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Appendix E.  Estimating height-diameter allometries and the shade-tolerance index 
(ST) for all U.S. tree species. 
 
I.  Height allometries 
Since 1999, FIA data include height measurements.  However, pre-1999 FIA data (which 
currently comprise most of the available plot re-measurements) do not include height data 
for most of the U.S.  Therefore, incorporating tree height into analyses of pre-1999 FIA 
data requires height-dbh allometries, which we estimated using the post-1999 FIA data.  
Because we wished to treat our field data the same as we would treat FIA data, we used 
these same allometries in the analyses presented in this paper.   

In December 2006, we downloaded all available FIA data from 
www.fia.fs.fed.us/, and we estimated height-dbh allometries for all species listed in FIA 
documentation.  We excluded data from plantations and plots with any documented 
harvesting.  To reduce the computational requirements for the analysis, we randomly 
subsampled from the data for species with unnecessarily large sample sizes (see 
Subsampling algorithm below).  

To constrain the height allometry parameters for rare species, we adopted a 
Bayesian hierarchical modeling approach (Gelman et al. 2004, Clark 2005, Ogle and 
Barber 2008) with the following nested taxonomic levels:  species, genus, family, order, 
division, and base, where the base is the ‘root’ of the taxonomic hierarchy.  Our approach 
is ‘hierarchical’ both in the statistical sense (i.e., each allometric parameter was assumed 
to be a sample from a probability distribution) and in the taxonomic sense (i.e., we used 
the taxonomic hierarchy to structure the analysis).  This approach allows rare taxa to 
borrow support from common taxa, particularly those that are closely related.   

We assumed a power law relationship between height and dbh, which implies a 
linear model in log-space: 
 

ln(height) = a + b·ln(dbh) + ε                                        (E1) 
 
where a and b are species-specific parameters, ε ~ normal(0, σ2), and σ2 is assumed 
constant across species.  Prior to analysis, diameter at root collar measurements (for 
multi-stemmed woodland species in the western U.S.) were converted to dbh following 
Chojnacky and Rodgers (1999).  Allometric parameters were assumed to be samples 
from normal distributions with taxon-specific means and level-specific variances.  For 
example, parameters a and b for species i in genus j were assumed to be distributed as as,i 
~ normal(ag,j, ), and bs,i ~ normal(bg,j, ), where the subscripts ‘s’ and ‘g’ denote, 

species- and genus-level parameters, respectively; and the parameters  and  are, 
respectively, the variance in a and b among species within genera.  Similarly, genus-level 
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a and b were assumed to be samples from family-level distributions, family-level a and b 
were assumed to be samples from order-level distributions, etc.   

All priors were noninformative.  The base-level (taxonomic root) priors for a and 
b were normal with mean zero and variance 1000.  The only other priors that must be 
specified concern the variance parameters.  Following Gelman (2006), we assumed 
uniform priors for the standard deviations, with σ ~ uniform(0,100) at all taxonomic 
levels. 

We used WinBUGS (Spiegelhalter et al. 2004) to generate samples from the 
posterior distribution of the parameters (Gilks et al. 1996).  Three MCMC chains were 
run in parallel, and convergence was assessed with the ‘bgr’ tool in WinBUGS, which 
compares the within- to pooled-chain central 80% posterior intervals (Brooks and 
Gelman 1998).  After the marginal posteriors for all parameters had converged, we 
simulated an additional 100,000 samples from each chain, saving every 20th sample to 
eliminate any serial autocorrelation.  Thus, we saved 5000 independent samples from 
each of the three chains.  Each sample can be viewed as a vector drawn at random from 
the joint posterior distribution of the allometric parameters.  The species-level results are 
summarized in Supplement 1. 
 

Error propagation 
We used the above samples to propagate uncertainty in individual heights through all 
light-model analyses (including the uncertain-L growth analysis; table 3) involving height 
(Models CRN and CRNS; see table 2 and equation 4).  Each of the three MCMC chains 
in our light-model analysis was paired with one of the three sets of 5000 samples from 
the WinBUGS height-allometry analysis.  We randomly selected (with replacement) one 
of the 5000 height-allometry parameter vectors every 100th MCMC step in our light-
model analysis, resulting in ≥ 5000 random draws from the height-allometry posterior 
(our convergence criterion required ≥ 500,000 MCMC steps; see Appendix F, Section I).  
Given the new allometry vector, we assigned each individual in our light model (i.e., each 
focal sapling and its neighbors) a new height by drawing a random value from its height 
distribution, which is determined by its dbh, its species’ allometric parameters, and the 
variance in individual height (σ2).  Specifically, the new height is eadbhbeσz, where a and 
b are the new values for the allometric parameters, σ is the new individual-level standard 
deviation, and z is a random draw from a standard normal distribution.  Given the new 
heights for all individuals, we recalculated the joint posterior density for our model 
parameters (θ, which included θL and, in the uncertain-L growth analysis, θG) before 
proposing new values for θ.  Thus, the Metropolis-Hastings accept/reject decision in our 
MCMC applied only to θ (conditional on the new heights), and the resulting posterior 
distribution of θ is its marginal distribution with respect to the posterior distributions of 
the individual heights.  
 

