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abstract: The leaf economics spectrum ranges from cheap, short-
lived leaves to expensive, long-lived leaves. Species with low leaf mass
per area (LMA) and short leaf life span tend to be fast growing and
shade intolerant (early successional), whereas species with high LMA
and long leaf life span tend to be slow growing and shade tolerant
(late successional). However, we have limited understanding of how
different leaf mass components (e.g., metabolically active photosyn-
thetic components vs. structural toughness components) contribute
to variation in LMA and other leaf economics spectrum traits. Here,
we develop a model of plant community dynamics in which species
differ in just two traits, photosynthetic and structural LMA compo-
nents, and we identify optimal values of these traits for early- and
late-successional species. Most of the predicted increase in LMA
from early- to late-successional species was due to structural LMA.
Photosynthetic LMA did not differ consistently between early- and
late-successional species, but the photosynthetic LMA to structural
LMA ratio declined from early- to late-successional species. Early-
successional species had high rates of instantaneous return on leaf
mass investment, whereas late-successional species had high lifetime
return. Our results provide theoretical support for the primary role
of structural (rather than photosynthetic) LMA variation in driving
relationships among leaf economics spectrum traits.
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Introduction

Across the global flora, leaf mass per area (LMA; the mass
invested in a unit of photosynthetic surface area) and leaf
life span (LL; the lifetime over which photosynthetic div-
idends are returned) vary bymore than two orders of mag-
nitude, and much of this variation is present among co-
occurring species (Westoby et al. 2000; Wright et al. 2004;
Falster et al. 2012). The leaf economics spectrum (LES)
describes coordinated variation in these and other leaf traits
(including photosynthesis and respiration rates as well as
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nutrient concentrations), ranging from short-lived, low-
cost leaves with a fast rate of photosynthetic return per
unit leaf mass to long-lived, high-cost leaves with a slow
rate of return (Wright et al. 2004; Reich 2014). Several
studies have concluded that the lifetime return on invest-
ment (lifetime net carbon gain per unit leaf mass) increases
from the fast (low LMA and short LL) to the slow (high
LMA and long LL) ends of the LES (Westoby et al. 2000;
Wright et al. 2004; Falster et al. 2012), suggesting the pres-
ence of one ormore trade-offs that allow fast and slow spe-
cies to coexist.
One trade-off that could contribute to coexistence along

the LES is the growth versus shade tolerance trade-off that
allows fast-growing, shade-intolerant, early-successional
species to coexist with slow-growing, shade-tolerant, late-
successional species (Connell 1978; Bazzaz 1979; Shugart
1984; Pacala et al. 1994). When light and other resources
are abundant, seedling growth rates are maximized by rapid
deployment of leaf area, which requires low LMA (Corn-
elissen et al. 1996; Wright and Westoby 2000; Falster et al.
2018). In contrast, under shaded or otherwise low-resource
conditions, the return on investment is slow, and long LL
(which requires high LMA) is required for a leaf to pay back
its construction costs (Coley et al. 1985; Falster et al. 2018).
Many empirical studies have reported correlations between
leaf traits and demographic rates that are consistent with
the hypothesis that the fast versus slow ends of the LES are
favorable for early- versus late-successional performance,
respectively. In particular, as LMA and LL increase across
species, seedling and sapling growth rates often decrease,
and shade tolerance often increases (Reich et al. 1992, 1995;
Kitajima 1994; Cornelissen et al. 1996; Wright and Westoby
2000; Selaya and Anten 2010). These relationships are
not universally strong, being weak across global species
(Paine et al. 2015) and within some communities (Wright
et al. 2010). Nevertheless, the strong relationships that
emerge under controlled experimental conditions (Corne-
lissen et al. 1996; Wright and Westoby 2000) and the
sity of Chicago. All rights reserved. Published by The University of Chicago
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mechanistic understanding of these relationships (Falster
et al. 2018) suggest a potential role for successional demo-
graphic niches in maintaining diversity along the LES.
Studies with trait-based demographic models support

the hypothesis that successional processes can allow for
coexistence of species with fast versus slow leaf traits. For
example, process-based ecosystem models (e.g., Moorcroft
et al. 2001; Smith et al. 2001) simulate successional sequences
of plant types defined by multiple traits, including LMA
and LL (which are assumed in these models to increase
from early- to late-successional functional types). In amore
detailed investigation of successional diversity, Falster et al.
(2017) used a metacommunity framework to explore the
role of multiple trait dimensions in tree species coexistence.
Falster et al. (2017) showed that variation along a single leaf
trait axis (from low to high values of LMA and LL) per-
mitted coexistence of two to three successional types, with
low and high LMA values corresponding to early- and late-
successional species, respectively. Falster et al. (2017) fur-
ther showed that when this leaf trait axis was combined
with a second trait axis (height atmaturation), a larger num-
ber of species (mostly late successional) could coexist.
The studies given above demonstrate the potential role of

leaf economics in succession but provide limited insight into
the sources of LMA variation and the causes of relationships
among LES traits. For example, the models of Moorcroft
et al. (2001) and Falster et al. (2017) assume that rates of
photosynthesis and respiration per unit leaf area are con-
stant across species. In this case, LMA variation is tied to
a single function (LL), and the models provide no insights
into observed relationships between LMA and other traits.
In particular, net photosynthetic capacity (Amax) per unit leaf
area is often observed to be roughly independent of LMA
(Wright et al. 2004; Osnas et al. 2018), which implies an in-
verse relationship between Amax per unit mass and LMA
(Lloyd et al. 2013; Osnas et al. 2013). Because these models
take the relationships among LMA, LL, and Amax as given,
they provide no insight into the causes of these relationships.
LMA is a composite trait that can be decomposed into

