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Significance

Ecosystem services provided by 
forests—including wildlife 
habitat, wood, fiber, and carbon 
storage—depend on forest 
productivity, the collective 
biomass growth of individual 
trees. Forest productivity is 
thought to increase with tree 
biodiversity, but there are many 
ways to quantify biodiversity, 
with little consensus on which 
measures are most important. 
Using >1.8 million tree 
measurements across eastern US 
forests, we show that the 
number of species (the most 
widely available biodiversity 
measure) is as good a predictor 
of forest productivity as more 
complex biodiversity measures 
that consider species properties 
and evolutionary history. This 
result suggests that conservation 
strategies maximizing the 
number of species may 
effectively conserve ecosystem 
functioning.
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Despite experimental and observational studies demonstrating that biodiversity enhances 
primary productivity, the best metric for predicting productivity at broad geographic 
extents—functional trait diversity, phylogenetic diversity, or species richness—remains 
unknown. Using >1.8 million tree measurements from across eastern US forests, we 
quantified relationships among functional trait diversity, phylogenetic diversity, spe-
cies richness, and productivity. Surprisingly, functional trait and phylogenetic diversity 
explained little variation in productivity that could not be explained by tree species 
richness. This result was consistent across the entire eastern United States, within eco-
provinces, and within data subsets that controlled for biomass or stand age. Metrics of 
functional trait and phylogenetic diversity that were independent of species richness 
were negatively correlated with productivity. This last result suggests that processes that 
determine species sorting and packing are likely important for the relationships between 
productivity and biodiversity. This result also demonstrates the potential confusion 
that can arise when interdependencies among different diversity metrics are ignored. 
Our findings show the value of species richness as a predictive tool and highlight gaps 
in knowledge about linkages between functional diversity and ecosystem functioning.

biodiversity | forests | metrics | productivity | species richness

Conserving ecosystem functioning is essential for managing our planet sustainably (1–3). 
A fundamental component of ecosystem functioning is primary productivity, which pro-
vides the energy that sustains higher trophic levels (4), including humans (5). Primary 
productivity is also the basis of ecosystem carbon storage, which has offset ~25 to 30% 
of anthropogenic greenhouse gas emissions over recent decades (6, 7). Thus, understanding 
the controls of primary productivity is critical to biodiversity conservation and Earth 
system science.

Many experimental and observational studies have quantified relationships between 
biodiversity and primary productivity. Previous studies have found that the biodiversity–
productivity relationship may be scale dependent, with both the form (8, 9) and strength 
(9, 10) of the relationship varying among ecosystems and as a function of the spatial 
extent of the analysis (11). Most of these studies, however, have examined relationships 
at small spatial extents via both experimental manipulations and studies of natural systems 
(12, 13). Our understanding of how different facets of biodiversity—such as species 
richness, phylogenetic diversity, and functional trait diversity—relate to each other, and 
which of these facets best predicts primary productivity (2, 14–17), remains limited, 
especially regarding the nature of these relationships at regional to continental extents. 
How best to assess relationships among biodiversity measures, productivity, and ecosystem 
functioning, especially at large extents, remains a key question in basic and applied 
biodiversity science.

The biological characteristics of species and individuals—their traits—and their inter-
actions with each other and the environment are likely key determinants of primary 
productivity and other aspects of ecosystem functioning (3). Communities composed of 
functionally diverse groups are hypothesized to use resources more efficiently than less 
diverse communities (i.e., greater niche differentiation), which should lead to a positive 
relationship between productivity and functional diversity (1). However, a meta-analysis 
of the relationship between productivity and functional diversity in 78 grassland commu-
nities found that only a modest amount of the variation was explained (18). It is not clear 
whether the modest relationship is because productivity is only weakly determined by 
functional diversity or whether the relevant components of functional diversity have not 
been widely quantified because they have not been identified or they rely on traits that 
are difficult to measure at the right level (e.g., among individuals). The studies included 
in that meta-analysis were all conducted at small extents; at larger extents, the relationship 
may be even weaker due to other factors, such as differences in climate, soils, and topog-
raphy, which can also affect ecosystem productivity.D
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An alternative to predicting ecosystem functioning from meas-
ured trait diversity (i.e., the component of functional diversity that 
can be quantified from available trait data) is to rely on phyloge-
netic diversity (19), which can serve as a useful proxy for functional 
diversity because evolutionary divergence, by definition, confers 
some degree of functional differentiation (20, 21). Given the rap-
idly increasing resolution and quality of phylogenetic trees, phy-
logenetic diversity could potentially provide a more useful proxy 
for the true functional diversity of communities than trait diversity 
that can be readily quantified from available databases. This may 
particularly be the case in studies targeting large numbers of species 
across broad geographic regions, given current gaps in available trait 
data (22, 23). Beyond serving as a proxy for functional diversity, 
phylogenetic diversity may capture biological mechanisms that 
affect ecosystem functioning but do not depend on resource par-
titioning (24). For example, release from herbivores, pathogens, 
and other natural enemies in diverse plant communities has been 
shown to contribute to positive diversity–productivity relationships 
(25). Because natural enemies are often shared among closely 
related plant species (26), release from these enemies should be 
greatest in phylogenetically diverse plant communities.

