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Abstract. Efforts to test and improve terrestrial biosphere models (TBMs) using a variety
of data sources have become increasingly common. Yet, geographically extensive forest
inventories have been under-exploited in previous model–data fusion efforts. Inventory
observations of forest growth, mortality, and biomass integrate processes across a range of
timescales, including slow timescale processes such as species turnover, that are likely to have
important effects on ecosystem responses to environmental variation. However, the large
number (thousands) of inventory plots precludes detailed measurements at each location, so
that uncertainty in climate, soil properties, and other environmental drivers may be large.
Errors in driver variables, if ignored, introduce bias into model–data fusion. We estimated
errors in climate and soil drivers at U.S. Forest Inventory and Analysis (FIA) plots, and we
explored the effects of these errors on model–data fusion with the Geophysical Fluid
Dynamics Laboratory LM3V dynamic global vegetation model. When driver errors were
ignored or assumed small at FIA plots, responses of biomass production in LM3V to
precipitation and soil available water capacity appeared steeper than the corresponding
responses estimated from FIA data. These differences became nonsignificant if driver errors at
FIA plots were assumed to be large. Ignoring driver errors when optimizing LM3V parameter
values yielded estimates for fine-root allocation that were larger than biometric estimates,
which is consistent with the expected direction of bias. To explore whether complications
posed by driver errors could be circumvented by relying on intensive study sites where driver
errors are small, we performed a power analysis. To accurately quantify the response of
biomass production to spatial variation in mean annual precipitation within the eastern
United States would require at least 40 intensive study sites, which is larger than the number of
sites typically available for individual biomes in existing plot networks. Driver errors may be
accommodated by several existing model–data fusion approaches, including hierarchical
Bayesian methods and ensemble filtering methods; however, these methods are computation-
ally expensive. We propose a new approach, in which the TBM functional response is fit
directly to the driver-error-corrected functional response estimated from data, rather than to
the raw observations.
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INTRODUCTION

Terrestrial ecosystems play a key role in climate–

carbon-cycle feedbacks, and vegetation response to

climate change is one of the largest sources of

uncertainty in projecting the future state of the Earth

system (Friedlingstein et al. 2006, Denman et al. 2007).

In terrestrial biosphere models (TBMs) designed to

study climate change (e.g., Foley et al. 1996, Sitch et al.

2003, Krinner et al. 2005), vegetation responds to

environmental variation largely through short timescale

physiological processes, e.g., stomatal conductance and

biochemical temperature sensitivities of photosynthesis

and respiration parameterized from measurements of

individual leaves over minutes to hours. Some longer

timescale processes are also represented in some TBMs,

including shifts in the distribution of broadly defined

plant functional types (PFTs; e.g., Foley et al. 1996,

Sitch et al. 2003) and feedbacks between the C and N

cycles (Thornton et al. 2007, Gerber et al. 2010, Zaehle

and Friend 2010). However, other slow timescale

processes that are likely to have strong impacts on

vegetation response to global change (e.g., within-PFT

shifts in plant species composition and local adaptation

within species) have been largely ignored in TBMs

(Rastetter 1996, Leuzinger et al. 2011, Luo et al. 2011b).

Geographically extensive forest inventories, such as

the U.S. Forest Inventory and Analysis (FIA) program,
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provide vast amounts of data that could be used to
improve the performance of TBMs across spatial

gradients in climate and other environmental drivers
(see Plate 1). Patterns of forest biomass and productivity

along these gradients integrate biological mechanisms

across a range of timescales, from fast timescale
physiological processes to the much slower timescales

of species replacement and evolutionary adaptation.
Despite a growing movement in the modeling commu-

nity to rigorously evaluate and improve TBMs using a
variety of data sources (e.g., Kucharik et al. 2000,

Barrett 2002, Luo et al. 2003, Raupach et al. 2005, Zhou
and Luo 2008, Medvigy et al. 2009, Randerson et al.

2009), the geographic gradients sampled by systematic
forest inventories have not been exploited by most

model–data syntheses.
Geographically extensive forest inventories present

both opportunities and challenges for model–data fusion
(or, synonymously, ‘‘data assimilation’’), in which model

state variables and/or parameters are estimated using

quantitative methods (Raupach et al. 2005, Williams et
al. 2009, Luo et al. 2011a). Previous model–data fusion

efforts (e.g., Luo et al. 2003, Medvigy et al. 2009,
Richardson et al. 2010) have focused largely on

assimilating data from intensive study sites where errors
in driver variables (e.g., meteorology and soil physical

properties) may be small enough that they contribute
little to model error (Spadavecchia et al. 2011).

Accordingly, specification of observation errors has
focused on errors in C fluxes or other variables whose

values are predicted by TBMs (Hollinger and Richard-
son 2005, Raupach et al. 2005, Williams et al. 2009,

Keenan et al. 2011). However, driver errors may be large
at forest inventory plots, due to the impracticality of

collecting detailed environmental data at a large number
of sites (e.g., ;100 000 FIA plots).

The ‘‘errors-in-x’’ problem is well-known among

statisticians (Griliches and Ringstad 1970, Fuller 1987,
Chesher 1991, Schennach 2004), but its implications for

model–data fusion with TBMs are not widely appreci-
ated. Simply put, the problem is that errors in

explanatory variables (x) lead to biased parameter

estimates in statistical models that fail to account for
these errors. For example, ordinary least squares (OLS)

regression slopes are biased toward zero in the presence
of errors in x (Fig. 1). Although the OLS case is

simplistic, it provides qualitative insights into how driver

error can bias model–data fusion. Suppose we wish to
adjust vegetation parameter values in a TBM (e.g., C

allocation to fine roots, leaves, or other tissues) so that
modeled growth (biomass production) matches, as

closely as possible, observed growth in forest inventory
plots across geographic gradients of temperature and

precipitation. The meteorological data used to drive the
TBM will only approximate the actual conditions at

inventory plots. If we ignore these errors while
optimizing the model–data fit, we will obtain TBM

parameter estimates that produce the wrong relationship
between growth and meteorology and climate. To see

this, consider the extreme case in which meteorological
errors are so large that the TBM drivers are uncorrelated

with the actual conditions at inventory plots, and
therefore uncorrelated with the growth observations.

In this case, an optimization algorithm that minimized
the deviations between modeled and observed growth

would erroneously eliminate from the TBM much or all

of the growth response to meteorology and climate.
Thus, we expect that ignoring driver errors in model–

data fusion will bias TBMs toward having weaker
responses to driver variables than the true responses of

real ecosystems.
In this paper, we explore how driver errors can bias

model–data fusion using FIA data and the Geophysical
Fluid Dynamics Laboratory (GFDL) LM3V land model

(Shevliakova et al. 2009). We focus on the United States
north of 358 N and east of 1008 W (hereafter ‘‘eastern

United States’’) because (1) it is dominated by a single
PFT (temperate deciduous trees comprise .80% of live

biomass of non-plantation forests in the region accord-
ing to FIA data), allowing us to address the largely

ignored problem of within-PFT variation in TBMs; (2) a
large number of FIA plots in this region have recently

been measured and remeasured using a well-document-

ed, standardized protocol (Bechtold and Patterson

FIG. 1. Errors in explanatory variables (x) bias statistical analyses that ignore these errors, whereas errors in response variables
(y) cause uncertainty but no bias. Histograms show the distribution of estimated slopes from 1000 ordinary least squares (OLS)
regressions of randomly generated data with a true slope of 1.0 (indicated by the black circle on the x-axis). The y-axis is scaled so
that the distribution sums to 1. Dashed vertical lines show the expected OLS slopes when measurement errors in x account for (a)
0% and (b) 50% of the observed variance in x. Measurement errors in y, which cause uncertainty but no bias in OLS regression,
account for 50% of the observed variance in y in both cases. The expected OLS slope is equal to br2

x/(r
2
x þr2

err), where b is the true
slope, and r2

x and r2
err are, respectively, the variances of the true (unobserved) x values and the errors in x (Fuller 1987). The

variance r2
err is equal to 0 and r2

x in panels a and b, respectively.
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2005); and (3) the data are publicly available. We ask (1)