different anatomical, chemical, and functional components
(Shipley et al. 2006; Poorter et al. 2009; John et al. 2017). Re-
cently, Osnas et al. (2018) suggested that a variety of pat-
terns of leaf trait variation within and among species could
be understood by conceptualizing LMA as the sum of pho-
tosynthetic and structural LMA components (LMAP and
LMAS, respectively). While this conceptual model is an ob-
vious simplification (Osnas et al. 2018), it provides a conve-
nient starting point to explore how variation in different
LMA components may contribute to coexistence along the
LES and relationships among LES traits.
In this article, we seek to gain insight into the functional

significance of the LES and how diversity is maintained
along it by incorporating the LMAP-LMAS framework of
Osnas et al. (2018) into a simple model of community dy-
namics that is a reformulation of classic resource competi-
tion models (Tilman 1982, 1985). We assume that species
differences in LMA, LL, and Amax arise from differences in
LMAP and LMAS, and we use the model to better understand
the optimal (fitness-maximizing) traits of early- and late-
successional species. We predict that, as in the model of
Falster et al. (2017), competition for a single resource (light)
will lead to early- and late-successional traits that resemble
the fast and slow ends, respectively, of the LES. Furthermore,
we use the optimal values of LMAP and LMAS predicted by
ourmodel for early- and late-successional species to explore
the components of LMA variation along the LES and the
causes of relationships among three key LES traits: LMA,
LL, and Amax. In our analysis, relationships among these
LES traits are not prescribed but rather emerge from differ-
ences in lower-level traits (LMAP and LMAS) between early-
and late-successional species.
Model Overview

We conceptualize the model ecosystem as being aseasonal
(e.g., evergreen tropical forest), so that seasonality in tem-
perature and rainfall do not impose any constraints on LL.
To focus our analysis on two key aspects of leaf economics,
we assume that species differ only with respect to two fun-
damental leaf traits (from which other leaf traits are de-
rived): LMAP, which determines the potential (high-light)
rate of return on investment per unit leaf area, and LMAS,
which determines LL and thus (along with the whole-plant
mortality rate) the lifetime over which revenue is returned.
We assume that these two LMA components are additive,
so that total LMA is equal to the sum of LMAP and LMAS.
For simplicity, we ignore intraspecific trait variation across
light gradients (Bazzaz and Carlson 1982; Sack et al. 2006;
Niinemets et al. 2015); thus, we assume that within a given
species, all leaves are identical.
LMAP and LMAS are conceptual traits that have not been

directly measured, but they loosely correspond to the liquid
phase (protoplasm) and cell wall components, respectively,
in the model of Shipley et al. (2006). Specifically, we concep-
tualize LMAP as the mass per area of leaf components that
contribute directly to photosynthesis (e.g., chloroplasts and
other metabolically active cellular components) and LMAS

as the mass per area of cell wall and other structural mate-
rial constructed for the purpose of toughness and durability
(Kitajima et al. 2012, 2016; Onoda et al. 2017), beyond the
structural mass needed for biomechanical support, water
transport, and gas exchange in the short term. See Osnas
et al. (2018) for further discussion of LMAP and LMAS.
We now describe the dynamic model. Consider a forest

community composed ofmultiple tree species. For simplic-
ity, we assume a single limiting resource (light), so that the
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dynamics are governed by the shade tolerance trade-off,
whereby performance under high-light conditions trades
off against performance in the shade (Bazzaz 1979; Pacala
et al. 1994). We do not attempt to capture the complexities
of height-structured competition for light (Shugart 1984;
Pacala et al. 1994; Strigul et al. 2008). Rather, our model
is designed to yield qualitative insights regarding optimal
(fitness-maximizing) leaf traits under high-light (early-
successional) versus shaded (late-successional) conditions.
Thus, following Tilman (1985), we develop a minimally
complex ordinary differential equation model for the leaf
biomass dynamics of different plant species i competing
for light. The dynamics can be represented in simplified
form as

dBi(t)
dt

p f Gi(t)2 (LL21
i 1 mi)Bi(t), ð1Þ

where f is the fraction of net photosynthesis available for
leaf biomass production; Gi(t), the net photosynthesis of
species i at time t, is the difference between gross photosyn-
thesis (which increases with leaf area, LMAP, and light avail-
ability) and leaf maintenance respiration (which depends
on photosynthetic and structural leafmass and their respec-
tive per-mass respiration rates); LL increases with LMAS;
mi is species i’s whole-plant mortality rate; and Bi(t) is leaf
biomass (per unit ground area) of species i at time t. We
consider cases with constant mi (either a single value or dif-
ferent values for early- and late-successional species) and
cases where mi depends on species i’s investment in struc-
tural leaf mass (LMASi). See appendixes A and B for addi-
tional model details (apps. B–D are available online). Equa-
tion (1) falls within the general framework of Armstrong
and McGehee (1980) and has a form similar to the models
of Tilman (1982, 1985). The key differences between our
model and those of Tilman (1982, 1985) are that we formu-
late our model in terms of physiological processes relevant
to the LES, and we assume a single limiting resource (light).
For simplicity, we assume that all leaves in the plant com-

munity experience the same light level; that is, we use a
mean-field approximation, as in Tilman (1985). Early in
succession, there is little shading, and this mean-field ap-
proximation is roughly valid. In contrast, late in succession,
the mean-field approximation does not accurately repre-
sent height-structured competition for light (Pacala and
Deutschman 1995) but does provide a useful approximation
for the dynamics of understory vegetation (Tilman 1985),
which to a large extent determines successional dynamics
(Pacala et al. 1996). Thus, we expect themodel to yield qual-
itatively useful insights for both early- and late-successional
plants.
Analysis Methods