Subsampling algorithm 
We used the following algorithm to sample from the available FIA data:  If ≤ 60 
individuals (i.e., height measurements) were available for a species, we used all of them.  
If > 60 individuals were available, we sought to create a sample that contained 20 
individuals in each of 18 groups representing combinations of the following categories:  
three dbh categories (lower, middle, and upper third of the dbh distribution within each 
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species) × three soil moisture categories (individuals on plots classified as xeric, mesic, 
or hydric) × two crown class categories (overtopped vs. sun-exposed).  If ≤ 20 individuals 
were available in a group, we used all of them.  If > 20 individuals were available, we 
accepted each individual with probability 20/n, where n is the number of individuals in 
the group.  The above algorithm yields about 360 individuals for a species with ≥ 20 
individuals in each of the 18 group.  Some states have relatively few height data for 
saplings (dbh 2.5-12.7 cm), so that for many species, the above algorithm produced 
samples containing few saplings.  Therefore, for each species, if fewer than a third of the 
total individuals sampled by the above algorithm were saplings, we sampled additional 
saplings (if any were unused and available) to obtain a maximum sapling proportion of 
one third of the individuals per species.  The dataset that we analyzed had n ≥ 30 
individuals for 260 species and 53,691 total individuals.    
 
II.  Shade-tolerance index (ST)  
We define ST as the proportion of saplings (dbh 2.5-12.7 cm) of a given species that are 
in the understory (as opposed to the canopy).  We estimated ST from FIA data based on 
the FIA’s crown class categories (USDA 2005, 2006):  we considered saplings with an 
overtopped or intermediate crown-class to be in the understory, and saplings with a co-
dominant, dominant, or open-grown crown-class to be in the canopy.  To constrain 
estimates of ST for rare species, we used a hierarchical approach as in the height analysis 
(see above).  We used the same FIA dataset and plot filtering as in the height analysis 
above, and we used all FIA saplings with a reported crown class.  (Sub-sampling the data, 
as in the height analysis, was not necessary due to the modest computational demands of 
the ST analysis.)  The dataset that we analyzed had ≥ 30 saplings for 240 species and 
1,215,987 total saplings.    
 We assumed that the number of understory saplings (y) for species i was 
distributed as yi ~ binomial(STi, ni), where STi is the probability that a sapling is in the 
understory, and ni is the total number of saplings of species i.  For species i belonging to 
genus j, we assumed logit(STi) ~ ( )2

, ),(logitnormal gjgST σ , where logit(x) ≡ ln[x/(1 – x)], 
and the subscript ‘g’ denotes genus-level parameters.  Similarly, we assumed logit(STg, j) 
~ ( )2

, ),(logitnormal fkfST σ , where k is the family of genus j, and the subscript ‘f’ denotes 
family-level parameters.  As in the height-allometry analysis, one variance parameter was 
assigned for each taxonomic level.  The structure of the model continued through the 
taxonomic hierarchy on the logit scale as illustrated above until the base of the hierarchy, 
where we specified a noninformative prior:  STbase ~ uniform(0,1).  As in the height-
allometry analysis, we specified noninformative priors for the variances according to 
Gelman (2006).  Specifically, we assumed uniform priors for the standard deviations, 
with σ ~ uniform(0,10) at each taxonomic level.  Increasing the prior range from (0,10) to 
(0,100) had little impact on the results. 

We used WinBUGS (Spiegelhalter et al. 2004) to generate 5000 independent 
Bayesian posterior samples for each of three MCMC chains (see height analysis above 
for details).  The species-level results are summarized in Supplement 1 and are compared 
to the Silvics of North America (Burns and Honkala 1990) shade-tolerance classification 
in figure E1.  To propagate uncertainty in species-level ST through all analyses involving 
ST (Models CRN, CRS, and CRNS), we randomly sampled from the WinBUGS output 
every 100th step of our MCMC simulations, as explained above for the height analysis. 
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Figure E1.  Correspondence between ST (species-level posterior medians) and the 
categorical shade-tolerance classification in Silvics of North America (Burns and Honkala 
1990) for the 184 species included in Silvics.  Similar results are obtained for the 
posterior means of ST.  The figure displays standard box-plots: bold bars are medians, 
boxes indicate the first and third quartiles, error bars are the most extreme points within 
1.5 interquartile ranges of the first and third quartiles, and circles are outliers (all points 
outside of the error bars). 
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