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APPENDIX A. SUPPLEMENTARY METHODS FOR FIA DATA FILTERING AND 
ANALYSIS, MEASUREMENT ERROR MODELS, AND LM3V OPTIMIZATION. 
 
Estimating aboveground biomass of FIA plots 
We used published allometries (Jenkins et al. 2003) to estimate the aboveground biomass (AGB) 
and wood growth rate of individual trees from diameter at breast height (dbh) values reported by 
FIA. Growth was calculated across two plot measurements, with an average remeasurement 
interval of about five years. To convert the AGB estimates into per-unit-area estimates (which 
are then summed to yield plot-level AGB values), we multiplied by tree-level expansion factors 
reported by FIA (equivalent to dividing by the sample area for each tree, which depends on its 
dbh). A “growth trees per acre” expansion factor was only available for trees with a current 
(second plot measurement) dbh ≥ 12.7 cm. For smaller trees, we used the previous (first plot 
measurement) “trees per acre” expansion factor if available (i.e., if previous dbh ≥ 2.5 cm), and 
we used the current “trees per acre” otherwise (i.e., ingrowth trees with a previous dbh < 2.5 cm, 
the smallest dbh sampled by FIA). Any errors introduced into our analysis by inaccurate 
expansion factors for trees with dbh < 12.7 cm should be small, since these trees comprise only a 
small fraction of total AGB for the stand ages considered in our analysis (> 40 years). 
Furthermore, such errors should be rare, because growth and non-growth expansion factors are 
typically the same under FIA’s National Sampling Design (Bechtold and Patterson 2005). 
  
Selection criteria for FIA plots 
In addition to the criteria specified in the main-text Methods, only FIA plots that met the criteria 
below were included in our analysis. Note that FIA defines a Condition as a unique combination 
of land-use/disturbance history and edaphic conditions within an inventory plot. 
(1) Plot has only one reported stand age (i.e., if multiple Conditions are present, they must all 
have same stand age).  
(2) The sum of all measured Condition proportions (fraction of plot area in different Conditions) 
must be > 0.95 and < 1.05 for both current and previous plot measurements. This criterion 
screens out plots with > 5% inaccessible (un-measurable) area, as well as plot records with 
database errors. 
(3) No individual trees with an unrealistic growth rate between the two plot measurements. We 
considered growth rate to be realistic if the dbh growth rate was between −1 and 5 cm yr−1, and if 
the relative growth rate was between −0.5 and 1.5 yr−1. These criteria allow for stem shrinkage 
(e.g., due to damage or water status) and measurement error, and are intended only to filter out 
large database errors. 
(4) Similar plot-level growth estimates obtained from the two methods illustrated in figure 2 of 
Clark et al. (2001). Large differences in the two estimates may indicate database errors. Note that 
we applied the two methods to wood production, not total NPP as in Clark et al. (2001). The first 
method sums the wood production of all trees on the plot that survived the remeasurement 
interval, along with the ingrowth of new trees. The second method is given by Equation 1 in our 
main text. Our specific criterion was that the two estimates agreed to within one standard 
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deviation; i.e., we calculated the standard deviation of differences between the two methods 
(each plot yielded one difference), and we excluded plots where the magnitude of difference 
exceeded one standard deviation. This filtering approach excluded < 1% of the FIA plots, 
because the distribution of differences was highly non-normal (most differences were close to 
zero, and a few differences were large). Many of these plot records may in fact be free of errors, 
because although the two Clark et al. (2001) methods have the same expectation, they are not 
guaranteed to yield the same value for a given plot. Nevertheless, by excluding these plots, we 
reduce noise and the number of large database errors in our analysis. 
  
Measurement Error Model methods 
The Measurement Error Model (MEM) we fit to FIA data is summarized here and described in 
detail in Fuller (1987). All equation (Eq.) and page numbers below refer to Fuller (1987). The 
aim of the MEM is to estimate parameters β relating a dependent variable y to a vector of 
explanatory variables x: 
 
E[y] = β0 + β1x1 + … + βk−1xk−1, 
 
where E[y] is the expected value of y, and k is the dimension of β (number of parameters). For 
sample t in 1, 2, …, n, we assume that yt and xt are observed with error: 
 
