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Appendix B. Mortality Assumptions

Overview

Here, we demonstrate that our main results are insensitive to variation in the whole-plant mor-

tality rate (µ in eq. [A1]), including differences in µ between early- and late-successional species.

We consider cases with constant µ (either a single value, or different values for early- and late-

successional species) and cases where µ depends on a species’ investment in structural leaf mass

(LMAs). In all cases we examined, and for a wide range of parameter values, the traits (LMAp

and LMAs) of the most competitive (‘optimal’) early-successional species were predicted to be

distinct from those of the optimal late-successional species. Furthermore, unless µ is implausibly

large, the optimal values of LMAp and LMAs are qualitatively similar to those presented in the

main text (fig. 1). Therefore, the main results and conclusions derived from our model appear

robust to different assumptions concerning whole-plant mortality rates. It is possible that alter-

native mortality assumptions, beyond those we explored, could yield different results. However,

the cases we describe below do not appear overly restrictive, and we speculate that our model

results would be robust to a variety of alternative mortality assumptions.

Constant mortality rates

We first consider cases with constant µ (i.e., cases where µ is a fixed parameter, independent of

other model parameters). Although the traits of the optimal late-successional species depend

strongly on µ, those of the optimal early-successional species are independent of µ. This is

illustrated in figures B1-B4, which show how the results in main-text figure 1 (where both early-

and late-successional species have µ = 0.02 yr−1) change as µ increases. Note that the fraction

of biomass that dies each year is 1− e−µ, so the values of µ in figures B1-B4 (0.02, 0.2, 2, and

40 yr−1) correspond to annual biomass turnover percents of roughly 2%, 18%, 86%, and 100%,

respectively.
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The dependence of the optimal late-successional traits on µ, and the independence of the

optimal early-successional traits, follow from the mathematical analyses of optimal trait values

presented in Appendix D. In the late-successional case, µ has non-additive interactions with

LMAp and LMAs (e.g., see eq. [D14]). In contrast, in the early-successional case, µ has a linear

and non-interactive role (e.g., see eq. [D22]). Independence of the optimal early-successional

traits from µ does not imply that the model dynamics are independent of µ. On the contrary, as

µ increases (and all else being equal), biomass in our model (at any point in succession) decreases.

Independence of the optimal early-successional traits from µ only means that the values of LMAp

and LMAs that maximize biomass growth under full-sun conditions do not depend on µ.

As µ increases, the optimal late-successional traits become increasingly similar to the opti-

mal early-successional traits. However, the optimal early- and late-successional traits are clearly

distinct even if µ is as high as 2 yr−1 (fig. B3), corresponding to an annual biomass turnover of

about 86% yr−1. The late-successional solution converges on the early-successional solution only

for µ > 10 (e.g., fig. B4, where µ = 40 yr−1 corresponds to an annual biomass turnover greater

than 99.99% yr−1). Even shade-intolerant tree species typically have mortality rates lower than

20% yr−1 (Davies, 2001; Poorter and Bongers, 2006; Wright et al., 2010), with community-mean

turnover rates typically in the range of 1-5% yr−1 (e.g., Stephenson et al., 2011). Thus, realistic

tree turnover rates are far lower than the values of µ required to blur the distinction between

optimal early- and late-successional species in our analysis. Since the optimal early-successional

traits are independent of µ, the above statements hold if µ is constant across species or if µ is a

different constant for early- vs. late-successional species.

Mortality rate decreases with structural leaf mass investment

Late-successional tree species tend to have lower mortality rates than early-successional species

(Connell and Slatyer, 1977; Pacala et al., 1996; Poorter and Bongers, 2006; Wright et al., 2010).

The constant µ cases described above address cases where late-successional species have a higher

fixed µ than early-successional species, but do not allow for explicit dependence of µ on other
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traits. One way to accommodate this dependence is to assume that µ decreases with increasing

LL, because LL tends to be higher for shade-tolerant late-successional species than for shade-

intolerant early-successional species (Poorter and Bongers, 2006; Reich et al., 1995). In our model,

LL is assumed to increase with LMAs (eq. [A2]), and LMAs is predicted to be higher for late-

successional than for early-successional species (fig. 1). Thus, in our analysis, where we allow

for only two species-specific parameters (LMAp and LMAs), we can explicitly link µ to a species’

successional niche by assuming decreasing µ with increasing LMAs.