Does LM3V’s functional response (i.e., the dependence
of forest growth on climate and soil physical properties)

appear similar to the functional response of real forests?
(2) Does accounting for driver errors at FIA plots affect

the perceived similarity between model and data? (3)
How do driver errors affect TBM parameter optimiza-

tion? (4) Is the existing network of intensive study sites
(where driver errors are presumably small) adequate to
constrain the within-PFT response of TBMs across

environmental gradients? In Discussion, we outline
several alternative approaches to model–data fusion

that account for driver errors, with the goal of avoiding
the biases exposed in this paper.

METHODS

Overview

We compared aboveground wood production (kg
C�m�2�yr�1; hereafter, ‘‘growth’’) in LM3V (Shevliakova

et al. 2009) to FIA data in the eastern United States.
LM3V explicitly represents age-dependent ecosystem

dynamics, and we controlled for forest age in our
model–data comparisons. We quantified the response of
growth in FIA data and LM3V output to climate (mean

annual temperature and precipitation) and soil available
water capacity (AWC) using a variety of linear and

nonlinear regression models. It is straightforward to
quantify TBM functional responses, because the values

of driver variables imposed on the model are known
without error. In contrast, estimation of functional

responses from FIA data are complicated by driver
errors (see Introduction). We estimated climate and

AWC errors at FIA plots, and then incorporated these
estimates into measurement error models (MEMs;

Fuller 1987) to obtain unbiased estimates of FIA
growth responses to climate and AWC. To explore

potential biases in model–data fusion when driver errors
are ignored, we fit LM3V vegetation parameters to FIA

data using a standard optimization approach. Finally,
we performed a power analysis to determine the number

of intensive study sites (i.e., sites with negligible driver
errors) needed to characterize the growth–precipitation

response within the eastern United States.

Summary of the LM3V global land model

LM3V (Shevliakova et al. 2009) is the terrestrial
component of the GFDL Earth System Model ESM2.1

and simulates the dynamics of broadly defined PFTs.
Gerber et al. (2010) developed a coupled C–N version of

LM3V, but here we focus on the C-only version
described in Shevliakova et al. (2009). LM3V tracks

the age of secondary vegetation (e.g., forests recovering
from harvest or non-forest land use), which facilitates

comparisons with forest inventory plots of known stand
age. Net primary production (NPP) in LM3V responds

to meteorology and soil moisture on a half-hourly time
step. The NPP formulation is based on the Farquhar

photosynthesis model (Farquhar et al. 1980, Collatz et

al. 1991, Leuning 1995) and is similar to that in the IBIS

model (Foley et al. 1996). Plant respiration is assumed

proportional to maximum photosynthetic rate (VCmax),

and both share the same Arrhenius-type temperature

sensitivity. Allocation to vegetation C pools shifts with

vegetation height to preserve constant ratios between

leaf, sapwood, and fine-root areas according to the pipe

model (Shinozaki et al. 1964). Leaf and fine-root

allocational fractions approach PFT-specific values as

vegetation height approaches a prescribed PFT-specific

maximum height; the remainder of NPP is allocated to

sapwood, which is converted to heartwood at a constant

rate. Vegetation C pools turn over at PFT-specific rates.

Hydrology in LM3V is based on the Land Dynamics

(LaD) model (Milly and Shmakin 2002). LaD tracks

three water stores: snow pack, root-zone soil water, and

ground water. Root-zone inputs are from snowmelt and

precipitation, and losses are due to drainage and

evaporation (modified in LM3V to separate soil

evaporation and plant transpiration). Drainage prevents

the root-zone store from exceeding its capacity, which is

the product of vegetation rooting depth (based on values

reported in Jackson et al. 1996) and plant-available soil

water capacity derived from a global map (Dunne and

Willmott 1996). Hereafter, we refer to root-zone water

capacity as soil ‘‘available water capacity’’ (AWC; kg/

m2). Soil AWC (Fig. 2) is a static map in LM3V, with

rooting depths prescribed based on the static distribu-

tion of PFTs in LaD (;1.0 m depth in the eastern

United States [Milly and Shmakin 2002]).

LM3V configuration

LM3V was run at 18 spatial resolution and forced

with the Sheffield et al. (2006) 18 spatial, three-hourly

meteorology (1948–2006; Fig. 2), which is constrained to

match monthly statistics from the 0.58 Climatic Re-

search Unit (CRU) climate product (New et al. 1999,

2000, Mitchell and Jones 2005), and thus corrects for

known temperature and precipitation biases in the

NCEP-NCAR reanalysis (Kalnay et al. 1996, Kistler

et al. 2001, see Sheffield et al. 2004). To minimize

model–data discrepancies due to disturbance history, we

implemented LM3V without fire or harvest, and we

simulated different-aged LM3V vegetation for compar-

ison with similar-aged FIA plots with no record of

recent harvest. Specifically, vegetation in each LM3V

grid cell was initiated with 1 kg C/m2 of live biomass in

the years 1952, 1932, and 1912 to yield 50-, 70-, and 90-

year-old vegetation, respectively, in the year 2002 for

comparison with the following FIA stand-age classes:

40–60, 60–80, and 80–100 years old. The 1948–2006

Sheffield meteorology was recycled prior to 1948 as

needed. Because LM3V vegetation appeared overly

sensitive to the baseline LaD-derived AWC map (see

Results), we also considered LM3V experiments with all

grid cells assigned the eastern United States mean AWC

of 146 kg/m2. The uniform AWC case reduces spatial

variation in soil moisture, but does not eliminate
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precipitation-induced spatial or temporal variation in

soil moisture. For each of the two AWC maps, we

performed LM3V simulations using the parameter

values from Shevliakova et al. (2009) and also optimized

parameter values estimated in the present study, yielding

four versions of LM3V (Table 1).

FIA data set

FIA systematically samples U.S. forests on both

public and private land with one inventory plot every

;2400 ha (Bechtold and Patterson 2005). Each plot

samples trees with a minimum diameter at breast height

(dbh) of 2.54 cm in subplots distributed over a 0.4 ha

area (Bechtold and Patterson 2005). We downloaded all

publicly available FIA data from the FIA website in

October 2010.7 We restricted our analysis to inventory

plots that were measured and remeasured since 1999

under FIA’s National Sampling Design (Bechtold and

Patterson 2005). Additional plot selection criteria

included (see also Appendix A) (1) reported stand age

(mean age of trees in dominant size class) in one of the

three age classes used in this study (40–60, 60–80, or 80–

100 years); (2) no trees harvested during the remeasure-

ment interval, for consistency with our no-harvest

LM3V simulations; and (3) naturally regenerating

(non-plantation) forest.