Yt = yt + wt 
Xt = xt + ut 

 
where wt and ut are measurement errors that are assumed to be mean-zero, normally distributed 
random variables. We first present estimators, obtained using linear algebra, for the parameters β 
and their variance-covariance matrix quantifying parameter uncertainty. Terms in the estimators 
are described in the table below. The maximum likelihood estimator for β is (Eq. 2.2.20): 
 
𝜷� = (𝐌𝑋𝑋 − 𝐒𝑢𝑢)−1(𝐌𝑋𝑌 − 𝐒𝑢𝑤), 
 
where MXX is the matrix of mean squared X values; MXY is the vector of mean XY products; and 
Suu and Suw quantify the measurement error variances and covariances. Note that if Suu and Suw 
contain all zeros, then the expression above reduces to the classical ordinary least squares (OLS) 
formula, 𝜷� = (X'X)−1 X'Y. 
 
The estimator for the variance-covariance matrix for 𝜷� is (Eq. 2.2.25): 
 
𝐕��𝜷�� = 𝑛−1�𝐌�𝑥𝑥−1𝑠𝑣𝑣 + 𝐌�𝑥𝑥−1�𝐒𝑢𝑢𝑠𝑣𝑣 + 𝐒�𝑢𝑣𝐒�𝑣𝑢�𝐌�𝑥𝑥−1� + 𝑑𝑓−1𝐌�𝑥𝑥−1[𝐒𝑢𝑢𝑠𝑟𝑟 + 𝐒�𝑢𝑣𝐒�𝑣𝑢]𝐌�𝑥𝑥

−1. 
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Terms are defined in alphabetical order (Greek symbols first) in the table below using notation 
from Fuller (1987). 
Term Definition and notes 
β True (unknown) parameters values (including an intercept, β0) 

relating the true values of y to the true values of x. 
𝜷� Maximum likelihood estimator for β (Eq. 2.2.20). 
df Degrees of freedom for estimating Saa. 
k Dimension of β (i.e., number of parameters). 
𝐌𝑋𝑋 = 𝑛−1 ∑ 𝐗𝑡′𝐗𝑡𝑛

𝑡=1   Matrix of mean squared observed X. 
𝐌𝑋𝑌 = 𝑛−1 ∑ 𝐗𝑡′𝐘𝑡𝑛

𝑡=1   Matrix of mean cross-products of observed X and observed Y. 
𝐌�𝑥𝑥 = 𝐌𝑋𝑋 − 𝐒𝑢𝑢  Term in expression for 𝐕��𝜷��. 
N Sample size. 
qt Random error in the true value of y that is unrelated to x; qt are 

independent, normally distributed random variables with mean 
0 and variance σqq (Eq. 2.2.17). Estimator for σqq is given by 
Eq. 2.2.21. 

𝑠𝑟𝑟 = �1,−𝜷�′�𝐒𝑎𝑎�1,−𝜷�′�′  Term in expression for 𝐕��𝜷��. 
svv =  
(𝑛 − 𝑘)−1 ∑ �𝑌𝑡 − 𝐗𝑡𝜷��

2𝑛
𝑡=1   

Term in expression for 𝐕��𝜷��. Page 107. The square root of svv 
is equivalent to the OLS residual standard error. 

Saa Estimated variance-covariance matrix for at = (wt, ut). Saa 
includes Suu and Suw. 

Suu Estimated variance-covariance matrix for ut, with zeros in the 
row and column corresponding to the intercept column (a 
vector whose elements are all one) in X. Suu is the lower right 
corner of Saa. 

Suw Estimated vector of covariances between wt and of ut. Suw is the 
top row and left column of Saa, excluding the upper left cell, 
which is the variance of wt. 

𝐒�𝑢𝑣 = 𝐒𝑢𝑤 − 𝐒𝑢𝑢𝜷�  Term in expression for 𝐕��𝜷��. 
𝐒�𝑣𝑢 = 𝐒�𝑢𝑣′  Term in expression for 𝐕��𝜷��. 
t = 1, 2, …, n Sample number. 
ut Vector of measurement errors in explanatory variables Xt. 
𝐕��𝜷��  Estimator for variance-covariance matrix of 𝜷� (Eq. 2.2.25). 
wt Measurement error in dependent variable Yt. 
xt True (unknown) vector of explanatory variables (including the 

value one, for the intercept) 
Xt = xt + ut Observed k dimensional vector of explanatory variables, 

including the value 1 for the intercept (Eq. 2.2.1). 
yt = xt β + qt True (unknown) value of dependent variable, including a 

random error component (qt) that is unrelated to x and is not 
due to measurement error. 