An important goal of our analysis is to determine the
competitively optimal values of LMAP and LMAS (and de-
rived traits; see below and app. C) for early- and late-
successional species. We define the competitively optimal
early-successional traits as those that maximize the leaf
biomass growth rate (dB=dt) under high-light conditions
(i.e., near B p 0), because this growth-maximizing strat-
egy under high light can initially overtop other species and
reproduce before being excluded by longer-lived, shade-
tolerant species. We define the competitively optimal late-
successional traits as those that maximize shade tolerance;
that is, the traits that lead to the lowest equilibrium light
level and thus the competitive exclusion of all other species
in the absence of disturbance (Armstrong and McGehee
1980; Tilman 1982). Despite the relatively simple form
of our model, solving for the optimal early- and late-
successional traits is nontrivial and requires a combination
of analytical and numerical methods, which are presented
in detail in appendix D.
Given the optimal values of LMAP and LMAS (table 1), it

is straightforward to calculate the corresponding values of
two LES traits that are central to our article, Amax (per unit
leaf mass or area) and LL (see app. C). We also calculated
from LMAP and LMAS an additional trait related to late-
successional performance: Aeq, the net photosynthetic rate
Table 1: Key symbols in the main text
Symbol
 Description
 Unit
Aeq
 Leaf net assimilation rate under the late-successional equilibrium
understory light level; normalized by leaf mass (Aeq/mass) or area (Aeq/area)
g C g21 yr21 or g C m22 yr21
Amax
 Leaf net photosynthetic capacity (light-saturated assimilation rate);
normalized by leaf mass (Amax/mass) or area (Amax/area)
g C g21 yr21 or g C m22 yr21
LL
 Leaf life span
 yr

LMAP
 Photosynthetic leaf mass per unit leaf area
 g C m22
LMAS
 Structural leaf mass per unit leaf area
 g C m22
LMA
 Total leaf mass per unit leaf area: LMA p LMAP 1 LMAS
 g C m22
Note: See table A1 for a complete list of model parameters and state variables. Throughout this article, assimilation rates (Aeq and Amax) are annualized rates
that are qualitatively similar to (but quantitatively different from) instantaneous rates reported in the literature (e.g., Wright et al. 2004).
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of a leaf at the late-successional equilibrium light level (i.e.,
the understory light level at which only the optimal late-
successional species can persist; app. C). We considered
LL#Amax=mass and LL#Aeq=mass as indices of lifetime
return on investment for leaves in full sunlight and in
the late-successional understory, respectively. The first in-
dex (LL#Amax=mass) is only an approximation for life-
time return, because even in our simple model no leaf
spends its entire lifetime under full-sun (Amax) conditions.
The second index (LL#Aeq=mass) is exact for leaves at the
late-successional equilibrium in our model and is easily
modified to include the effect of whole-plant mortality
on leaf turnover (see “Results”). In reality, numerous
factors complicate the estimation of lifetime return—for
example, decreases in both light availability and photosyn-
thetic capacity with leaf age (Falster et al. 2012). Thus, the
indices of lifetime return considered here are intended to
provide only qualitative insights and are not intended as
realistic estimates.
Although an overarching goal of our study is to gain in-

sight into how diversity can be maintained along the LES,
we do not study coexistence per se in our model. Doing so
would require considering disturbance in a spatially het-
erogeneous landscape, as in numerous prior studies (e.g.,
Tilman 1994; Pacala and Rees 1998; Roxbaugh et al. 2004;
Gravel et al. 2010; Falster et al. 2017). Thus, we focus our
analysis on identifying the values of LMAP and LMAS that
maximize the competitive performance of early- versus late-
successional species, and we rely on previous studies as evi-
dence that these contrasting successional types can coexist.
To evaluate whether our results were sensitive to the

choice ofmodel parameter values (e.g., constants that trans-
late LMAP and LMAS into LL and rates of photosynthesis
and respiration; app. A), we performed an uncertainty anal-
ysis. In this analysis, values for all model constants were
drawn randomly—and independently of each other—from
a uniformdistribution spanning 0.75 to 1.25 times the base-
line values given in table A1.We performed 1,000 replicates
of this uncertainty analysis.
Finally, although it is straightforward to evaluate late-

successional performance in ourmodel by focusing on equi-
librium conditions, evaluating early-successional performance
requires either a metacommunity framework (e.g., Lichstein
and Pacala 2011; Falster et al. 2017) or making somewhat
arbitrary decisions (as in this study) about the timescale
of analysis (e.g., the trait values that maximize growth dur-
ing the first year of succession differ from those that max-
imize average growth overmultiple years). Therefore, in ad-
dition to solving for the trait values that maximize dB=dt
near B p 0 (the extreme short-term case), we also identi-
fied the trait values that maximize mean wood biomass
growth rate over timescales ranging from1month to 2 years.
We simulated wood biomass dynamics according to equa-
tion (A8) in appendix A, which is a simple modification
of ourmodel of leaf biomass dynamics (eq. [1]). To identify
the trait values that maximized wood biomass growth over
a given time period, we systematically searched the two-
dimensional trait space (LMAP, LMAS). Because of the high
computational cost of this analysis, we ignored parameter
uncertainty and considered only the baseline parameter
values (table A1).
Results