Calculating growth from FIA data and LM3V output

We estimated growth from FIA data at two spatial

scales: individual FIA plots (FIA-plot) and FIA plots in

a given age class (40–60, 60–80, or 80–100 years)

averaged within 18 grid cells (FIA-grid; Fig. 3; Appendix

B: Figs. B1 and B2). To estimate growth at FIA plots,

we first estimated aboveground live biomass (AGB; kg

C/m2) at each plot at time 0 (first plot measurement in

our data set) and time t (remeasurement, t years later) by

FIG. 2. Climate and soil available water capacity (AWC) maps used as explanatory variables in regression analyses of
Geophysical Fluid Dynamics Laboratory LM3V land model output and Forest Inventory and Analysis (FIA) data aggregated to 18
grid cells (FIA-grid). (a–b) Mean annual temperature and precipitation calculated from the LM3V three-hourly forcing data
(Sheffield et al. 2006). (c) AWC map used in LM3V simulations and in regressions of LM3V output. (d) SSURGO-derived AWC
map, upscaled to 18, used in FIA-grid regressions. SSURGO is the U.S. Department of Agriculture Soil Survey Geographic
Database. Circles in panels a and b show the locations of the 23 grid cells used in the LM3V optimization; the grid cells were
selected to span gradients of mean annual temperature and precipitation.

7 http://www.fia.fs.fed.us/
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combining reported dbh values with published biomass

allometries (Jenkins et al. 2003) and assuming a 2:1 ratio

of biomass to C. We then estimated growth (kg

C�m�2�yr�1) at each plot as

growth ¼ ðAGBt � AGB0 þM0Þ=t ð1Þ

where AGB0 and AGBt are, respectively, AGB at times

0 and t; M0 is the total time-0 AGB of trees that were

alive at time 0 but dead at time t; and t is the reported

remeasurement interval (about five years, on average,

for eastern United States FIA plots). Eq. 1 is also

straightforward to calculate from LM3V output (over

the years 2002–2006 in our analysis) by replacing M0/t

with l 3 AGB0, where l ¼ 0.015 yr�1 is the LM3V

mortality rate for temperate deciduous trees (Shevlia-

kova et al. 2009). Eq. 1 ignores growth of trees that died

between times 0 and t, and therefore has a small negative

bias in both the FIA and LM3V calculations, which

should not bias the model–data comparison. Note that

growth as defined here excludes production of leaves,

roots, and reproductive tissues and is roughly 30% of

NPP.

Quantifying LM3V and FIA growth responses to climate

and soil

We quantified the growth response in LM3V output

and FIA data (both FIA-plot and FIA-grid; Table 1) to

spatial variation in mean annual temperature (which is

strongly correlated with growing season length within

the eastern United States), mean annual precipitation,

mean July plus August precipitation, and soil AWC

using linear and nonlinear regression models. Plot- and

grid-scale analyses of FIA data each have pros and cons.

Errors in climate and AWC are more easily quantified at

the plot scale, but FIA-plot growth data are noisy,

which makes visual comparison to LM3V inconvenient.

In contrast, FIA-grid data allow for easy visual

comparison to LM3V, but climate and AWC error

estimates are not available at the 18 grid scale.

For the regression analysis, climate variables were

averaged over 1948–2006. We obtained similar regres-

TABLE 1. Data sources for regression analyses of U.S. Forest Inventory and Analysis (FIA) data and Geophysical Fluid Dynamics
Laboratory LM3V land model output.

Source Description

FIA-plot Individual FIA inventory plots (0.4 ha). Exact plot coordinates were obtained from the U.S. Forest
Service. Climate and soil available water capacity (AWC) were extracted from the PRISM (4-km
resolution) and SSURGO (;1.6-ha resolution) data sets, respectively.

FIA-grid FIA plots aggregated to 18 grid cells. Each value is the mean of �10 FIA plots in a given stand-age
class (40–60, 60–80, or 80–100 years). Climate data were extracted from Sheffield et al. (2006), and
soil AWC was upscaled to 18 from SSURGO.

LM3V-baseline Baseline LM3V model with parameter values and soil AWC as in Shevliakova et al. (2009) and
meteorological drivers from Sheffield et al. (2006).

LM3V-SbasePopt Same as LM3V-baseline, but with optimized vegetation parameters.
LM3V-SmeanPbase LM3V with baseline parameter values and a uniform soil AWC map (every grid cell assigned the

eastern U.S. mean, 146 kg/m2).
LM3V-SmeanPopt Same as LM3V-SmeanPbase, but with optimized vegetation parameters.

FIG. 3. Growth in (a) 60–80 year-old FIA plots and (b) 70-year-old vegetation in the baseline LM3V model (Shevliakova et al.
2009). Each FIA value represents the mean aboveground wood growth rate of �10 remeasured inventory plots; cells with ,10
remeasured plots are white. LM3V values are shown only for grid cells where the temperate deciduous tree plant functional type
was present in �20 of the last 40 simulation years; other cells are white. Maps for younger and older stand-age classes are shown in
Appendix B: Figs. B1 and B2.
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sion results when climate was averaged over 2002–2006

(results not reported). Across the three sources (FIA-
plot, FIA-grid, and LM3V) and three age classes,

neither of the two precipitation variables (mean annual
or mean July plus August) was consistently a better

predictor of growth. We only report results for mean

annual precipitation, which does not qualitatively affect
our conclusions. Below, we describe in sequence (1) data

sources; (2) OLS regressions that ignore driver errors at
FIA plots; (3) MEMs applied to FIA-plot data; and (4)

a net growth response index that facilitated comparisons
among regression models with different functional forms

and error structures.

To quantify growth responses of FIA-plot data, we
obtained the true locations of FIA plots through an

agreement with the U.S. Forest Service (FIA reports
approximate locations in their public database), and we

overlaid these locations on high-spatial-resolution cli-

mate and soils data: the 4-km monthly PRISM climate
data set and the ;1:24 000 scale U.S. Department of

Agriculture Soil Survey Geographic (SSURGO) data-
base, which has a minimum mapping unit of ;2 ha (Soil

Survey Division Staff 1993; data available online).8,9 The
high spatial resolution of these climate and soils data

should reduce, but not eliminate, errors at the scale of

individual FIA plots (0.4 ha). We did not run LM3V at
this spatial resolution, because PRISM lacks sufficient

temporal resolution (monthly, compared to the three-
hourly inputs required by LM3V) and does not include

the full suite of meteorological drivers required by land
models (e.g., radiation and wind speed). We calculated

AWC from SSURGO as available water supply to 1 m

depth (similar to the LM3V AWC rooting depth), with
units converted to kg/m2 as in LM3V. We obtained

qualitatively similar results (not reported) by estimating
AWC from SSURGO as available water supply to 0.5 m

depth or available water capacity averaged over the
entire soil depth. Preliminary analysis showed that FIA-

plot growth was unimodally related to AWC, declining

beyond AWC of ;200 kg/m2, which likely reflects
growth inhibition under waterlogged soil conditions.

Because LM3V includes no mechanisms that can
reproduce this pattern (i.e., for a given meteorological

forcing, NPP in LM3V is non-decreasing with increasing
AWC), we excluded FIA plots with AWC .200 kg/m2

from the FIA-plot regressions.

To quantify growth responses of LM3V and FIA-grid
data using the identical set of grid cells, we restricted

both analyses to grid cells where (1) SSURGO AWC,
upscaled to 18, was less than 200 kg/m2 (as in FIA-plot

regressions); (2) at least 10 FIA plots were available to

estimate FIA-grid growth; and (3) the PFT in LM3V
was temperate deciduous forest for at least 20 of the last

40 simulation years (the LM3V configuration we used
allowed for a single PFT per grid cell per year). We used

the 18 LM3V meteorological drivers (Sheffield et al.