In this study, we quantify relationships among different facets of 
biodiversity and primary productivity across forests in the eastern 
United States. Our analysis leverages large, open databases of remeas-
ured forest plots (Fig. 1), plant functional traits (27), and phylogeny 
(28). We addressed three questions: 1) What is the form and strength 
of the relationship among various facets of biodiversity? 2) What is 
the relationship between those facets and productivity? 3) Which 
facet will be of greatest practical use for conservation purposes?

Results

Diversity Patterns across Eastern US Forests. In all,188 tree 
species were recorded in the eastern US inventory plots (mean = 
7.1, SD = 2.6, range = 3 to 20), comprising 157 angiosperm and 31 
gymnosperm species. Trait values varied widely and were only weakly 
correlated with each other (unweighted mean trait correlations across 

species ranged from −0.01 to 0.56, SI Appendix, Fig. S1A; basal area-
weighted trait correlations across plots ranged from −0.01 to 0.55; 
SI Appendix, Fig. S1B). For the species included in our analyses, 
gymnosperms had lower specific leaf area (SLA), rooting depth, 
and leaf nitrogen (LN) content than angiosperms; wood density 
(WD) and maximum height did not differ between the two groups 
(SI Appendix, Figs. S1A, S2, and S3).

To quantify functional trait and phylogenetic diversity, we con-
sidered metrics that are intrinsically independent of species rich-
ness (SP)—mean pairwise trait distance weighted by basal area 
(MTD) and mean pairwise phylogenetic divergence (branch 
length) weighted by basal area (MBL). We also considered two 
commonly used metrics that mathematically depend strongly on 
species richness—functional attribute diversity (FAD) (30) and 
Faith’s phylogenetic diversity (PD) (19). Across plots, species 
richness was positively correlated with FAD (r = 0.98) and PD  
(r = 0.81) but negatively correlated with MTD (r = −0.69) and 
MBL (r = −0.61) (Fig. 2 and SI Appendix, Fig. S4), which was also 
true within each ecoprovince (SI Appendix, Fig. S5). The strong 
positive relationship of FAD and PD with species richness is 
expected from the mathematical formulation of these indices, 
which are intrinsically correlated with species richness, and thus 
each other (Materials and Methods, Measuring Diversity).

To understand the negative correlation between species richness 
and MTD—and MBL to the extent that phylogenetic diversity 
reflects functional trait diversity (r = 0.77)—we examined how 
species richness related to species packing. Functional convex hull 
volume [functional richness, FRic (31)] measures the total volume 
that the species assemblages occupy in functional trait space. As 
expected, hull volume increased as the number of species increased 
(SI Appendix, Fig. S6A). However, as hull volume increased, MTD 
decreased (SI Appendix, Fig. S6B). Together, these patterns indi-
cate that although increasing species richness does tend to add 
some additional species beyond the edges of the trait space, most 
species additions occur in the interior of the trait space. That is, 
as species richness increases, species tended to be more tightly 
packed in functional trait space.

Fig. 1.   Locations of the FIA plots in the eastern United States. Each dot represents a forest inventory plot. The dataset includes 23,145 plot locations with 62,698 
plot measurements and 1,821,107 individual tree measurements. Colors represent different ecoprovinces (29).D
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Diversity–Productivity Relationships across Eastern US 
Forests. Productivity (aboveground biomass growth rate, G) 
increased with species richness, FAD, and PD but decreased 
with MTD and MBL (Fig. 2 and SI Appendix, Figs. S4, S5, 
and S7). Mixed-effects regression models explained ~21% of 
the variation in productivity, with diversity metrics explaining 
a highly significant, albeit small (up to ~1.7%), percent of 
the variation that could not be explained by ecoprovince, 
stand age, and initial biomass (partial R2 for diversity effects, 
which is measured as the differences in R2 between mixed-
effects regression models including vs. not including diversity 