Model predictions were qualitatively robust to alternative
assumptions about whole-plant mortality rates (figs. B1–
B6; figs. B1–B6, D1–D3 are available online) and to per-
turbing the baseline parameter values (table A1) by525%
(fig. 1). Most predictions were also qualitatively robust to
alternative indices of early-successional performance, as
explained below.
Optimal early-successional species had lower LMA and

a higher LMAP∶LMA ratio than optimal late-successional
species (fig. 1a, 1b). Thus, most of the difference in LMA
between early- and late-successional species was due to
LMAS, which comprised the majority of late-successional
LMA (fig. 1a, 1b). These contrasts between optimal early-
and late-successional traits were qualitatively similar for a
wide range of early-successional performance indices, in-
cluding dB=dt near B p 0 (fig. 1a, 1b) and wood biomass
growth rates averaged over different time periods (fig. 2a,
2b). Specifically, for all early-successional indices we con-
sidered, optimal early-successional species had lower LMA,
lower LMAS, and higher LMAP/LMA than optimal late-
successional species (figs. 1a, 1b, 2a, 2b).
In contrast to these results, predictions for optimal early-

successional LMAP (and thus Amax) were sensitive to the
choice of early-successional performance index. When the
optimal early-successional species was identified by maxi-
mizing dB=dt near B p 0, early-successional species had
lower LMAP and lowerAmax/area than late-successional spe-
cies (fig. 1a, 1c). Maximizing wood growth rates over very
short timescales (far left ofX-axis infig. 2) yielded equivalent
results as maximizing dB=dt near B p 0 (fig. 1); that is, as
the timescale of growth optimization approaches zero in
figure 2, the results converge on the early-successional val-
ues in figure 1. However, maximizing growth rate over
longer timescales (e.g., 11 year) requires values of LMAP

and Amax/area (fig. 2a, 2c) that are similar to those of opti-
mal late-successional species (triangles in fig. 1a, 1c; black
symbols in fig. 1 correspond to the parameter set used in
fig. 2). Although optimal LMAP and LMAP/LMA increased
with the timescale of growth optimization (fig. 2a, 2b), op-
timal Amax/mass decreased (fig. 2d) as a result of the di-
minishing marginal increase in photosynthetic returns with
increasing LMAP, which follows from our assumption of
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self-shading of chloroplasts within leaves (eq. [A6]; Tera-
shima et al. 2011). Nevertheless, across the range of time-
scales considered, optimal early-successional Amax/mass
values (fig. 2d) were larger than optimal late-successional
values (fig. 1c, black triangle).
The optimal early-successional traits were relatively close

to the Amax/mass maximum (fig. 3a), whereas the optimal
late-successional traits were relatively close to the LL#
Amax=mass maximum (fig. 3b). The optimal late-successional
traits were very close to the LL#Aeq=mass maximum
(fig. 3c), where Aeq is the net photosynthetic rate of a leaf
at the late-successional equilibrium light level (at which
only the optimal late-successional species can persist). The
slight difference between the late-successional LL#Aeq=mass
and the peak of the surface in figure 3c is due to whole-plant
mortality (m), as follows: The leaf turnover rate, including m,
is LL21 1 m. Substituting the m-adjusted LL, (LL21 1 m)

21
,

for LL in figure 3c results in a perfectmatch between the late-
successional value and the peak of the surface (fig. 3d; see
proof in app. D, proposition 3).
Discussion

Our trait-basedmodel of plant community dynamics pre-
dicts that competitively optimal early-successional plants
have a fast rate of return per unit investment in leaf mass
(high Amax/mass) but a short LL and low lifetime return on
investment, whereas competitively optimal late-successional
plants have the opposite properties (low rate of return but
long LL and high lifetime return). These predictions suggest
that the fast and slow end points of the LES (Wright et al.
2004) correspond to competitively optimal traits for early-
and late-successional species, consistent with a previous the-
oretical study of trait variation and successional diversity
(Falster et al. 2017). The association between LES traits and
successional niches that emerges from models of commu-
nity dynamics (our study and Falster et al. 2017) are con-
sistent with a mechanistic model of individual growth and
shade tolerance (Falster et al. 2018) and with many em-
pirical studies relating leaf traits to individual vital rates (e.g.,
Reich et al. 1992; Kitajima 1994; Cornelissen et al. 1996;
Wright and Westoby 2000; Poorter and Bongers 2006) and
successional changes in species composition (e.g., Reich et al.
1995; Garnier et al. 2004).
Our analysis provides new insights about the leaf eco-