2006) to quantify climate in both LM3V and FIA-grid

regressions. Because these drivers are constrained to

match monthly CRU temperature and precipitation

statistics, climate errors in FIA-grid regressions should

be small. We used LM3V AWC and 18 SSURGO AWC

in LM3V and FIA-grid regressions, respectively.

We estimated separate growth responses for each of

the three age classes (50-, 70-, and 90-year-old LM3V

vegetation; and 40–60-, 60–80-, and 80–100-year-old

FIA plots). For each age class, we fit linear and

nonlinear regression models of growth as a function of

mean annual temperature, mean annual precipitation,

and soil AWC, including OLS multiple regressions with

linear terms for temperature, precipitation, and AWC;

OLS multiple regressions with the three linear terms plus

one or more quadratic terms for temperature, precipi-

tation, and/or their interaction (quadratic AWC terms

were unnecessary, because we excluded locations with

SSURGO AWC .200 kg/m2); and nonlinear models

following Luyssaert et al. (2007) of the form: E[growth]

¼ b0T b1 Pb2 Sb3 , where E[growth] is expected growth, and

T, P, and S are temperature, precipitation, and soil

AWC, respectively. We fit these nonlinear models

assuming that errors in growth were (1) additive normal

random variables with constant variance, (2) additive

normal random variables with variance proportional to

expected growth, or (3) multiplicative lognormal ran-

dom variables. Within a given data source (LM3V, FIA-

grid, or FIA-plot) and age class, we compared the above

models using the Akaike information criterion (AIC). In

most cases, models that were linear in parameters

(including those with quadratic terms) and that lacked

interaction terms had AIC values that were similar to or

better (lower) than the other models. Therefore, we

restricted subsequent analyses to linear-in-parameters

models with no interaction terms. Examination of model

residuals indicated approximate normality in all cases,

as assumed by OLS.

To explore how driver errors may affect estimates of

FIA growth responses to climate and soil, we estimated

errors in PRISM climate data and in SSURGO AWC at

the scale of individual FIA plots, and we used these

error estimates to fit MEMs to FIA-plot data. We did

not fit MEMs to FIA-grid data because we lacked a

straightforward means of estimating climate and soil

errors at the 18 scale. The MEMs we fit use a variance-

covariance matrix of the error structure of response and

explanatory variables to yield unbiased estimates of

regression coefficients and their uncertainties (Fuller

1987). These MEMs assume normally distributed errors

and are restricted to functional forms that are linear in

the parameters, including the quadratic models we fit.

These restrictions allow the MEM to be solved using

linear algebra (see Appendix A for details). MEMs may

be extended to non-normal and nonlinear cases using

more computationally demanding approaches (e.g.,

Lichstein et al. 2010). As noted above, the assumptions

8 http://prism.oregonstate.edu
9 http://soildatamart.nrcs.usda.gov/
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of normality and linearity are not overly restrictive in

the present analysis. We fit one MEM for each age class

using the functional form with the lowest AIC among

the candidate OLS models. It is important to note that

multiple regression coefficients obtained from MEMs

are not necessarily larger in magnitude than those

obtained from methods such as OLS that ignore errors

in x. This is in contrast to the example in Fig. 1 with a

single explanatory variable, in which the regression slope

is always biased toward zero by errors in x.

We quantified errors in PRISM climate data using

two different approaches. First, we used temperature

and precipitation data from eastern U.S. AmeriFlux

sites included in the North American Carbon Program

(NACP) site-level interim synthesis, which were gap-

filled using a standard protocol (Schaefer et al. 2012).

We included 15 non-irrigated sites with reliable rain gage

data: US-ARM (Fischer et al. 2007), US-Dk2 (Stoy et

al. 2008), US-Dk3 (Oren et al. 2006), US-Ha1 (Urbanski

et al. 2007), US-Ho1 (Hollinger et al. 1999), US-Ib2,

US-Los (Sulman et al. 2009), US-MMS (Schmid et al.

2000), US-MOz (Gu et al. 2006), US-Ne3 (Verma et al.

2005), US-PFa (Sulman et al. 2009), US-Shd (Suyker et

al. 2003), US-Syv (Desai et al. 2005), US-UMB (Gough

et al. 2008), and US-WCr (Cook et al. 2004). For each of

the 15 AmeriFlux sites, we calculated mean annual

temperature and precipitation over the available time

period (mean period of 7.2 years; range 3–16 years) for

comparison with PRISM data for the same location and

time. Second, we used point-scale error statistics

reported by Daly et al. (2008) for the 800-m-scale

PRISM climate normals (1971–2000 means). The

AmeriFlux-based approach probably overestimates er-

rors in the 4-km monthly PRISM product, because

AmeriFlux meteorologies include measurement error

(especially for precipitation), and because only a few

years of data were available at some sites to estimate

mean climate. In contrast, the 800-m-scale error

estimates reported by Daly et al. (2008) probably

underestimate errors in mean climate derived from the

4-km monthly PRISM product due to the difference in

spatial resolution and temporal coverage. Thus, the true

errors in the 4-km PRISM data, when applied to point

locations such as FIA plots, likely lie somewhere

between the two estimates described above. In Appendix

A, we explain in detail how we estimated the error

covariance matrix for the MEMs.

In contrast to temperature and precipitation, we did

not obtain quantitative error estimates for SSURGO

AWC. Several studies have assessed at fine spatial scales

the accuracy of soil texture and other attributes reported

in SSURGO (Thomas et al. 1989, Rogowski and Wolf

1994, Drohan et al. 2003) and have found good overall

agreement despite considerable spatial heterogeneity

within SSURGO mapping units. However, to our

knowledge, there is no quantitative information avail-

able on errors in SSURGO AWC. Therefore, we

considered two scenarios to bracket the likely range of

errors in SSURGO AWC: we assumed that either 10%
or 50% of the total variance in SSURGO AWC across

FIA plots was due to errors, including any errors due to

scale mismatches between SSURGO mapping units and

FIA plots.

We defined a net growth response index (GR) to

compare the response of growth to climate and soil

variables across statistical models with different func-

tional forms (with vs. without quadratic terms) and

error structures (OLS vs. MEMs). We define GRx as the

estimated net change in growth across a fixed range of

an explanatory variable x, holding other explanatory

variables constant. The ranges, chosen to span most of

the variation in each x, were 3–148C for temperature,

0.65–1.3 m/yr for precipitation, and 100–200 kg m�2 for

AWC. For example, GRpr is the growth rate estimated

by a given model at 1.3 m/yr precipitation minus the

corresponding growth rate at 0.65 m/yr precipitation.

For models without a quadratic x term, GRx is simply

the regression coefficient (slope) times the range of x.

Note that because the models include no interaction

terms, GRx does not depend on the values of the other

explanatory variables. To quantify uncertainty in GRx,

we calculated GRx for each of 10 000 random samples

drawn from the distribution of regression model

parameters, which was assumed to be multivariate

normal (Bolker 2008).

Optimization

To explore potential pitfalls that may arise in model–

data fusion in the presence of errors in x, we

implemented an optimization scheme to minimize the

sum of squared deviations between growth predicted by

LM3V (run at 18 spatial resolution) and growth

observed at FIA plots (FIA-plot; Table 1). This

optimization approach ignores any differences between

LM3V drivers and the actual meteorology and AWC at

FIA plots. Therefore, we would expect the optimized

LM3V model to be less sensitive than real forests to

environmental variation (see Introduction).

We optimized three parameters for the temperate

deciduous tree PFT: fraction of NPP allocated to leaves

and fine roots (with the remainder allocated to wood)

and maximum photosynthetic rate at 158C (VCmax).

These three parameters were selected because they

directly affect growth and should be well-constrained

by forest inventory data.