We have no strong a priori grounds for determining the functional form for the relationship

between µ and LMAs, and so we choose a form that is mathematically convenient. Specifically,

we assume that

µ = m1 +
1

m2LMAs
(B1)

and we explored different values of the parameters m1 and m2. This form is convenient because,

as shown below, it is equivalent to a reparameterization of the constant µ case analyzed in Ap-

pendix D. Thus, we can rely on the analyses presented in Appendix D to study the behavior of

the case where µ decreases with LMAs according to equation (B1).
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Figure B1: This figure is identical to main-text figure 1. Results are for the case where early- and late-

successional species have a fixed mortality rate of µ = 0.02 yr−1.
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Figure B2: Same as figure B1, but with µ = 0.2 yr−1.
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Figure B3: Same as figure B1, but with µ = 2 yr−1.
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Figure B4: Same as figure B1, but with µ = 40 yr−1.
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To see that equation (B1) leads to a mathematically equivalent form of our model as the

constant µ case, note that in the constant µ case, the total loss rate in equation (A1) is µ + LL−1 =

µ + 1/(cLLLMAs), where LL = cLLLMAs (eq. [A2]); and for equation [B1], the total loss rate is

µ + LL−1 = m1 + 1/(m2LMAs) + 1/(cLLLMAs) = m1 + 1/(θLMAs), where θ ≡ cLLm2/(cLL +

m2). These two loss rates share the same mathematical form, so we can analyze the equation (B1)

case using the same methods as described in Appendix D (constant µ case) by substituting m1

for µ, and θ for cLL.
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Figure B5: Results as in figures 1 and B1-B4, but for the case where µ decreases with LMAs according to

equation (B1) with parameter values m1 = 0 and m2 = 2. Panel (a) shows equation (B1), and panels (c-d)

are as in figures 1 and B1-B4.
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Figure B6: Same as figure B5, but with equation (B1) parameter values m1 = 0.02 and m2 = 20.

We explored a range of parameter values for m1 and m2, which determine the shape of

the relationship between µ and LMAs (compare figs. B5a and B6a). The examples presented in

figures B5-B6 show that our main results (e.g., the clear difference in optimal traits between early-

and late-successional species) are insensitive to the shape of equation (B1). The optimal early-
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successional traits depend very weakly on the shape of equation (B1), with the early-successional

values differing slightly between figures B5 and B6. The optimal late-successional traits depend

more strongly on the shape of equation (B1). But for any choices of m1 and m2 that yield a

plausible range of µ values (as in figs. B5-B6), the late-successional results are qualitatively similar

to the plausible constant µ cases (e.g., figs. B1-B2).

Appendix C. Calculating leaf economics spectrum traits

Here, we describe how to calculate additional traits related to leaf economics from the two

species-specific traits in our model, photosynthetic and structural leaf mass per area (LMAp

and LMAs, respectively). Leaf lifespan (LL) is given by equation (A2). The annualized rate of

leaf net photosynthesis (i.e., net assimilation, A, which is equal to gross photosynthesis minus

maintenance respiration) at different light levels (L) is obtained on a leaf-area basis (g C assimi-

lated m−2 leaf area yr−1) by dividing equation (A3) (rate of net photosynthesis per-unit ground

area) by leaf area index (LAI) and substituting in equations (A4)-(A6):

A(L)
area

= P(L)− R
LAI

=

(
avLMAp

kv + LMAp

)(
L

kp + L

)
−
(

rpLMAp + rsLMAs

)
.

(C1)

The mass-normalized form of this expression (g C assimilated g−1 leaf mass yr−1) is obtained by

dividing by LMA:
A(L)
mass

=
A(L)
area

LMA−1. (C2)

Note that the annualized rates of assimilation (A) presented in this paper average over the diurnal

cycle of radiation; therefore, the values we report differ quantitatively from instantaneous values

reported in the literature (e.g., Wright et al., 2004). We evaluated equations (C1)-(C2) at two light

levels: full sun (L = 1) to yield Amax/area and Amax/mass; and the late-successional equilibrium

light level (Leq) to yield Aeq/area and Aeq/mass. The light level Leq is equivalent to the R∗

concept of Armstrong and McGehee (1980) and Tilman (1982); i.e., Leq is the understory light
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level in the environment created by the late-successional competitively dominant species. We

calculated Leq in our model according to the solution in Appendix D (eq. [D9]) as follows:

Leq =
kp z1/z2

1− (z1/z2)
(C3)

where kp is defined as in equation (A5), and z1 and z2 depend on the traits of the late-successional

dominant species as follows:

z1 = fL (1− fR)
rpLMAp + rsLMAs

LMAp + LMAs
+ (cLL LMAs)

−1 + µ (C4)

z2 =

(
fL (1− fR)

LMAp + LMAs

)(
av LMAp

kv + LMAp

)
. (C5)

In equations (C4)-(C5), LMAp and LMAs refer to the trait values of the late-successional domi-

nant species, and other terms are defined in equations (A1)-(A6) and table A1.

Appendix D. Mathematical details

In this appendix, we justify the claims that (i) it is appropriate to think about our system in

terms of Tilman’s R∗ theory, meaning that there will be competitive exclusion (in the absence

of disturbance) and the single surviving species will be the one that can sustain equilibrium

with the lowest resource (light) level; (ii) for any given set of parameters, there exists a unique

optimal allocation of resources of photosynthetic and structural tissue (LMAp and LMAs, re-

spectively) for late-successional species; (iii) that this optimal (LMAp, LMAs) pair also maximize

the function (LL−1 + µ)−1 Aeq/mass (the mortality-adjusted lifetime return on investment in the

late-successional understory light environment); and (iv) there is also a distinct unique optimal

allocation for early-successional species. We assume a constant whole-plant mortality rate (µ)

throughout this appendix, and we use the baseline value of µ (see table A1) for the numeri-

cal examples presented below. As explained in Appendix B, the model with constant µ can

be re-parameterized to represent the case where µ depends on LMAs. Thus, the mathematical

proofs presented below apply equally to the main text and to the alternative mortality scenarios

considered in Appendix B.
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The model presented in Appendix A was developed as follows. The leaf biomass dynam-

ics for species i can be expressed in terms of time-dependent model state variables (species

biomasses ~B(t) = {B1(t), B2(t), . . . , Bn(t)}), global constants (non-species-specific parameters),

and species-level traits (LMAp,i and LMAs,i). To simplify the notation, we use the symbols

~ρ = (ρ1, ρ2, . . . , ρn) to denote the collection of LMAp,i values, and ~σ = (σ1, σ2, . . . , σn) for the

LMAs,i values. Moreover, we will use the abbreviations f := fL (1− fR) and c := cLL.

Using this notation, for example, if the current biomass distribution is summarized by the

vector ~B, and the various species have photosynthetic and structural mass allocations ~ρ and ~σ,

then total light availability in the system (eq. [A7]) can be written

L(~B;~ρ,~σ) = Lmax exp
(
− 1

2

n

∑
i=1

Bi

ρi + σi

)
, (D1)

which is equivalent to the widely-used Beer-Lambert equation (Monsi and Saeki, 2005) with a

decay constant of 0.5 (White et al., 2000). If Lmax = 1, then equation (D1) is equivalent to equation

(A7). We will sometimes suppress the dependence of L on ~ρ and~σ.

In this section it will be important to think about how certain combinations of the parame-

ters depend on the parameters ρ and σ. We can express the constants z1 and z2 introduced in

equations (C4) and (C5) as functions of ρ and σ:

ζ1(ρ, σ) = f
rpρ + rsσ

ρ + σ
+

1
cσ

+ µ and ζ2(ρ, σ) =
f

ρ + σ

avρ

kv + ρ
(D2)

where z1 = ζ1(ρ, σ) and z2 = ζ2(ρ, σ).

It is important to note that both of these are positive when both ρ and σ are positive. As

indicated by equation (C3), it is the ratio of the two functions ζ1 and ζ2 that plays an essential

role at equilibrium, so we introduce the function

γ(ρ, σ) =
ζ1(ρ, σ)

ζ2(ρ, σ)
. (D3)

The two functions in equation (D2) play an essential role in determining the growth rate of a

species given the current light availability (eq. [D1]). Indeed, suppose that the current light level
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is given by the variable `, then combining (A1) - (A6) with (D2) and (D3), we find that the growth

rate of species i can be summarized as

ui(`) = ζ2(ρi, σi)

(
`

kp + `

)
− ζ1(ρi, σi). (D4)

That is to say, the biomass dynamics of a full species system can be written in the simplified form

dBi(t)
dt

= Bi(t) ui
(

L
(
~B(t)

))
. (D5)

Modeling early- and late-successional species competition

The form of equation (D5) is useful because it provides a clear way to investigate what structural

allocation properties are beneficial for species to have in early and late phases of succession.