nomics of plant succession. Consistent with the associa-
tion between low LMA and the rapid growth rates needed
to dominate early in succession (Falster et al. 2017), our
model predicts higher Amax/mass for early- than for late-
successional species. In our model, Amax/mass is maximized
when structural leaf mass (LMAS, assumed to affect LL
but not photosynthesis) is zero and when photosynthetic
leaf mass (LMAP) approaches zero (fig. 3a), due to the as-
sumed within-leaf shading of chloroplasts (eq. [A6]; Tera-
shima et al. 2011). Despite maximizing Amax/mass, the ex-
treme low-LMA strategy is not ecologically viable because
it results in values of Amax/area that are too low to replace
leaf area losses due to leaf and whole-plant turnover. Al-
though the quantitative predictions of our model are un-
doubtedly affected by our simplifying assumptions, we
expect the following qualitative prediction to be robust:
Figure 1: a, Competitively optimal photosynthetic and structural leaf mass per area components (LMAP and LMAS, respectively) for early-
and late-successional species. Black symbols show results for the baseline parameter values in table A1, and gray symbols show results from an
uncertainty analysis in which 1,000 parameter vectors were generated by randomly perturbing the baseline parameter values by up to525%.
b, Optimal early-successional species have a high ratio of LMAP to total LMA and low total LMA, whereas optimal late-successional species
have low LMAP/LMA and high LMA. c, Annualized rate of net photosynthetic capacity per unit leaf mass (Amax/mass; g C g21 yr21) and area
(Amax/area; g C m22 yr21) corresponding to a given combination of LMAP and LMAS. Net photosynthetic capacity is the rate of gross pho-
tosynthesis under full sunlight minus the rate of leaf maintenance respiration.
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optimal Amax/mass is greater for early- than for late-
successional species (because of the benefits of fast economic
returns early in succession) but less than the theoretical max-
imum Amax/mass (because of constraints imposed by leaf
turnover).
While a high rate of return (Amax/mass) is advantageous

early in succession, high LL (and thus high LMA and low
Amax/mass) enhances shade tolerance and late-successional
performance (Falster et al. 2017, 2018). Specifically, the
whole-plant light compensation point (WPLCP), the light
level where carbon gains (photosynthesis) and losses (turn-
over and respiration) are balanced, is minimized (i.e., shade
tolerance is maximized) for LL values that are higher than
those that maximize high-light growth (Falster et al. 2018).
Given the uniform understory light level in our model,
as in Tilman (1985), there is a single late-successional dom-
inant species whose traits minimize the WPLCP. At this
light level, the traits of the late-successional dominant
roughly maximize an index of lifetime return on invest-
ment, LL#Aeq=mass (fig. 3c), and exactly maximize the
mortality-adjusted form of this index, (LL21 1 m)

21
#

Aeq=mass (fig. 3d). Thus, while early-successional species
have high rates of instantaneous return, shade-tolerant
species (which are the late-successional dominants in our
model) maximize the lifetime return on investment.
In addition to providing insights into how LES traits

relate to successional niches, our study also provides a the-
oretical perspective on the causes of relationships among
LES traits. In our model, LES relationships are not pre-
scribed; rather, they emerge from the assumed functions
of photosynthetic and structural leaf mass (LMAP and
LMAS) and the optimal values of LMAP and LMAS pre-
dicted for early- and late-successional species. For exam-
ple, our model predicts that LL increases with LMA across
species because the long LL that leads to shade tolerance
(Falster et al. 2018) requires high concentrations of struc-
tural leaf mass (e.g., cellulose; Kitajima et al. 2012, 2016),
which is represented in our model by LMAS. The assumed
Figure 2: Leaf traits that are optimal for early-successional growth depend on the timescale over which growth is evaluated. Here, the
two-dimensional trait space (LMAP, LMAS) was systematically searched to identify the trait combination that maximized mean wood bio-
mass growth rate over timescales ranging from 1 month to 2 years. a, The Y-axis shows the total LMA and LMAP values that maximized
mean growth rate over the timescale given by the X-axis; LMAS is the difference between the two curves. b, Ratio of LMAP to total LMA.
c, d, Values of Amax/area and Amax/mass that result from the optimal values of LMAP and LMAS. For very short timescales (far left of X-axis),
this analysis predicts early-successional traits similar to those in our other analyses (e.g., fig. 1), where the most competitive (“optimal”)
early-successional traits are defined as those that maximize growth rate under full sunlight (zero biomass).
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increase in LL with LMAS (eq. [A2]) does not, by itself, en-
sure that LL increases with total LMA, which also depends
on LMAP. However, our model predicts that LMAS ac-
counts for most of the LMA variation across species (e.g.,
fig. 1a, 1b), consistent with the observation that cell wall
mass per unit leaf area is strongly correlated with LMA
across global species (and within some plant groups, such
as woody evergreens), with cell wall comprising up to 70%
of total leaf mass in species with high LMA (Onoda
et al. 2017).
In contrast to the simple relationship between LL and

LMA that emerges from our model, predicted relation-
ships involving net photosynthetic capacity (Amax) were
more complex. Depending on the timescale of our early-
successional analysis, our model predicts a range of early-
successional LMAP and thus Amax/area (fig. 2a, 2c), in-
cluding values that are both lower than and higher than
late-successional values (triangles in fig. 1a, 1c). The pre-
dicted increase in LMAP with the timescale of growth op-
timization (fig. 2a) likely reflects the diminishing benefits
of additional leaf area relative to the benefits of increased
carbon gain per unit leaf area, as self-shading increases
early in succession. Although we did not study coexistence
among different early-successional species, the range of
predicted growth-maximizing traits (fig. 2) might help ex-
plain why relationships between Amax/area and other traits
are often weak (e.g., Reich et al. 1997; Wright et al. 2004;
Poorter and Bongers 2006; Falster et al. 2012). Specifically,
our model suggests potential LMA variation across early-
successional species due to variation in LMAP (fig. 2a), which
Figure 3: Values of four leaf economics indices as a function of photosynthetic and structural leaf mass per area (LMAP and LMAS, re-
spectively). The black circle and black triangle show the competitively optimal values of LMAP and LMAS for early- and late-successional
species, respectively. a, Net photosynthetic capacity per unit leaf mass (Amax/mass); that is, the rate of return per unit investment under
full sunlight. b, Amax/mass times leaf life span (LL); that is, the lifetime return per unit investment under full sunlight. c, Aeq/mass times
LL, where Aeq is net photosynthesis under the late-successional equilibrium light level; that is, the lifetime return per unit investment in
the late-successional understory light environment. d, Aeq/mass times the mortality-adjusted leaf turnover rate, (LL21 1 m)