To minimize computational costs, we used the Gauss-

Newton method (Fletcher 1987), a ‘‘gradient-descent’’

algorithm (Raupach et al. 2005, Williams et al. 2009),

and we based the optimization on a small subset (n¼ 23

grid cells) of eastern United States 18 grid cells (see

Appendix A for selection criteria). The optimization

involved iteratively running LM3V for the 23 grid cells,

comparing the grid-cell-scale model output to individual

FIA plots in these grid cells, and then rerunning the

model with new parameter values until the algorithm

described in Fletcher (1987) converged (see Appendix A
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for details). Local optimization, such as the Gauss-

Newton algorithm used here, is less robust than some

other estimation methods, such as Markov chain Monte

Carlo (Gilks et al. 1996) and simulated annealing (Goffe

et al. 1994). However, these alternative methods are

computationally demanding, typically requiring .104

model runs to converge compared to ,102 for many

local optimizations (Fletcher 1987). To increase our

confidence that we had identified the global optimum,

we repeated the optimization a second time with

alternative initial parameter values, which yielded

similar results. Convergence of the Gauss-Newton

algorithm and the modest width of confidence intervals

(Table 2) imply that the parameters were well con-

strained by the data.

Power analysis

We performed a power analysis to estimate the

number of intensive study sites (Nsite) needed to

constrain the relationship between growth and mean

annual precipitation; similar results were obtained for

mean July plus August precipitation (not reported). To

simplify the analysis, we assumed a linear response

between growth and precipitation, we ignored the effects

of other variables (e.g., temperature and soil AWC), and

we assumed that precipitation could be measured

without error at ‘‘intensive study sites.’’ These assump-

tions make our power analysis conservative; i.e., the true

value of Nsite is likely larger than the estimates we report.

We quantified the minimum Nsite needed to have at

least an 80% chance of (1) correctly rejecting the null

hypothesis, H0, that the growth–precipitation slope is

zero; and (2) estimating a slope within 20% of the true

value. Because the true slope is unknown, we considered

six different hypothetical values obtained from the FIA-

grid and LM3V-baseline OLS regressions for each of the

three age classes. For each of the six cases, we used the

precipitation slope from the OLS model with the lowest

AIC among models with a linear precipitation response.

We did not use FIA-plot regressions as targets for power

analysis, because the high plot-scale growth variance is

not representative of intensive study sites and would

artificially inflate Nsite (which depends on the residual

standard error).

The first power analysis (Nsite needed to reject H0 with

80% probability) is standard and was executed with R

software (R Development Core Team 2012) using the

ss.power.reg.coef function in the MBESS package. The

second power analysis (Nsite needed to estimate a slope

within 20% of the true slope with 80% probability) is

nonstandard and was executed with a simulation

approach in which we performed OLS regressions on

randomly generated data sets and numerically solved for

the Nsite of interest. Each randomly generated data set

had randomly generated x (precipitation) values drawn

from a uniform distribution with range equal to the

actual precipitation range in our study; and y (growth)

values equal to bx þ e, where b is the ‘‘true’’ slope (i.e.,

the slope from one of the six multiple regressions

described above), and e is a normal random variable

with mean zero and standard deviation equal to the

residual standard error from the source regression.

RESULTS

LM3V appears significantly more sensitive than 18 grid-

scale FIA data to soil available water capacity (AWC),

but not to temperature or precipitation.—Here, we

describe the functional response of the LM3V model

relative to the apparent functional response estimated

from FIA-grid data (Table 1) when measurement errors

are ignored (OLS regression). Plotting growth vs.

climate and AWC for LM3V-baseline and FIA-grid

reveals different shapes of temperature responses (uni-

modal in FIA-grid, monotonic in LM3V-baseline) and

greater sensitivity of LM3V-baseline to both precipita-

tion and AWC (see Fig. 4 and Appendix B: Figs. B3 and

TABLE 2. Vegetation parameter values for the temperate deciduous tree plant functional type in different versions of the LM3V
model and empirical estimates.

Source Leaf allocation Fine-root allocation VCmax (lmol CO2�m�2�s�1)

LM3V-baseline 0.520 0.250 40
LM3V-SbasePopt 0.264; CI, 0.249–0.279 0.466; CI, 0.459–0.472 17.7; CI, 16.9–18.4
LM3V-SmeanPopt 0.369; CI, 0.331–0.401 0.305; CI, 0.278–0.332 11.5; CI, 11.3–11.7
Observations 0.28; range, 0.24–0.35� 0.36; range, 0.22–0.44� 40.7; CI, 39.2–42.2�

Notes: Leaf and fine-root allocation are fractions of net primary production (NPP). VCmax is the maximum photosynthetic rate
(carboxylase velocity) at 158C. CI are 95% confidence intervals. LM3V-baseline values are from Shevliakova et al. (2009). LM3V-
SbasePopt and LM3V-SmeanPopt values (maximum likelihood estimates and 95% confidence intervals) were estimated using the
baseline and uniform soil AWC maps, respectively (Table 1). Observations of leaf and fine-root allocation (mean and range) are
biometric estimates from FLUXNET sites (see details in footnotes). VCmax observations (mean and 95% confidence interval) are
from Kattge et al. (2009).

� Biometric estimates (n ¼ 3 estimates) from unmanaged, eastern U.S. temperate broad-leaved forest sites in the FLUXNET
synthesis data set (Luyssaert et al. 2007), including unmanaged secondary forests. More than three unmanaged eastern U.S. sites
are reported by Luyssaert et al. (2007), but only three include biometric estimates of NPP components. Including all global
unmanaged forests older than 30 years that report biometric estimates of allocation yields 25 sites, with mean (and SE) leaf and
fine-root allocations of 0.238 (0.015) and 0.296 (0.027), respectively.

� Kattge et al. (2009) report VCmax values at 258C. We converted these values to 158C using the Arrhenius-type temperature
sensitivity in Shevliakova et al. (2009). The uncertainty we report is for the mean VCmax of temperature deciduous trees, based on
the standard error in Kattge et al. (2009) and assuming the mean is normally distributed.
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FIG. 4. Growth in FIA plots and the LM3V model vs. climate and soil available water capacity (AWC). Aboveground wood
growth rates of 60–80 year-old FIA inventory plots (18 grid-cell means) and 70-year-old vegetation in four versions of the LM3V
model (Table 1) are plotted against (a–e) mean annual temperature and (f–j) mean annual precipitation. Blue/red points refer to grid
cells where AWC is below/above its median value. Points are gray in cases where LM3V was run with a uniform AWC map. Black
lines and curves show ordinary least squares regressions: R2 is the proportion of variance explained; y in the equations is growth, and
x is (a–e) temperature or (f–j) precipitation. Nonsignificant (P . 0.05) quadratic terms were excluded. Results for younger and older
stand-age classes are shown in Appendix B: Figs. B3 and B4.
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B4). In OLS multiple regressions, the greater sensitivity

of LM3V-baseline than FIA-grid to AWC persisted

(Figs. 5 and B5), but other model–data differences were

diminished: LM3V-baseline and FIA-grid both had

unimodal temperature responses with maxima near

108C (Table B1) and were not significantly different

from each other in their net growth responses (GR) to

temperature and precipitation (Figs. 5 and B5).