Yt = yt + wt Observed value of dependent variable, equal to yt (true value of 
dependent variable) plus measurement error wt (Eq. 2.2.18). 
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Implementing the MEM requires an estimated error covariance matrix Saa, which includes the 
variance of wt (measurement error in plot-level FIA growth), the covariance matrix for errors in 
the explanatory variables ut (Suu), and the covariances between wt and ut (Suw). We considered 
three different estimates for the variance of wt: we assumed that wt was 0%, 10%, or 30% of the 
residual variance from the OLS regression with the lowest AIC. All three assumptions yielded 
similar qualitative results, and we only report results where the variance of wt was assumed to be 
10% of the residual variance. We assumed that all covariances between wt and ut were zero, 
because the FIA dataset was derived independently of the driver datasets. As explained in main-
text Methods, we lacked quantitative estimates for errors in soil available water capacity (AWC), 
so we performed our analyses under two different assumptions (AWC error = 10% or 50% of the 
AWC variance across FIA plots) that should bracket the true AWC error. We assumed that 
covariances between AWC errors and all other error terms were zero, because the AWC data 
were derived independently of the other datasets. We used two different sources to estimate the 
temperature and precipitation terms in Suu: AmeriFlux sites (see main-text Methods for a 
summary of site selection) and Daly et al. (2008). For the AmeriFlux-based estimate, we 
performed OLS regression of mean annual temperature and precipitation and their squares (i.e., 
quadratic terms) from PRISM on the corresponding values from AmeriFlux sites. We then 
estimated the error variances and covariances from the regression residuals. We set covariances 
between temperature and precipitation terms to zero, because this was approximately true in the 
AmeriFlux analysis and because these covariances were not available from Daly et al. (2008). 
Relaxing this assumption had little impact on the AmeriFlux-based results. To estimate Suu from 
Daly et al. (2008), we converted their reported percent error of 4% for both mean annual 
temperature and precipitation (see page 2048 of Daly et al. 2008) into error variances as follows. 
First, we multiplied 4% times the mean temperature and precipitation values across FIA plots to 
obtain mean absolute errors, and then we converted these to variances using the properties of the 
normal distribution: standard deviation = (mean absolute error)/√(π/2). To estimate Daly-based 
mean absolute errors for the quadratic temperature and precipitation terms, we assumed these 
terms were double their linear counterparts, as was approximately true in the AmeriFlux 
analysis. Again, we then converted these to variances according to: standard deviation = (mean 
absolute error)/√(π/2). We estimated Daly-based covariances between linear and quadratic terms 
(e.g., between temperature and its square) as the product of the two error standard deviations, 
which was approximately true in the AmeriFlux analysis. The two estimated Saa matrices are 
below. The matrices are symmetric, so only the diagonal (error variances) and upper triangle 
(error covariances) are presented. 
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Error covariance matrix estimated from AmeriFlux sites.  
 FIA growth Temp Temp2 Precip Precip2 Soil AWC 
FIA growth 0.000529¶ 0 0 0 0 0 
Temp  0.260 3.72 0 0 0 
Temp2   67.5 0 0 0 
Precip    0.00423 0.00750 0 
Precip2     0.0147 0 
Soil AWC      179.7§ 
 
Error covariance matrix estimated from Daly et al. (2008). 
 FIA growth Temp Temp2 Precip Precip2 Soil AWC 
FIA growth 0.000529¶ 0 0 0 0 0 
Temp  0.0944 0.189 0 0 0 
Temp2   0.378 0 0 0 
Precip    0.00188 0.00375 0 
Precip2     0.00751 0 
Soil AWC      179.7§ 
¶ Error variance is for 60-80 year-old FIA plots. Error variances for the 40-60 and 60-80 year-old age class are 

0.000624 and 0.000618, respectively. 
§ Error variance is 10% of soil AWC variance across 60-80 year-old FIA plots. The alternative AWC error (50% 

of variance across FIA plots) is 5 times this value. Error variances (10% of soil AWC) for the 40-60 and 60-80 
year-old age class are 185.8 and 175.5, respectively. 