21
, which is max-

imized by the late-successional species (see proof in app. D, proposition 3). Amax/mass and Aeq/mass are expressed on an annual timescale
(g C g21 yr21).
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determines Amax/area (fig. 2c). However, this LMA varia-
tion is modest relative to the difference in LMA between
early- and late-successional species, which is primarily due
to LMAS (fig. 1a, 1b). Thus, the dominant role of LMAS in
determining community-wide LMA variation leads not only
to a decline in Amax/mass with LMA (Osnas et al. 2018)
but also a weak relationship between Amax/area and LMA
(because LMAP and thus Amax/area may be highly variable
yet contribute little to community-wide LMA variance).
Limitations and Future Directions

Our model assumed a constant environment and a single
limiting resource, light. In reality, high LMAP and/or low
LMAS (and thus short LL and low nutrient-use efficiency)
would be possible only if nutrients can be acquired at a suf-
ficient rate to build and replace nutrient-rich photosynthetic
tissue (Reich 2014). Thus, nutrient limitation could impose
an upper bound on LMAP and/or a lower bound on LMAS

because of limited nutrient supply (e.g., low mineralization
rates) and/or the allocational trade-off between fine root
production (nutrient acquisition) and stem growth (light
competition; Dybzinski et al. 2011). In addition to nutrient
constraints, temperature and moisture regimes may impose
additional environmental and competitive filters (van Bod-
egom et al. 2012; Reich 2014). For example, even if nutri-
ents are not limiting, water limitation could reduce the
benefits of high LMAP (high potential carbon gain) relative
to building and maintenance costs (Farrior et al. 2013). In
general, we expect limitation by nutrients or other factors
to constrain trait differences between early- and late-
successional species.
Accounting for multiple limiting factors may reveal

constraints on successional trait differentiation but would
also allow for amore complete exploration of trait diversity.
Weak relationships between LES traits and successional de-
mographic indices are sometimes observed (e.g.,Wright et al.
2010), which may reflect the presence of additional niche
axes beyond the one-dimensional growth/shade tolerance
trade-off (Clark et al. 2010). Herbivores, climate variability,
and edaphic heterogeneity have all likely contributed to the
origin andmaintenance of diversity along the LES and other
trait dimensions (Tilman 1988; Coley and Barone 1996;
Cavender-Bares et al. 2004; Engelbrecht et al. 2007; Baraloto
et al. 2010). Future workwith trait-basedmodels of commu-
nity dynamics could explore coexistence in a multidimen-
sional environmental space to better understand diversity
maintenance of leaf and other traits. Process-based demo-
graphicmodels that link individual vital rates tomultiple en-
vironmental drivers (e.g., Moorcroft et al. 2001; Smith et al.
2001; Scheiter et al. 2013; Fisher et al. 2015; Sakschewski
et al. 2015) are well equipped for this task, but their mathe-
matical complexity and computational cost make them un-
wieldy for studying coexistence. Simplified analogs of
these process models have been developed (Dybzinski
et al. 2011; Farrior et al. 2013), but their analytical solutions
are available only for equilibrium (late-successional) con-
ditions. Patch-scale transient dynamics (e.g., succession)
in heterogeneous landscapes could be studied by embed-
ding these simplified process models within a computa-
tional metacommunity framework (e.g., Lichstein and
Pacala 2011; Falster et al. 2017).
The simplistic framework adopted here, inwhich LMA is

assumed to be the sum of LMAP and LMAS, needs further
development to account for factors beyond light limitation
(e.g., the implications of leaf venation for drought tolerance
and LMA; Sack and Scoffoni 2013) and to forge stronger
links to empirical studies. A critical step is to identify mea-
surable traits that allow empirical tests of hypotheses related
to LMA variation. LMA can be decomposed into different
chemical and anatomical components (Poorter et al. 2009;
John et al. 2017), but attributing LMA variation to different
functions is less straightforward. For example, some LMAS

can be viewed as contributing to both toughness and pho-
tosynthesis, as the latter requires a minimum amount of
structural mass for biomechanical support and water trans-
port (Niinemets and Sack 2006; Niinemets et al. 2007; Sack
and Scoffoni 2013). On the other hand, the high concentra-
tions of structural mass needed for long LL can impair pho-
tosynthesis due to the decrease in mesophyll conductance
with cell wall thickness (Terashima et al. 2011; Onoda
et al. 2017). Thus, the simple framework adopted here
for partitioning LMA variation, in which photosynthetic
and structural components are assumed independent, has
limitations. Expanding this framework by linking mea-
surable chemical and anatomical LMA components to
multiple functions would facilitate empirical tests of
model predictions and allow for improved understanding
of leaf trait relationships and diversity.
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APPENDIX A