metrics; Table 1 and SI Appendix, Tables S1 and S3). Although 
each diversity measure had statistically significant independent 
effects on productivity (Fig.  3, Table  2, and SI  Appendix, 
Tables  S2 and S4), any single measure explained nearly as 
much variation as when measures were combined with each 
other (Table 1 and SI Appendix, Tables S1 and S2). The low 
model R2 values are characteristic of the large range in plot-level 
biomass growth in the inventory data (32, 33) and likely reflect 
multiple factors. The small size of the inventory plots (four 
subplots, each ~168 m2, distributed over ~0.4 ha) leads to large 
sample variability. Furthermore, there is considerable spatial 
and temporal environmental heterogeneity within eastern US 
ecoprovinces that cannot effectively be captured by available 
broad-scale soil and meteorological datasets (34, 35), which 
constrains the explained variation in our analysis.

While productivity always had a positive relationship with spe-
cies richness, the relationship of productivity to functional trait and 
phylogenetic diversity depended on the metric and the model 
(Fig. 3 and Table 2). For phylogenetic diversity, PD always had a 
positive relationship, and MBL always had a negative relationship 
regardless of the model. For functional trait diversity, MTD always 
had a negative relationship. In contrast, FAD had a positive 
relationship when considered singly or combined with PD, but a 
negative relationship when combined with species richness. This 
discrepancy highlights the importance of considering mathematical 
relationships between diversity metrics and species richness, which 
can influence the magnitude and sign of correlations between a 
given biodiversity measure and ecosystem functioning.

Variation in Diversity–Productivity Relationships in Relation to 
Stand Age, Initial Biomass, Ecoprovince, and Species Richness. 
Stand age, initial plot biomass (at the beginning of the interval 
during which productivity was measured), and ecoprovince 
explained a substantial portion of the variation in productivity 
(Table 1). This is unsurprising given the large range in plot stand 
ages and initial biomass (SI  Appendix, Fig.  S8) and the broad 
environmental differences among eastern US ecoprovinces (29). 
It also raises the issue of whether the general trends concerning 

Fig. 2.   Pairwise correlations between productivity and biodiversity metrics. 
Productivity (G) was measured as the annual growth of woody biomass (Mg/
ha/y). The measures of biodiversity were: species richness (SP), MTD, MBL, 
FAD, and Faith’s PD. All correlations were significant (P < 0.001).

Table 1.   Linear mixed models of productivity (aboveground biomass growth rate, G) in forest inventory plots
Model Diversity metrics in model AIC Fixed-effect R2 (%) Total R2 (%) Partial R2 (%)

3 diversity metrics SP, PD, and FAD 90,080 15.87 21.04 1.61
SP, MTD, and MBL 90,038 15.94 21.37 1.68

2 diversity metrics SP and MBL 90,056 15.86 21.35 1.60
SP and MTD 90,044 15.90 21.25 1.64

MTD and MBL 90,041 15.72 21.29 1.46
SP and PD 90,106 15.82 20.84 1.56

SP and FAD 90,092 15.72 21.17 1.46
PD and FAD 90,117 15.73 20.71 1.47

1 diversity metric SP 90,124 15.64 20.96 1.38
PD 90,112 15.67 20.65 1.41

FAD 90,163 15.40 20.76 1.14
MBL 90,084 15.38 21.19 1.12
MTD 90,052 15.64 21.15 1.38

SP, MBL, and single 
trait

Hmax 90,029 15.85 21.45 1.59
WD 90,062 15.71 21.37 1.45
LN 90,063 15.82 21.34 1.56
SLA 90,063 15.90 21.34 1.64

Each model included one or more diversity metrics—species richness (SP), phylogenetic diversity (PD or MBL), and trait diversity (FAD or MTD)—or the basal area-weighted SD of a single 
trait. Trait diversity metrics were calculated without Rmax. All models included stand age and initial biomass as fixed factors and ecoprovince as a random factor. The fixed-effects R2 
represents the amount of variation explained by all fixed effects combined (without the ecoprovince random effect). The total R2 is the amount of variation explained by the entire model, 
including both fixed and random effects. The partial R2 is the difference in the fixed-effects R2 between models with and without the relevant diversity metric(s). See Table 2 for the coef-
ficients and their significance in each model. The sampling unit of analysis is a forest inventory plot location (n = 23,145).D
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the various biodiversity metrics interacted with these factors. 
Therefore, we conducted additional analyses that grouped plots 
by stand age and initial biomass bins and by ecoprovince.