In the context of the model, we consider the most competitive early-successional species to

be the species with the maximum growth rate when light is at its maximum level (which is

an approximation of conditions when the overall biomass is very close to zero.) That is to say,

we investigate which species is the most competitive early-successional species in terms of the

maximum growth rate, which, for a given pair of traits (ρ, σ), has the form

umax(ρ, σ) = ζ2(ρ, σ)
Lmax

kp + Lmax
− ζ1(ρ, σ). (D6)

It turns out that for the parameter values we considered, this function admits a unique maximum

value. In the final subsection of this appendix we detail how this maximal pair, which we

denote (ρ̃, σ̃), can be found numerically. Figures 1a and 3 compare the most competitive early-

successional trait pair (ρ̃, σ̃) with the most competitive late-successional pair (ρ̂, σ̂), which is

derived based on the t→ ∞ limit.

In contrast to early-successional competitive ability, which depends on performance under

high light, late-successional competitive ability depends on performance under low light. As we

demonstrate in the following section, the system (eq. [D5]) falls within the general framework

studied by Armstrong and McGehee (1980). In theorem 1, we show that our system exhibits

competitive exclusion. Consistent with the intuition set forth in Tilman’s R∗ theory, the most
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competitive late-successional species is the one whose equilibrium point is associated with the

lowest light (resource) level.

The most competitive late-successional species

The form of equation (D5) reveals that the growth rate for a species is zero when the function

ui is zero. Notice that since the functions ζ1 and ζ2 (eqs. [D2]) are both positive and do not

depend on light level, it follows from equation (D4) that ui is an increasing function with light

availability. Moreover, in order for a species to be viable, it is at least necessary for the growth

rate to be positive at the maximum light level. (Notice, on the other hand, a natural consequence

of equation (D4) is that when ` = 0, the growth rate is negative.) To guarantee that all species

are viable if they were the only species in the environment, and to organize the species in a way

that is useful later, we introduce the following assumption.

Assumption 1 (Viability at Lmax). For each i, we assume that ζ2(ρi, σi)Lmax > ζ1(ρi, σi)(kp + Lmax).

Given this condition let the equilibrium light level `∗i be the (unique) value such that ui(`
∗
i ) = 0. Further-

more, we assume that the species are organized such that 0 < `∗1 < `∗2 < · · · < `∗n < Lmax.

We can relate this `∗ notation to the Leq in equation (C3) as follows. Observe that for a given

pair (ρi, σi), we can set the left-hand side of equation (D4) to zero and solve for ` to show that a

species with a given pair of trait values (ρi, σi) will attain its equilibrium state at the light level

`∗i (ρi, σi) =
kpγ(ρi, σi)

1− γ(ρi, σi)
. (D7)

Recall that γ is the ratio of the growth and mortality functions ζ2 and ζ1 defined in equation

(D2).

Finally, we can derive the biomass level associated with this equilibrium. Thinking of the

light level L as a function of a vector of biomasses~b = (b1, b2, . . . , bn), we note from equation (D1)

that L is a decreasing function in each component bi. Since limbi→∞ L(~b) = 0, there is a unique

b∗i such that L(0, . . . , 0, b∗i , 0, . . . , 0) = `∗i . This is the biomass for this species at equilibrium if it is
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the only species present, and the value is given by

b∗i = 2(ρi + σi) ln
(Lmax

`∗i

)
. (D8)

Given the preceding discussion and notation, we are ready to state our main mathematical

results.

Theorem 1 (Armstrong and McGehee (1980)). Suppose {Bi(t)}n
i=1 and L satisfy equations (D1) - (D8)

with parameters that satisfy Assumption 1. Then if the initial condition of the system satisfies B1(0) > 0,

we have that

lim
t→∞

B1(t) = b∗1

and lim
t→∞

Bi(t) = 0, for i = 2, 3, . . . , n.

Proof. As is described in Appendix D of Armstrong and McGehee (1980), the theorem holds

when two conditions are true. First, by Assumption 1, for each i there exists an `∗i > 0 such that

ui(`)


< 0, ` < `∗i

= 0, ` = `∗i

> 0, ` > `∗i

.