Model Details

We derive an ordinary differential equation model for
the leaf biomass dynamics of tree species competing for
light. All model parameters are assumed constant across
species except for two species-specific traits, photosynthetic
and structural leaf mass per area (LMAP and LMAS, re-
spectively), which together determine species differences
in leaf photosynthetic capacity, leaf respiration costs, and
leaf life span (LL). Leaf biomass per unit ground area (i.e.,
per unit of land-surface area within which trees compete
for light) of species i is denoted Bi (g C m22), and its change
(g C m22 yr21) is modeled as

dBi

dt
p f L(12 f R)Gi 2 (LL21

i 1 mi)Bi, ðA1Þ

where fL is the fraction of leaf net primary production
(Gi; see below) allocated to leaf growth, fR is the fraction
of Gi used for growth respiration, Gi is the rate of net
photosynthesis per unit ground area of species i leaves
(gross photosynthesis minus leaf maintenance respira-
tion per unit ground area; g C m22 yr21), LL21

i is the turn-
over rate of individual leaves (yr21) of species i (i.e., the in-
verse of leaf life span, LLi), and mi (yr21) is the whole-plant
mortality rate. We considered alternative assumptions for
mi, including cases with constant mi (either a single value or
different values for early- and late-successional species) and
cases where mi decreases with LMAS (see details in app. B).
These alternative assumptions had little effect on our re-
sults (figs. B1–B6).

We assume that LL increases across species with LMAS,
consistent with observations linking LL and leaf toughness
to leaf structural properties such as cellulose concentra-
tion (Kitajima et al. 2012, 2016):

LLi p cLLLMASi, ðA2Þ

1. Code that appears in The American Naturalist is provided as a con-

venience to readers. It has not necessarily been tested as part of peer review.
where cLL is a constant. The linear form of equation (A2) is
qualitatively consistent with the observed global scaling re-
lationship LL p aLMAb, with b 1 1 (Wright et al. 2004).
To see this, note that in our model, LMA p LMAP 1
LMAS, with LL depending only on LMAS (eq. [A2]). Also,
note that according to our model predictions (see “Re-
sults”) and arguments presented in Osnas et al. (2018),
most interspecific variation in LMA is due to interspecific
variation in LMAS rather than LMAP, which implies that a
doubling of LMA across species is associated with a greater
than doubling of LMAS and LL.

We now present the details of the photosynthesis term,
Gi, in equation (A1). See table A1 for a list of model terms,
units, parameter values, and literature sources. The term
Gi, the annualized rate of leaf net photosynthesis of spe-
cies i per unit ground area (g C m22 yr21), is

Gi p LAIiPi 2 Ri, ðA3Þ
where LAIi is species i’s leaf area index (leaf area per
ground area), which is equal to Bi=LMAi; Pi is species i’s
annualized rate of gross photosynthesis per unit leaf area
(g Cm22 leaf area yr21), which depends on LMAP and light
availability (see below), and Ri is species i’s annualized
rate of leaf maintenance respiration per unit ground area
(g C m22 yr21), which depends on photosynthetic and struc-
tural leaf mass per ground area (BP and BS, respectively):

Ri p rPBPi 1 rSBSi, ðA4Þ
where rP and rS are, respectively, annualized respiration
rates per unit photosynthetic and structural leaf mass
(g C respiration g21 C leaf mass yr21). Note that BPi p
Bi#LMAPi=LMAi and BSip Bi#LMASi=LMAi p Bi(12
(LMAPi=LMAi)). The annualized rate of gross photo-
synthesis per leaf area at time t depends on species i’s
photosynthetic capacity per unit leaf area, vi (g C m22 leaf
area yr21) and light availability (proportion of full sun-
light) at time t, L(t):

Pi(t) p
vi L(t)

kP 1 L(t)
; ðA5Þ

where kP is a half-saturation constant and the function is
concave down (Bazzaz 1979). Note that L and Pi (and thus
Gi) are time dependent, but we typically omit the “(t)” from
our notation for conciseness. Also, note that in our model
photosynthesis and respiration are expressed on an annual
timescale, and we do not explicitly account for seasonal or
diurnal variation in light or other abiotic conditions. The
first simplification (lack of seasonality) makes our analysis
most relevant for aseasonal ecosystems—for example, ever-
green tropical forest, as noted in the main text (see “Model
Overview”). The second simplification (lack of diurnal cy-
cle) should not qualitatively affect our conclusions, and
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we tuned the parameter values in equations (A4)–(A6) to
yield annualized rates of gross photosynthesis and respi-
ration similar to those reported in the literature (see the
table A1 note). We assume that photosynthetic capacity in-
creases across species with LMAP:

vi p
av LMAPi

kv 1 LMAPi

, ðA6Þ

where av and kv are constants, and the form of equa-
tion (A6) is assumed concave down because of self-shading
of chloroplasts within leaves (Terashima et al. 2011). For
simplicity, we ignore photosynthetic acclimation to differ-
ent light environments (Bazzaz and Carlson 1982; Strauss-
Debenedetti and Bazzaz 1991) and photosynthetic decline
with leaf age (Field and Mooney 1983; Kitajima et al. 1997;
Mediavilla and Escudero 2003).

Finally, light availability decreases with the total leaf
area index of the plant community (LAItot) according to
the Beer-Lambert equation (Monsi and Saeki 2005) with a
decay constant of 0.5 (White et al. 2000):

L p exp(20:5 LAItot) p exp

�
20:5

X
i

Bi

LMAi

�
: ðA7Þ

Equation (A7) can be interpreted as the understory light
level in the community, which has a strong effect on suc-
cessional dynamics (Tilman 1985; Pacala et al. 1996). As
explained in the main text (see “Model Overview”), we
make the simplifying assumption that all leaves in the
community experience this light level, and we therefore
ignore the complexities of height-structured competition
for light (Canham et al. 1994; Strigul et al., 2008).