LM3V appears significantly more sensitive than plot-

level FIA data to precipitation and soil AWC if driver

errors are ignored or assumed small, but not if driver

errors are assumed large.—Here, we describe the

functional response of the LM3V model relative to

(1) the apparent functional response estimated from

FIA-plot data (Table 1) when measurement errors are

ignored (OLS models), and (2) the functional response

estimated from FIA-plot data using measurement error

models (MEMs). OLS multiple regressions of plot-level

FIA data (FIA-plot) yielded similar temperature

responses to LM3V-baseline, but precipitation and

AWC responses that were significantly weaker than

LM3V-baseline (Figs. 5 and B5 and Table B1). The

MEM results depended on the assumed error variances.

FIA-plot precipitation responses were significantly

weaker than LM3V-baseline when the relatively small

climate errors reported by Daly et al. (2008) were used

in MEMs (Figs. 5 and B5), but not when the larger

climate errors estimated from AmeriFlux sites were

used (Fig. B6). FIA-plot had weaker AWC responses

than LM3V-baseline when AWC errors were assumed

small at FIA plots (10% of total AWC variance), but

this difference became nonsignificant when AWC

errors were assumed large (50% of total AWC variance;

Figs. 5, B5, B6).

Ignoring driver errors when optimizing LM3V vegeta-

tion parameter values yields unrealistic parameter esti-

mates.—Optimizing LM3V vegetation parameters by

minimizing the sum of squared deviations between

LM3V and FIA growth in 23 selected grid cells

substantially reduces model–data deviations (Figs. 6

and Appendix B: Figs. B7 and B8), but results in

unrealistic parameter values (see LM3V-SbasePopt in

Table 2): optimized fine-root allocation is significantly

higher than biometric estimates from eastern U.S.

FLUXNET sites, and optimized VCmax is significantly

lower than the mean VCmax reported for temperate

deciduous forest by Kattge et al. (2009). In contrast, if

we eliminate AWC heterogeneity in LM3V (by assigning

all model grid cells the eastern United States mean

AWC), then optimized leaf and fine-root allocation are

consistent with FLUXNET biometric estimates, but

optimized VCmax still appears too low (see LM3V-

SmeanPopt in Table 2).

At least 40 intensive study sites would be needed to

accurately characterize forest growth response to precip-

itation within the eastern United States.—Regardless of

which data source (LM3V-baseline or FIA-grid) or

forest age class is used to specify the hypothetical ‘‘true’’

response of growth to precipitation, at least 40 intensive

study sites (with little or no driver error) would be

needed to accurately characterize the growth–precipita-

tion response within the eastern United States (Table 3).

FIG. 5. Growth response of FIA plots and the LM3V model to climate and soil available water capacity (AWC). Response of
aboveground wood growth to mean annual temperature, mean annual precipitation, and AWC were estimated from 60–80 year-
old FIA inventory plots and output from different versions of the LM3V model. From left to right, the seven estimates for
temperature and precipitation responses are from (1) ordinary least squares (OLS) analysis of plot-scale FIA data; (2 and 3)
measurement error model (MEM) analysis of plot-scale FIA data using temperature and precipitation error estimates from Daly et
al. (2008) and assuming 10% (MEM10) or 50% (MEM50) of AWC variance is due to measurement error; (4) OLS analysis of FIA
data aggregated to 18 grid cells; (5) the baseline LM3V model (shown in boldface type); and (6 and 7) LM3V with baseline or
uniform AWC maps and optimized parameter values (Table 1). For soil AWC, only the first six estimates are shown, because no
AWC response is available for the uniform-AWC LM3V-SbasePopt case (Table 1). The y-axis (growth response) quantifies the
expected change in growth across the following ranges: 3–148C for temperature, 0.65–1.3 m/yr for precipitation, and 100–200 kg/m2

for AWC. Error bars are 95% confidence limits. Results for younger and older stand-age classes, and for MEMs based on an
alternative set of temperature and precipitation errors estimates, are shown in Appendix B: Figs. B5 and B6.
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Here, ‘‘accurately characterize’’ means having at least an

80% chance of estimating a precipitation response that is

within 20% of the true response. At least 23 sites would

be needed merely to detect a significant precipitation

response with 80% probability, assuming a Type I error

rate of 0.05 (Table 3).

DISCUSSION

Our analysis explores how errors in driver variables

(e.g., meteorology and soil physical properties) can

affect the functional response of forest growth (i.e., the

dependence of aboveground wood production on

climate and soil) estimated from geographically exten-

sive forest inventory data sets, such the U.S. Forest

Inventory and Analysis (FIA) database. Our results

show that accounting for driver errors at inventory plots

can reduce apparent differences between functional

responses of terrestrial biosphere models (TBMs) and

real forests. Ignoring these errors can bias parameter

estimates obtained from standard data-assimilation

methods. Our results apply to geographically extensive

forest inventories where the large number of plots (e.g.,

;100 000 FIA plots) precludes detailed environmental

measurements at each location. Our results do not

necessarily apply to flux-tower or other intensive study

sites where driver errors may be relatively small. We now

revisit the questions posed at the end of Introduction.

Does the functional response of the LM3V model

appear similar to that of real forests? Does accounting for

driver errors at FIA plots affect the perceived similarity

between model and data?—Responses of LM3V and real

forests (eastern U.S. FIA data) to spatial variation in

mean annual temperature were similar in most of our

comparisons. The main exception was in univariate

regressions that ignored precipitation and soil available

water capacity (AWC; Fig. 4). However, this difference

largely disappeared in multiple regressions that included

precipitation and AWC, in which case both LM3V and

FIA data showed a temperature optimum around 108C

(Appendix B: Table B1).

In contrast, LM3V appeared more sensitive than

real forests to mean annual precipitation and AWC in

most comparisons, particularly in cases where driver

errors were potentially large yet ignored in ordinary

least squares (OLS) regressions. When driver errors at

FIA plots were accounted for in measurement error

models (MEMs), the apparent oversensitivity of

LM3V to precipitation and AWC was reduced. At

the scale of 18 grid cells, we expect climate errors to be

small due to the high density of meteorological towers

in the eastern United States (New et al. 1999, Sheffield

et al. 2006). Thus, precipitation responses estimated

TABLE 3. Number of intensive study sites needed to quantify
forest growth (woody biomass increment; kg C�m�2�yr�1)
response to mean annual precipitation in the eastern U.S.

Source Age (yr) Slope Nsignif N20

FIA-grid 40–60 0.120*** 30 52
LM3V-baseline 50 0.136*** 26 49
FIA-grid 60–80 0.010*** 24 40
LM3V-baseline 70 0.142*** 23 42
FIA-grid 80–100 0.062* 79 191
LM3V-baseline 90 0.109*** 37 85

Notes: Results reported in the table refer to the hypothetical
(unrealistic) case where intensive study sites have no error in
precipitation, and so the minimum number of sites reported is
conservative. Each row in the table represents a different
hypothetical ‘‘true’’ precipitation response, based on multiple
regressions of growth vs. temperature, precipitation, and soil
available water capacity (see Table 1 for source definitions).
Age is the FIA-grid stand-age range or the LM3V-baseline
vegetation age. Slope is the multiple regression precipitation
coefficient. Nsignif is the number of intensive study sites needed
to have an 80% chance of correctly rejecting the null hypothesis
(H0: slope ¼ 0; two-tailed test; Type-I error rate ¼ 0.05),
assuming that the value in the slope column is the true slope.
N20 is the number of intensive study sites needed to have an
80% chance of estimating a slope within 20% of the value in the
slope column.

* P , 0.05; *** P , 0.001.

