is 
conceptually distinct from simply marginalizing over the posterior distributions of the 
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latent variables λ.  Below, however, we show that these operations are mathematically 
equivalent if the λ are conditionally independent.  Readers who are familiar with ‘latent 
variables’ and ‘marginal posteriors’ may wish to skip the next two paragraphs, which 
provide context for readers who are unfamiliar with these concepts. 

We base our inferences on the marginal posterior distributions of the model 
parameters, a common practice in Bayesian analysis (Gelman et al. 2004).  The marginal 
posterior density of each parameter of interest is obtained by integrating over the 
densities of all other parameters; i.e., the marginal posterior density for parameter θi with 
respect to all other parameters θi- is 
 

−∫= ii θdyθpyθp )|()|(  
 
where p(θ | y) is the joint density of all model parameters, θ, given the data, y, and the 
integral has as many dimensions as θi-.  For complex models that cannot be solved 
analytically, samples from the joint posterior density can be generated with MCMC 
methods (Gilks et al. 1996).  The properties of p(θi | y) (e.g., its percentiles) are then 
quantified from the values of θi in the samples without regard to θi-; i.e., after generating 
samples from p(θ | y), marginalizing over θi- amounts to nothing more than making a 
histogram of the values of θi.   
 The above ‘automatic’ integration that occurs with MCMC makes it relatively 
simple to integrate over random effects by introducing a latent variable, or ‘nuisance 
parameter,’ for each effect ( pages 73-4 in Gelman et al. 2004).  Thus, in our ‘uncertain-
light’ growth analysis, we can introduce a latent variable (λi) for each unobserved light 
level (Li) and integrate over the uncertainty in L by marginalizing over the posteriors for λ 
(the vector of latent variables).  Each λi is treated in the MCMC as a free parameter, and 
new values are proposed on the interval (0,1), the upper limit corresponding to full 
sunlight.  The model now has more parameters than data, but this poses no problem in 
principle because each λi is constrained by its sampling distribution, fL(λi | xi, θL) (the 
conditional probability density function for light given covariates), which acts as an 
informative prior.  Although this latent-variable approach (which is an application of 
Bayesian hierarchical modeling) involves many more parameters than the ‘direct’ 
integration approach (i.e., numerically integrating equation 12 for each growth 
observation at each MCMC step), it is computationally more efficient.  Because we 
marginalize over the joint posterior density of λ, we do not need to estimate a posterior 
for each λi (which is computationally demanding, although still less so than direct 
integration); i.e., we simply calculate the marginal posteriors for the other parameters of 
interest, ignoring λ. 

We now show that marginalizing over λ (i.e., treating the λi as free parameters in 
the MCMC, but ignoring them when making posterior inferences for the parameters of 
interest) is equivalent to integrating over fL in equation 12 for each growth observation at 
each MCMC step.  For simplicity, we first demonstrate this fact assuming that θL (the 
parameters that determine fL ) is known.  We then generalize the result to the case where 
θL is unknown. 
 The marginal posterior density for the growth parameters of interest, θG, is 
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where G is the vector of observed growth rates; XG is the matrix of covariates with NG 
rows (one for each element of G); and the integrand is the joint posterior density of θG 
and λ, which we can write as 
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where p(G | λ, θG) is the likelihood of the growth data, given λ; fL(λ | XG, θL) is the 
sampling distribution (prior) for λ; and p(θG) is the prior for θG.  We now write the 
marginal posterior of θG as  
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Above, we can move the integration inside the product because the latent variables are 
assumed to be conditionally independent.  Also, p(θG) does not depend on λ and, 
therefore, can be moved outside of the integrals.  The above shows, assuming known θL, 
that marginalizing over λ is equivalent to integrating over fL for each growth observation.  
Because, by definition, an MCMC algorithm samples from its target distribution (Gilks et 
al. 1996), the latent-variable approach is equivalent to integrating over fL for each growth 
observation at each MCMC step. 
 To generalize the above result to the case with unknown θL, we write the joint 
posterior density of θG and θL, marginalized over λ, as  
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where L is the vector of NL light observations; and X is the matrix of covariates with NL 
rows (one for each element in L, including the NG saplings with growth data).  Note that 

, the likelihood for the light observations (i.e., the calibration data), and ∏i LiiL xLf ),|( θ



5 

p(θG, θL), the joint prior, are independent of λ and, therefore, can be moved outside of the 
integrals. 
 