The complete form of our model is obtained by substi-
tuting equations (A2)–(A7) into equation (A1). Despite
our simplifying assumptions, mathematical analysis of the
model is nontrivial and is explained in detail in appendix D.

To simulate aboveground wood biomass dynamics
(Wi) for species i, we modified the leaf biomass model
(eq. [A1]) as follows:

dWi

dt
p fW(12 f R)Gi 2 4miWi, ðA8Þ

where fW (the fraction of leaf net photosynthesis allocated to
aboveground wood biomass production) is 0:3#0:8 p
0:24 (assuming 30% allocation to wood and that 80% of
wood is aboveground;Malhi et al. 2011) and mi ismultiplied
by four to account for branch turnover and stem respira-
tion (Malhi et al. 2011); other terms in equation (A8) are
defined as in equation (A1). To simulate equation (A8), we
converted it to a difference equation with a time step of
0.01 years (this time step was short enough to remove no-
ticeable effects of discretization).
Table A1: Model parameters and state variables
Symbol
 Description
 Unit
 Value
av
 Maximum possible value of v (gross photosynthetic capacity)
 g C m22 yr21
 3,000

mi
 Whole-plant mortality rate
 yr21
 .02

r
 Alternate symbol for LMAPi in app. D
 g C m22
 . . .

j
 Alternate symbol for LMASi in app. D
 g C m22
 . . .

BPi
 Photosynthetic leaf biomass per unit ground area
 g C m22
 . . .

BSi
 Structural leaf biomass per unit ground area
 g C m22
 . . .

Bi
 Total leaf biomass per unit ground area: Bi p BPi 1 BSi
 g C m22
 . . .

cLL
 Constant that converts LMAS into leaf life span as follows: LLi p cLL#LMASi
 m2 yr g21 C
 .1

fL
 Fraction of NPP allocated to leaf growth
 unitless
 .3

fR
 Fraction of NPP used for growth respiration
 unitless
 .3

Gi
 Rate of leaf net photosynthesis per unit ground area
 g C m22 yr21
kP
 Half-saturation constant for the relationship between gross photosynthesis and light
 unitless
 .2

kv
 Half-saturation constant for the relationship between photosynthetic capacity and LMAP
 g C m22
 5

L
 Proportion of full sunlight that reaches the understory
 unitless
 . . .

LAIi
 Leaf area index (leaf area per unit ground area)
 m2 m22
 . . .

LLi
 Leaf life span
 yr
 . . .

LMAPi
 Photosynthetic leaf mass per unit leaf area
 g C m22
 . . .

LMASi
 Structural leaf mass per unit leaf area
 g C m22
 . . .

LMAi
 Total leaf mass per unit leaf area: LMAi p LMAPi 1 LMASi
 g C m22
 . . .

Pi
 Rate of gross photosynthesis per unit leaf area
 g C m22 yr21
 . . .

rP
 Rate of leaf maintenance respiration per unit photosynthetic leaf mass
 g C g21 C yr21
 4
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Table A1 (Continued )
Symbol
 Description
 Unit
 Value
rS
 Rate of leaf maintenance respiration per unit structural leaf mass
 g C g21 C yr21
 .4

Ri
 Rate of leaf maintenance respiration per unit ground area
 g C m22 yr21
 . . .

vi
 Gross photosynthetic capacity per unit leaf area
 g C m22 yr21
 . . .
Note: The “Value” column gives baseline values for global (non-species-specific) constants (which were perturbed in our uncertainty analysis), and ellipses are used for
species-level parameters (LMAP, LMAS, and derived parameters) and state variables. Subscript i’s refer to species i and indicate species-specific parameters or state variables.
The value for mi in the table was used for both early- and late-successional species for analysis results reported in the main text and in appendix D; alternative mortality
assumptions are described in appendix B. Carbon is abbreviated as “C.” Global constants were taken from the literature or tuned to match stand-level values (e.g., gross
primary productivity estimates reported in the literature).When available, we used values for evergreen tropical forests because ourmodel ignores LL constraints as a result
of seasonality in temperature and rainfall (see “Model Overview”). We expect our qualitative conclusions to be robust to uncertainty in model parameters, as suggested by
our uncertainty analysis (fig. 1). Therefore, we did not conduct a comprehensive literature search for parameter values but rather limited our sources to a few representative
articles, and we used approximate average values if more than one of these sources provided information for a given constant. The net primary productivity (NPP) fraction
allocated to leaf construction (fL) is fromLuyssaert et al. (2007) andMalhi et al. (2011). For theNPP fraction used for growth respiration ( fG), we adopt a value of 0.3, similar
to othermodels (Krinner et al. 2005;Weng et al. 2015). Other constantswere chosen to yield realisticmodel outputs for annualized rates of gross primary productivity, total
autotrophic respiration, and leaf respiration (Luyssaert et al. 2007; Malhi et al. 2011); leaf area index (Asner et al. 2003); leaf mass per area (Poorter et al. 2009); and leaf life
span (Wright et al. 2004). Allocation of leafmaintenance respiration tophotosynthetic versus structural leafmass components (rP p 10#rS) follows from the assumption
thatmaintenance costs formetabolically active photosynthetic leafmass components (e.g., chloroplasts) should bemuch greater than those for structural components (e.g.,
cellulose; Osnas et al. 2018).
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