 
The MEM also requires an estimate of the degrees of freedom (df) for estimating the above 
covariance matrix. For the AmeriFlux-based analysis, we set df equal to the number of 
AmeriFlux sites (15) minus one. For the Daly-based analysis, we set df equal to 1000 (any value 
of this order or larger yields similar results), because a large number of meteorological towers 
were used by Daly et al. (2008) to estimate PRISM errors. 

To calculate the proportion of variance explained (R2) for MEMs (reported in table S1), 
we used formulae in Fuller (1987: pp. 96 and 113-114) to estimate the true values of the 
explanatory variables, and we then calculated R2 from OLS regressions of FIA growth on these 
estimated values. 
 
Optimization details 
To select grid cells for optimization, we first divided the eastern U.S. grid cells into 25 climate 
strata defined by five mean-annual-temperature and five mean-annual-precipitation percentile 
classes (0-20, 20-40, etc.). For example, the coldest and driest stratum included all grid cells 
whose mean annual temperature and precipitation were both in the 0-20th percentiles. More FIA 
plots per grid cell were available in the northeastern compared to the southeastern U.S. To 
reduce the north-south data imbalance, we included the two grid cells with the largest number of 
FIA plots in each of the 10 warmest strata (warmest two temperature classes; all five 
precipitation classes); whereas in each of the 15 coolest strata (coolest three temperature classes; 
all five precipitation classes), we included only the single grid cell with the most FIA plots. We 
excluded from the optimization grid cells with < 20 FIA plots, as these cells provide relatively 
little information for optimization but carry the same computational costs as more data-rich grid 
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cells. The optimization included 2313 FIA plots, 23 grid cells, and 20 out of 25 possible climate 
strata (Fig. 2a,b). 

For each optimization step, we executed 23 single-grid-cell LM3V runs configured to 
match the mean schedule (stand age and time of sampling) of FIA plots in each of the 23 
optimization grid cells. For FIA plots in a given grid cell, let 𝐴̅0 be the mean stand age at the 
time of the first measurement, and let 𝑌�0 and 𝑌�𝑡 be the mean first and second measurement years, 
respectively. LM3V was initialized with 1 kg C m–2 of vegetation biomass in year 𝑌�0 – 𝐴̅0 and 
run to year 𝑌�𝑡. If 𝑌�𝑡 was greater than 2006, we set 𝑌�𝑡 = 2006, because the Sheffield et al. (2006) 
meteorology was only available through 2006. Growth was calculated in LM3V between 𝑌�0 and 
𝑌�𝑡 according to main-text Equation 1. No spin-up was needed for soil C or nutrient pools because 
the optimization analysis was restricted to wood growth of live vegetation and because we 
studied a C-only version of LM3V in which soil biogeochemistry has no effect on vegetation. 
Because LM3V was configured to match the mean schedule of FIA plots in each grid cell, there 
was an inexact match for any given plot. The mismatch in stand age should have little impact on 
our results, because growth is nearly independent of age in both LM3V and in the 40-100 year-
old FIA plots used in the optimization. 

We implemented a modified Gauss-Newton algorithm according to Fletcher (1987) to 
minimize the sum of squared differences between predicted growth (from the 23 selected LM3V 
grid cells) and observed growth (from the 2313 FIA plots in the 23 grid cells). For each of the 23 
selected grid cells, each Gauss-Newton iteration required three LM3V runs to estimate 
derivatives (by forward differencing) of the residuals with respect to each of the three optimized 
parameters (Al, Ar, and VCmax). Both the current search direction and step length are derived from 
these derivatives in the basic Gauss-Newton algorithm. To improve the robustness of the basic 
algorithm, we replaced the default step length with an “acceptable point” identified from a line 
search algorithm (Fletcher 1987: pp. 26-40), which required an additional ~5-10 runs per 
iteration. We terminated the optimization when the cost function (sum of squares) decreased by 
< 0.01% between successive iterations. We calculated approximate 95% confidence intervals for 
each optimized parameter from an approximate variance-covariance matrix available in the 
Gauss-Newton context (Fletcher 1987: p. 112). Tests with artificial data showed that our 
parameter estimates and confidence intervals were nearly identical to those obtained from the 
‘nls’ (nonlinear least squares) function in the R software package (R Core Team 2012). 
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