Second, for each i, ∂L
∂bi

< 0, which completes the proof.

Given this theorem, the analysis reduces to finding the pair of values (ρ̂, σ̂) that produce the

minimal light value. In fact, in the scenarios we have tested, the minimal pair is unique. The

method reduces to using calculus.

As described above, for a given (ρ, σ), the minimal light level has the form (suppressing the

dependence on the species index i)

`∗(ρ, σ) =
kpγ(ρ, σ)

1− γ(ρ, σ)
(D9)

where γ is defined in equation (D3). Since `∗ is an increasing function in γ, it suffices to find a

pair (ρ, σ) that minimizes γ. As such, we solved the partial derivatives of γ with respect to ρ and
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σ separately and set each to zero. We then numerically computed the intersection

(ρ̂, σ̂) =
{
(ρ, σ) :

∂γ

∂ρ
(ρ, σ) = 0

} ⋂ {
(ρ, σ) :

∂γ

∂σ
(ρ, σ) = 0

}
which can analytically be shown to be unique. This is the content of our next result, theorem 2.

Theorem 2. Let B(t) satisfy Equation (D5) with the number of species being n = 1. Then there exists a

unique strictly positive pair of real numbers (ρ̂, σ̂) that achieve the minimal light value L(B∗(ρ̂, σ̂)).

Proof. Without loss of generality, we set Lmax = 1.

Recall the fundamental quantity γ that needs to be minimized. First, we obtain the partial

derivatives of γ with respect to ρ and σ:

∂γ

∂ρ
=

1
ρav

[
− kv

ρ

(
rsσ +

1
f
+

µσ

f

)
+ ρ

(
rp +

1
f cσ

+
µ

f

)]
(D10)

∂γ

∂σ
=

kv + ρ

avρ

[
rs +

1
f cσ
− ρ + σ

f cσ2 +
µ

f

]
. (D11)

Next, we set each of the partial derivatives equal to zero and solve for the critical value ρ̂ in

terms of σ̂. We begin with equation (D11):

∂γ

∂σ
= 0⇐⇒ rs +

1
f σ̂
− ρ̂ + σ̂

f cσ̂2 +
µ

f
= 0. (D12)

Solving for ρ̂, we find that

ρ̂ = cσ̂2 (rs f + µ) . (D13)

Next, we set equation (D10) equal to zero and solve for ρ in terms of σ. First we find the

least common denominator among the terms in the ∂γ
∂ρ equation, so we can write ∂γ

∂ρ as a single

fraction.

∂γ

∂ρ
=[rpρ2 f cσ + rsσ

2ρ f c− rsσ
2kv f c− rsσ

2ρ f c + ρ2 + ρσ

− kvσ− ρσ + ρ2cσµ + ρcµσ2 − cµσ2kv − ρcµσ2]
/
(avρ2 f cσ)

=[rpρ2 f cσ− rsσ
2kv f c + ρ2 − kvσ + ρ2cσµ− cµσ2kv]

/
(avρ2 f cσ)

13
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Figure D1: Demonstrating a key fact in the proof of theorem 2. We show that the function γ, defined

by equation (D3), has a unique minimum with respect to the parameters ρ and σ. For any given value

of σ, there exists a value of ρ̂1(σ) such that dγ
dρ (ρ̂1(σ), σ) = 0 (blue curve, eq. [D14]) and a separate value

ρ̂2(σ) such that dγ
dσ (ρ̂2(σ), σ) = 0 (red curve, eq. [D13]). Note that there exists only one nonzero σ̂ such

that ρ̂1(σ̂) = ρ̂2(σ̂), meaning that γ has a unique critical point for (ρ, σ) in the first quadrant.

As previously noted, when we set ∂γ
∂ρ equal to zero, we can simply set the numerator equal to

zero, since we are assuming all of terms in the denominator are positive. Therefore

∂γ

∂ρ
= 0⇐⇒ rpρ̂2 f cσ̂− rsσ̂

2kv f c + ρ̂2 − kvσ̂ + ρ̂2cσ̂µ− cµσ̂2kv = 0.