IV.  Direct integration 
As a check on the above latent-variable integration approach, we also performed the 
uncertain-light analysis (table 3) with a direct approach by numerically integrating (12) 
for each growth observation at each MCMC step.  We used the following simple, albeit 
inefficient, algorithm:  We discretized the light distribution, fL, into 50 equally-spaced 
intervals:  L = 0.0-0.02, 0.02-0.04, …, 0.98-1.0.  We then approximated (12) as  
 

CxLfQLGpQxGp
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where Lj is the midpoint of light-interval j, and  is a 

normalization constant that depends on θL due to errors associated with the discretization 
of fL. 
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V.  Stand quality (Q) random effects 
A latent variable (‘nuisance parameter’) was introduced for the random effect Q for each 
stand.  These latent variables were treated like all other parameters in the MCMC 
algorithm (e.g., Appendix F, Section II).  Marginalizing over the posterior distributions of 
these latent variables is equivalent to integrating over the random effects (Appendix F, 
Section III).  The sampling distribution for Q was assumed independent and normal with 
mean zero.  Because r and Q only appear as a product (see equation 10), one of their 
variances must be fixed (otherwise, the model is underdetermined).  We assumed a 
variance of one for Q, although any other positive constant would lead to equivalent 
results.  To prevent stand effects from being confounded with region, we imposed the 
constraint that within each region (ENA or WOR), Q sums to zero.  Furthermore, because 
> 99% of the individuals at the Metolius River sites (Appendix A) belonged to a single 
species (Pinus ponderosa) that was absent from all other stands (i.e., species was 
confounded with site), we set Q = 0 for these stands. 
 
VI.  Predicted values 
We explored two different approaches to calculating prediction vectors, , corresponding 
either to vectors of predicted light, 

y~

L~ , or predicted growth, G~ .  (i) Method I involved 
calculating the expectation (mean) of y given θ50, the posterior medians of the model 
parameters: 
 

50|~ θyy = .                                                      (F3) 
 
For L~ , this involved calculating 50| Lθρ  and  from equations 3 and 5, and then 

calculating 

50| LV θρ

),(| ρρ VL  from equation 2.  In analyses involving heights (Models CRN and 
CRNS; table 2), we used the expected heights calculated from the posterior median 
allometric parameters (Appendix E and Supplement 1) when calculating L~ .  For G~ , 
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equation F3 is obtained directly from equation 10 using the posterior medians of θG and 
the posterior medians of the latent variables Q (Appendix F, Section V).  As an 
alternative to θ50, we could use , the posterior means, as point estimates for θ.  These 
two point estimates yielded very similar , because in our analyses, θ50 and  were very 
similar.  (ii) Method II involved calculating the posterior mean of the expectation of y; 
i.e., for each posterior sample j from the MCMC simulation, we calculated the 
expectation 

θ̂
y~ θ̂

jy  given the current parameter values (θj) and then calculated 
 

∑= (
j jyny )/1~ ,                                                  (F4) 

 
where n is the total number of posterior samples.  In principle, it might be preferable to 
obtain a posterior distribution for y , and then to take its median or mode as .  This is 
cumbersome, however, because it entails numerical estimation of one distribution for 
each individual (over 2000 in our analysis, or perhaps > 105 in an analysis of inventory 
data).  In contrast, it is computationally ‘cheap’ to monitor 

y~

∑ j jy  for each individual and 

then apply (F4).  In preliminary analysis of a subset of our data in which we estimated 
posterior distributions for each individual prediction, the medians of these distributions 
and the means from (F4) were nearly identical to each other.   

Unlike Method I, Method II averages over p(θ) in the appropriate way; i.e., 
Method II propagates uncertainty in θ.  Note, however, the large difference between the 
methods in ease of implementation:  Method I involves inserting numbers into equations, 
whereas Method II involves MCMC simulation.  We used Method I for L~  in the 
predicted-L method for estimating θG (table 3), because these are the predictions that 
would be most practical to implement when analyzing large inventory datasets.  In all 
other cases (e.g., R2 values in table 4), we used Method II.  The decision to use Method I 
vs. II has little impact on our results, however, as both methods yield very similar 
predictions for our analyses.   
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