FIG. 6. Observed (FIA) vs. predicted (LM3V model) aboveground wood growth (kg C�m�2�yr�1). FIA observations (mean of
�10 FIA plots in 18 grid cells) are plotted against predictions from four versions of the LM3V model (Table 1). RMSE is the root
mean squared error of predictions. The 1:1 line and overall means (solid gray circles) are shown. LM3V vegetation parameter
values in panels a and c are from Shevliakova et al. (2009), whereas those in panels b and d were optimized using FIA data in 23
grid cells (see locations in Fig. 2a, b). Results are for 60–80 year-old FIA plots and 70-year-old LM3V vegetation. Younger and
older stand-age classes yielded similar results (Appendix B: Figs. B7 and B8).
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from OLS regressions of 18 grid-scale FIA data (FIA-

grid) should be approximately unbiased. FIA-grid

precipitation responses were weaker than LM3V

precipitation responses, but not significantly so.

Precipitation responses estimated from MEMs of

plot-scale FIA data (FIA-plot) were also weaker than

in LM3V, but these differences were not statistically

significant when precipitation errors at FIA plots were

assumed to be large (i.e., the upper limit of the

plausible range).

In contrast to 18 climate errors, we expect relatively

large AWC errors because soil properties are highly

variable at fine spatial scales (see Plate 1) and therefore

difficult to quantify. One indication of large AWC errors

at the 18 scale is that LM3V AWC and 18 SSURGO

AWC are not significantly correlated with each other

(Fig. 2c, d). Given the potentially large 18 AWC errors,

AWC responses estimated from FIA-grid OLS regres-

sions may be substantially biased toward zero, and thus

may be a poor indicator of the sensitivity of real forests

to soil properties. FIA-plot MEMs yielded weaker AWC

responses than LM3V, but again, these differences were

not statistically significant when AWC errors were

assumed large. Because quantitative estimates of AWC

errors are not currently available, we considered

arbitrary (but plausible) lower and upper bounds for

these errors. Clearly, quantitative error estimates for

regional- to global-scale soil data sets (e.g., Dunne and

Willmott 1996) would improve our capacity to test

TBMs.

Despite the uncertainty in our results, which largely

reflects uncertainty in our estimates of driver errors, our

analyses provide at least weak evidence that LM3V

vegetation is too sensitive to water availability. This

oversensitivity was not unexpected, given that the model

lacks important slow-timescale mechanisms that may

moderate ecosystem response to environmental drivers

(Leuzinger et al. 2011, Luo et al. 2011b). For example,

C–N feedbacks may introduce time lags into ecosystem

dynamics that dampen vegetation response to interan-

nual variation in temperature and precipitation, as

observed in some coupled C–N TBMs (Thornton et al.

2007, Gerber et al. 2010). Inflexible allocation (to roots,

leaves, etc.) in LM3V also likely contributes to its

oversensitivity to water availability. Incorporating

flexible allocation in response to water stress, as in some

TBMs (e.g., Friedlingstein et al. 1999, Ostle et al. 2009,

Zaehle and Friend 2010), would likely dampen the

LM3V vegetation response to water availability. Finally,

the crude representation of biodiversity in LM3V and

most other TBMs likely fails to capture important

dampening mechanisms in real ecosystems (Rastetter

1996, Leuzinger et al. 2011, Luo et al. 2011b), such as

adaptations of different species or populations to

different hydrological regimes (Cavender-Bares et al.

2004, Engelbrecht et al. 2007, McDowell et al. 2008).

Despite the above reasons to expect TBMs to be overly

sensitive to environmental variation, limitations of

current TBMs may in some cases lead to under-

sensitivity (Powell et al. 2013).

How is TBM parameter optimization affected if driver

errors are ignored?—Leaf allocation in the baseline

LM3V model appears too high compared to biometric

estimates from FLUXNET sites (compare LM3V-

baseline to Observations in Table 2), which likely makes

the model too sensitive to soil moisture. Increasing the

fraction of NPP allocated to fine roots should decrease

model sensitivity to soil moisture, thereby bringing the

LM3V functional response into better agreement with

that of real forests. However, if driver errors are ignored

during optimization, then the sensitivity of the model to

soil moisture may be reduced too much. If driver errors

are severe, then parameter optimization may completely

(and erroneously) eliminate model sensitivity to envi-

ronmental variation (see Introduction).

The data-assimilation exercise we performed, using

standard optimization methods that ignore driver errors,

yielded estimates for fine-root allocation that are higher

than biometric estimates at eastern U.S. FLUXNET

sites (compare LM3V-SbasePopt to Observations in

Table 2). Although there is clearly a scale mismatch

between our 18 LM3V configuration and individual

FLUXNET sites, the distribution of stand-scale alloca-

tion estimates across FLUXNET sites (e.g., means and

variances) should be directly comparable with coarse-

scale land models. The FLUXNET synthesis data set

(Luyssaert et al. 2007) reports biometric allocation

estimates for only three unmanaged eastern U.S. sites

(including unmanaged secondary forests), which pre-

cludes rigorous model–data comparisons. Nevertheless,

the optimized parameter estimates appear unrealistic

compared to the available data, and the direction of

mismatch is consistent with the bias expected from

ignoring driver errors. In an alternative data-assimila-

tion experiment, in which we reduced spatial variation in

soil moisture by substituting a uniform AWC map for

the baseline map, optimized estimates for leaf and fine-

root allocation were consistent with biometric estimates

(compare LM3V-SmeanPopt to Observations in Table

2). Furthermore, LM3V with uniform AWC yielded the

best model–data fits (Fig. 6d, Appendix B: Figs. B7d,

and B8d). These results do not imply that real vegetation

is insensitive to soil moisture. The results do, however,

suggest the presence of soil driver errors, the presence of

model errors (e.g., in hydrological parameters or

processes), and/or the absence of important mechanisms

in LM3V that moderate the functional response of real

vegetation to environmental variation.

LM3V optimization also yielded VCmax estimates that

were inconsistent with (lower than) empirical leaf-level

estimates (Table 2). Systematic driver errors (e.g., soil

AWC being too high, on average, in the model) may

contribute to this mismatch. The absence of nutrient

feedbacks in LM3V is unlikely to explain the VCmax

discrepancy, because nutrient effects are already includ-

ed in the empirical VCmax estimates (Kattge et al. 2009,
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see also Bonan et al. 2012). Bonan et al. (2012)

concluded that explicitly representing multiple canopy

layers in the CLM4 model produced more realistic levels

of within-canopy shading and thereby reduced the

discrepancy between empirical leaf-level estimates of

VCmax and ‘‘effective VCmax’’ in CLM4. Thus, the low

VCmax values obtained from our optimization likely

reflect, at least in part, the fact that LM3V does not

explicitly represent multiple canopy layers. Additional

biases in LM3V that may be compensated for by

reducing VCmax include: errors in model structure and

parameters related to hydrology and photosynthesis,

and failing to account for partial disturbances (e.g., edge

effects and legacies of past selective logging) that affect

the real landscapes sampled by FIA (Van Tuyl et al.

2005, Brown et al. 1997).

Is the existing network of intensive study sites adequate

to constrain the functional response of TBMs within

biomes?—Given the complications that arise from driver

errors in geographically extensive forest inventories, an

alternative approach to testing/improving TBMs might

be to rely on intensive study sites where measurement

errors are small. How many intensive sites are needed to

quantify TBM functional responses? We found that at

least 40 sites are needed to have an 80% chance of

estimating a growth–precipitation slope within 20% of

the true value. Forty sites is probably an underestimate,

because our power analysis addressed the simplistic case

of a single environmental gradient with zero measure-

ment error. Even this conservative estimate is larger

than the number of intensive study sites typically

available to estimate within-biome functional responses.