Solving for ρ̂, we have

ρ̂ =

√
σ̂kv(σ̂ f crs + 1 + σ̂cµ)

σ̂ f crp + 1 + σ̂cµ)
. (D14)

The next step in solving for the values of ρ̂ and σ̂ that minimize light is to set equations (D13)

and (D14) equal to each other and then solve for σ̂. This cannot be achieved by hand; therefore,

we turn to computational methods. A plot of equations (D13) and (D14) is shown in figure D1.

Parameter values from table A1 were used to generate this graph. The intersection point of

the two lines represents the only critical point of γ (for these given parameter values). We will

14
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now show that this critical point is the absolute minimum of γ. This would mean that the values

of ρ̂ and σ̂ at the critical point represent the trait values that minimize light in our model.

To show this critical point is the absolute minimum of γ, we will solve for ∂2γ
∂ρ2 , ∂2γ

∂σ2 , and ∂2γ
∂σ∂ρ .

Then we will show that D = ∂2γ
∂ρ2 · ∂2γ

∂σ2 −
[

∂2γ
∂σ∂ρ

]2
> 0 and ∂2γ

∂ρ2 > 0.

Figure D2: Demonstrating a key fact in the proof of theorem 2. This heatmap shows that the critical point

of γ is a relative minimum. Recall: LMAs,i along the horizontal axis is represented by σ and LMAp,i along

the vertical axis is represented by ρ.
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To this end, a quick calculation shows that

∂2γ

∂ρ2 =
2 · kv

ρ3 · av

(
rsσ +

1
f c

+
µσ

f

)
(D15)

∂2γ

∂σ2 =
2(kv + ρ)

σ3av f c
(D16)

∂2γ

∂σ∂ρ
= − kv

ρ2av

(
rs +

µ

f
+

ρ2

σ2kv f c

)
. (D17)

It follows that

D =
kv

ρ3a2
v

[
4(kv + ρ)

σ3 f c

(
rsσ +

1
f c

+
µσ

f

)
+

kv

ρ

(
rs +

µ

f
+

ρ2

σ2kv f c

)2
]

. (D18)

Now, we note that, since all parameters are assumed to be greater than zero, we have D > 0 and

∂2γ
∂ρ2 > 0. It follows that the intersection point in figure D1 is a relative minimum of γ.

In order to show that the critical point is an absolute minimum it remains to observe the

following limits. Suppose ρ > 0, then limσ→∞ γ(ρ, σ) = ∞ and limσ→0+ γ(ρ, σ) = ∞. Meanwhile,

if σ > 0, then limρ→∞ γ(ρ, σ) = ∞ and limρ→0+ γ(ρ, σ) = ∞.

Thus, we have shown that the critical point of γ (intersection point of fig. D1) is an absolute

minimum. The heatmap displayed in figure D2 supports this claim.

The optimal late-successional species maximizes the lifetime return on

investment

In Figure 3 we observed that, for the baseline parameter values (table A1), the optimal late-

successional LMAp and LMAs pair coincides with the maximum of the mortality-adjusted life-

time return per-unit investment in leaf mass, (LL−1 + µ)−1 Aeq/mass. In this section we will

show that this holds in general.

Revisiting eqs. (C1) and (C2), which define Aeq/mass, and representing LMAp and LMAs by

ρ and σ respectively, we can write the mass-normalized net assimilation rate at light-level L as

follows:
A(L ; ρ, σ)

mass
=

1
ρ + σ

(
avρ

kv + ρ

L
kp + L

− (rpρ + rsσ)

)
. (D19)
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The specific value used for L in figure 3 is Leq, which is the equilibrium light-level achieved for

the optimal late-successional species. Recalling that leaf lifespan has the form LL = cσ (where

c is our shorthand in this appendix for cLL), it follows that the full expression for the mortality-

adjusted lifetime return on investment can be written

L(ρ, σ) :=(LL−1 + µ)−1 Aeq

mass

=
1

( 1
cσ+µ )(ρ + σ)

(
avρ

kv + ρ

Leq

kp + Leq
− (rpρ + rsσ)

)
.

(D20)

where we have introduced the notation L(ρ, σ) to emphasize the dependence on LMAp and

LMAs.

Proposition 3. Let L(ρ, σ) = (LL−1 + µ)−1 Aeq/mass be the mortality-adjusted leaf lifetime return on

investment, as defined in equation (D20). Then the trait pair (LMAp, LMAs) that maximizes L is the

same pair that gives the optimal late-successional strategy, which we denote (ρ̂, σ̂).

Proof. First, recall that for a single species, the differential equation governing the biomass of that

species can be written
dB
dt

= B(t)u(L(B(t))),

where

L(B(t)) = exp
(
−1

2
B(t)

ρ + σ

)
;

u(`) = ζ2(ρ, σ)

(
`

kp + `

)
− ζ1(ρ, σ);

ζ1(ρ, σ) = f
rpρ + rsσ

ρ + σ
+

1
cσ

+ µ; and ζ2(ρ, σ) =
f

ρ + σ

avρ

kv + ρ
.

(D21)

The constant f that appears in the last statement is f = fL(1− fR)). See equations (D1)-(D5) for

the original introduction of these quantities in the multi-species setting.

A species with (LMAp, LMAs) = (ρ, σ) is in biomass equilbrium when the light level has

reached a value `∗ which satisfies u(`∗) = 0. That is to say,

0 = ζ2(ρ, σ)
`∗

kp + `∗
− ζ1(ρ, σ).
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Recalling the notation γ(ρ, σ) = ζ1(ρ, σ)/ζ2(ρ, σ) we see that `∗ must satisfy

`∗

kp + `∗
= γ(ρ, σ).

This quantity appears in equation (D20) with `∗ = Leq. Since Leq is the equilibrium light level

achieved by the optimal late-successional pair ρ̂, σ̂), we have the identity

Leq

kp + Leq
= γ(ρ̂, σ̂).

Comparing other terms that appear (D20) with the definitions for ζ1 and ζ2 in (D21), we see

the following identities
1

ρ + σ

avρ

kv + ρ
=

ζ2

f
; and

rpρ + rsσ

ρ + σ
=

ζ1

f
−
( 1

cσ
+ µ

)
.

It follows that

L(ρ, σ) =
1

1
cσ + µ

(
ζ2(ρ, σ)

f
γ(ρ̂, σ̂)− ζ1(ρ, σ)

f
+

1
cσ

+ µ

)
.

Note the appearance of (ρ̂, σ̂) in the factor with γ, which occurs because we are assessing this

index function at Leq. Now, factoring ζ2/ f from the first two terms in parentheses and recalling

that γ = ζ1/ζ2 and then distributing the leading factor, we have

L(ρ, σ) =
1

1
cσ + µ

(
ζ2(ρ, σ)

f

(
γ(ρ̂, σ̂)− γ(ρ, σ)

)
+

1
cσ

+ µ

)
=

ζ2(ρ, σ)

f ( 1
cσ + µ)

(
γ(ρ̂, σ̂)− γ(ρ, σ)

)
+ 1.

This form of the index L reveals why the maximum occurs at (ρ̂, σ̂). First, observe that if

we plug in (ρ̂, σ̂) for (ρ, σ) we get the value 1. Since, by the findings in the previouis section,

(ρ̂, σ̂) is the pair that minimizes the function γ, it follows that for all other choices, the quantity

γ(ρ̂, σ̂)− γ(ρ, σ) is negative. This implies that L(ρ, σ) < 1 = L(ρ̂, σ̂) when (ρ, σ) 6= (ρ̂, σ̂), which

completes the proof.
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The most competitive early-successional species

To simplify our notation, we let φ = u(L(0)), which is a species’ growth rate at the low-biomass

(high-light) limit:

φ =
f avρ

(kp + 1)(ρ + σ)(kv + ρ)
−

f (rpρ + rsσ)

ρ + σ
− 1

cσ
− µ. (D22)

To solve for the optimal early-successional trait values (i.e., those that maximize φ), namely ρ̃

and σ̃, we will take the partial derivatives with respect to ρ and σ separately, set these derivatives

equal to 0, solve for σ̃ in terms of ρ̃ in each case, set those two equations equal to each other and

solve for ρ̃, and finally plug that expression for ρ̃ into either of our expressions for σ̃.

First, we solve for dφ
dρ :

dφ

dρ
=

f av(kp + 1)(ρ + σ)(kv + ρ)− f avρ(kp + 1)(2ρ + kv + σ)[
(kp + 1)(ρ + σ)(kv + ρ)

]2

−
(

f rp(ρ + σ)− f (rpρ + rsσ)

(ρ + σ)2

)
.