For example, if the FLUXNET synthesis data set

(Luyssaert et al. 2007) is restricted to ‘‘unmanaged’’

sites, then none of the seven climatic regions (boreal

humid, boreal semiarid, Mediterranean warm, temper-

ate humid, temperate semiarid, tropical humid, tropical

semiarid) includes more than 24 sites. Thus, while

FLUXNET may be sufficient to characterize functional

responses across global PFTs (Luyssaert et al. 2007), it

appears inadequate to constrain the within-PFT func-

tional responses that have been largely ignored by the

global modeling community. It may be possible to

constrain within-PFT functional responses by pooling

data from multiple networks, but this would require that

soil properties are quantified with little error and in a

manner that is both consistent across networks and

comparable to hydrological sub-models in TBMs. Given

these stringent requirements, we suggest that a more

practical approach to quantifying within-PFT function-

PLATE 1. Physical soil properties are highly variable across space and have a strong effect on vegetation. The photographs show
two forests in northern Wisconsin, USA, with contrasting soil texture (left, 84% sand; right, 57% sand) but similar climate. The
stands differ markedly in leaf area index (left, 2.25; right, 6), the percent of sunlight penetrating to the ground surface (left, 17%;
right, 1%), and fine-root biomass (left, 1.6 mg/cm3; right, 0.6 mg/cm3; J. Lichstein, unpublished data). Both stands are ;50 years old
with an approximately even-aged upper canopy. Photo credits: J. W. Lichstein.
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al responses is to leverage the vast amount of data

available from geographically extensive forest invento-

ries by quantifying and accounting for driver errors.

Accounting for driver errors in model–data fusion

Obtaining unbiased estimates of ecosystem functional

responses is an important step in benchmarking TBMs,

but a further challenge is to develop data-assimilation

methods that account for driver errors while estimating

TBM parameter values. One strategy would be to

employ a hierarchical Bayesian (HB) modeling frame-

work, in which each driver variable is treated as an

unknown parameter (‘‘latent variable’’) from a proba-

bility distribution (Clark 2005, Ogle and Barber 2008,

Lichstein et al. 2010). This is a potentially high-

dimensional problem because there are many driver

variables (e.g., sub-daily meteorological drivers in some

TBMs), but it may be possible to reduce the dimension-

ality greatly, e.g., using a principal component analysis

of meteorological drivers. Although rigorous and

robust, the HB approach may be impractical, because

the Markov chain Monte Carlo algorithms used to solve

these problems (Gilks et al. 1996, Zobitz et al. 2011)

typically require .105 iterations (TBM runs) to

converge, and possibly orders of magnitude more with

high-dimensional problems.

Another option for data assimilation with error

propagation is to use ensemble filtering (EF) methods,

such as the ensemble Kalman filter (Reichle et al. 2002,

Evensen 2003) or particle filters for nonlinear systems

with non-normal errors (e.g., Hill et al. 2011). EF

methods may be used to estimate model state variables

and/or parameters (e.g., Williams et al. 2005, Mo et al.

2008, Gao et al. 2011), and could accommodate driver

errors by using a different randomly generated driver

data set (from an estimated multivariate distribution, as

in the HB approach above) for each ensemble member.

The computational expense of the EF approach may be

less than that of the HB approach and can be distributed

across a parallel computing system, but the computa-

tional costs would still be large (e.g., .104 TBM runs).

An alternative to data assimilation in the presence of

driver errors that avoids the computational expense of

the above approaches would be to use the driver-error-

corrected functional response estimated from observa-

tions (e.g., inventory data), rather than the observations

themselves, as the optimization target. Again, ‘‘func-

tional response’’ here means the relationship between

ecosystem-level properties (e.g., NPP) and one or more

environmental variables (e.g., climate or soil physical

properties). Consider a simplistic example, in which

NPP responds linearly to mean annual precipitation.

Suppose we estimate from observations the slope of

NPP vs. precipitation using appropriate methods to

account for precipitation errors (e.g., the MEMs used in

this paper). We seek an optimization algorithm that

adjusts the TBM model parameters so that a regression

of modeled NPP vs. precipitation yields the same slope

as the driver-error-corrected slope estimated for the real

ecosystem. Again, standard optimization algorithms

that ignore driver errors and adjust TBM parameter

values so as to fit modeled NPP to observed NPP will

not yield the correct slope.

To implement the proposed functional-response-

based approach, let h be a parameter vector describing

the functional response; e.g., the regression intercept and

slopes if the functional response is linear, with one slope

for each driver variable (temperature, precipitation, soil,

and so on). Note that h is comprised of parameters from

a statistical model, not process-level TBM parameters

such as those in Table 2. Estimates and uncertainties for

h are quantified by joint probability density functions

fD(h) and fM(h) for the real ecosystem and TBM,

respectively. Suppose we estimate fD(h) from observa-

tions, using MEMs to account for driver errors. The

optimization goal then is to adjust the TBM parameters

(e.g., the process-level parameters in Table 2 that

determine the TBM’s functional response) so as to bring

fM(h) into agreement with fD(h). This requires specifying
an optimization cost function in terms of the distribu-

tions fD(h) and fM(h), rather than in terms of predictions

and observations, as is typically done (Raupach et al.

2005, Williams et al. 2009). A natural choice for the cost

function is the Kullback-Leibler divergence (Kullback

and Leibler 1951, Burnham and Anderson 2004):

DKL( fD, fM) ¼
R
fD(h)ln[ fD(h)/fM(h)]dh, which is a

measure of the information lost when fM is used to

approximate fD, and which can be expressed in closed

form if fM and fD are multivariate normal (as in OLS

regression, and as is asymptotically so in likelihood and

Bayesian contexts).

The approaches outlined above to account for driver

errors in model–data fusion are preliminary proposals.

These, and other, candidate approaches should be

studied in detail; e.g., by analyzing artificial data sets

(created from model output, with driver errors added to

the ‘‘data’’) to assess each method’s capacity to recover

known parameter values. We speculate that the func-

tional-response-based approach will allow for rapid

progress in improving TBMs because its modest

computational requirements make it accessible to a

large group of researchers.

CONCLUSIONS

The C-cycle modeling community has made great

progress over the last decade in developing data sets and

protocols to rigorously test TBMs with a variety of data

sources (Raupach et al. 2005, Randerson et al. 2009,

Williams et al. 2009, Luo et al. 2011a). However, TBMs

have yet to incorporate key slow timescale processes,

such as within-PFT shifts in plant species composition,

that are likely to moderate C-cycle responses to global

change (Rastetter 1996, Leuzinger et al. 2011, Luo et al.

2011b). Geographically extensive forest inventories

include data from many thousands of inventory plots

that could be used to constrain slow timescale processes
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in TBMs. Such data sets present special challenges for

model–data fusion, due to the potentially large errors in

driver variables at inventory plots. Ignoring these errors

can lead to (1) biased estimates of ecosystem response to

environmental gradients, thereby exaggerating the dis-

crepancy between TBMs and real ecosystems; and (2)

biased TBM parameter estimates that impose too weak

of a response to environmental gradients. Statistical

methods are available to account for driver errors when

estimating ecosystem response to environmental gradi-

ents. Data-assimilation methods that account for driver

errors when optimizing TBM parameters need to be

developed.
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Appendix A

Supplementary methods for Forest Inventory and Analysis (FIA) data filtering and analysis, measurement error models, and
Geophysical Fluid Dynamics Laboratory LM3V dynamic global vegetation model optimization (Ecological Archives
A024-041-A1).

Appendix B

Supplementary table (regression results for FIA data and LM3V output) and figures (Ecological Archives A024-041-A2).
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