After finding a least common denominator and combining terms:

dφ

dρ
= [ f av(kp + 1)((ρ + σ)(kv + ρ)− ρ(2ρ + kv + σ))− f rp(ρ + σ)(kp + 1)2(kv + ρ)2

+ f rp(ρ + σ)(kp + 1)2(kv + ρ)2] · 1/[(kp + 1)(ρ + σ)(kv + ρ)]2. (D23)

Next, we solve for dφ
dσ :

dφ

dσ
=

− f avρ

(kp + 1)(kv + ρ)
· 1
(ρ + σ)2 −

[
f rs(ρ + σ)− f (rpρ + rsσ)

(ρ + σ)2

]
+

1
cσ2 .

After finding a least common denominator and combining terms:

dφ

dσ
= [− f avρcσ2 − f rscσ2(kp + 1)(ρ + σ)(kv + ρ) + f cσ2(rpρ + rsσ)(kp + 1)(kv + ρ)

+ (kp + 1)(ρ + σ)2(kv + ρ)] · 1/[(kp + 1)(ρ + σ)2(kv + ρ)cσ2]. (D24)

Next, we set equations (D23) and (D24) equal to zero and solve for σ̃ in terms of ρ̃. Since all

of our parameters are positive, we know the denominators of these two equations are positive,
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Figure D3: Recall that (ρ, σ) represents the trait pair (LMAp, LMAs). The function h(ρ) comes from

plugging the expression for σ̃ from equation (D25) into equation (D26). The only biologically sensible root

of h(ρ) is 1.77. The corresponding value of σ for this root is 0.66. Plugging this optimal pair (ρ̃, σ̃) = (1.77,

0.66) into equation (D22) yields the greatest value of φ = 30.74.

so we can simply set the numerators of these equations equal to zero and solve for σ̃ in terms of

ρ̃.

Setting the numerator of equation (D23) equal to zero and solving for σ̃ in terms of ρ̃ yields

the following expression:

σ̃ =
avρ̃2 + rp(kp + 1)(ρ̃3 + 2ρ̃2kv + ρ̃k2

v)− rpρ̃(kp + 1)(kv + ρ̃)2

avkv − rpk2
v(kp + 1)− rpρ̃2(kp + 1) + rs(kp + 1)(kv + ρ̃)2 − 2rpρ̃kv(kp + 1)

. (D25)

Now, setting the numerator of equation (D24) equal to zero and solving for σ̃ in terms of ρ̃, we

have

0 = f cσ̃2(rpρ̃ + rsσ̃)(kp + 1)(kv + ρ̃) + (kp + 1)(ρ̃ + σ̃)2(kv + ρ̃)

− f rscσ̃2(kp + 1)(ρ̃ + σ̃)(kv + ρ̃)− f avρ̃cσ̃2
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This can be rewritten as a cubic equation in σ̃

0 = σ̃3( f crs(kp + 1)(kv + ρ̃)
)

+ σ̃2( f crpρ̃(kp + 1)(kv + ρ̃) + (kp + 1)(kv + ρ̃)

− f crsρ̃(kp + 1)(kv + ρ̃)− f avcρ̃)
)

+ σ̃
(
2ρ̃(kp + 1)(kv + ρ̃)) + ρ̃2(kp + 1)(kv + ρ̃

)
.

(D26)

Since we end up with a cubic in σ̃, we turn to computational methods to finish solving for

the optimal values ρ̃ and σ̃. We will plug our expression for σ̃ from equation (D25) into equation

(D26), and then solve for the roots of that equation, which we call h(ρ). We then plug those values

of ρ into equation (D25) to find the corresponding values of σ. Finally, since we are maximizing

φ, we will plug the pairs of ρ and σ into equation (D22) to find the optimal pair (ρ̃, σ̃) that yields

the greatest value.

The roots of h(ρ) are ρ = 0, ρ = 1.77, ρ = 49.97, and ρ = 52.98. The only value that

yields biologically sensible results is ρ = 1.77, which we have focused on in figure D3. The

corresponding value of σ for this root is 0.66. Plugging this pair of ρ and σ into equation (D22)

yields a result of φ = 30.74.

So the optimal leaf mass allocations for an early-successional species (using the parameter

values in table A1) are ρ̃ = 1.77 and σ̃ = 0.66. This result shows that compared to the optimal

late-successional species (fig. D2), the optimal early-successional species has a relatively high

ratio of LMAp (ρ) to LMAs (σ).
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