Within stand age bins [subsets of FIA (Forest Inventory and 
Analysis) plots with similar stand age], the models explained from 
17 to 29% of the variation in productivity (G). Species richness 
was negatively related to productivity in young stands (<30 y) and 

positively related in older stands (>50 y, SI Appendix, Fig. S8A and 
Table S6). The overall positive relationship for the entire dataset 
(Fig. 3) likely occurs because most of the stands (67.0%) are in 
the older group. In contrast, the effect of MTD was always neg-
ative or not significantly different from zero. For MBL, the effect 
was not different from zero for all but one age class (80 to 90 y), 
where it was negative.

Within initial biomass bins (subsets of FIA plots with similar 
initial biomass), the models explained 14 to 21% of the variation 
in productivity (G). The effect of biodiversity was the strongest 
in plots with the lowest initial biomass (<50 Mg, partial R2 = 6.8%, 
SI Appendix, Fig. S8B and Table S7). Within each initial biomass 
bin, the sign of biodiversity effects was consistent with the 
results based on all plots (Fig. 3). The effects of species richness 
were always positive or not different from zero. In contrast, the 
effects of MTD and MBL were always negative or did not differ 
from zero. There were no obvious trends in the sign or magni-
tude of diversity effects across initial biomass bins (SI Appendix, 
Fig. S8B).

When the plots were divided by ecoprovince, the direction of 
effects of biodiversity on productivity (G) varied (SI Appendix, 
Fig. S9A and Table S8). Overall, the models explained 9 to 27% 
of the variation in productivity (G). While the results were gener-
ally similar to the broad-scale analysis that spanned the entire 
eastern United States (Fig. 3), some differences were found. Results 
for species richness and MBL were mostly consistent between the 
broad-scale and ecoprovince-scale analyses. Within ecoprovinces, 
species richness and MBL effects were typically opposite one 
another, being positive for richness and negative for MBL (as in 
the broad-scale analysis) or not different from zero. The one excep-
tion was the Southern Mixed Forest, where the relationships were 
reversed—negative for species richness and positive for MBL. 
Results for MTD were less consistent between the broad-scale and 
ecoprovince-scale analyses. Effects of MTD on productivity (G) 
were significantly negative in three ecoprovinces and significantly 

Fig. 3.   Relationships of diversity measures with biomass productivity (G) in 
mixed-effects models. The models included either (A) FAD and PD, or (B) MTD 
and MBL, along with species richness, stand age, and initial biomass as fixed 
effects and ecoprovince as a random effect. Slopes represent the partial effect 
of each diversity metric, controlling for all other effects.

Table 2.   The coefficients and their significance from linear mixed models of the effect on productivity (G) of fixed 
factors—stand age (STD), initial biomass (IniBio), and different combinations of diversity metrics—with ecoprovince 
as a random effect

Model Diversity metrics in model
Diversity metric(s)

IniBio STDSP Phylo Trait

3 diversity metrics SP, PD, and FAD 0.42*** 0.09*** −0.33*** 0.75*** −0.67***

SP, MTD, and MBL 0.06*** −0.07*** −0.10*** 0.74*** −0.68***

2 diversity metrics SP and MBL 0.09*** −0.13*** - 0.74*** −0.68***

SP and MTD 0.06*** - −0.15*** 0.74*** −0.68***

MTD and MBL - −0.08*** −0.13*** 0.74*** −0.68***

SP and PD 0.08*** 0.10*** - 0.75*** −0.67***

SP and FAD 0.52*** - −0.36*** 0.74*** −0.68***

PD and FAD - 0.14*** 0.0 0.76*** −0.67***

1 diversity metric SP 0.16*** - - 0.75*** −0.68***

PD - 0.16*** - 0.76*** −0.67***

FAD - - 0.14*** 0.76*** −0.68***

MBL - −0.17*** - 0.74*** −0.68***

MTD - - −0.18*** 0.74*** −0.68***

SP, MBL, and single trait SP, MBL, and Hmax 0.13*** −0.12*** −0.08*** 0.72*** −0.68***

SP, MBL, and WD 0.09*** −0.12*** 0.02 0.73*** −0.68***

SP, MBL, and LN 0.08*** −0.13*** 0.02 0.74*** −0.68***

SP, MBL, and SLA 0.10*** −0.12*** −0.02 0.74*** −0.68***

Values in this table are for models presented in Table 1 (four functional traits). All the models include one or more diversity metrics: species richness (SP), phylogenetic diversity (Phylo, 
including PD and MBL), and trait diversity (Trait: FAD, MTD, or the SD of single traits). The traits were WD, LN content, SLA, and species maximum height (Hmax). Statistical significance 
is indicated as *P < 0.05, **P < 0.01, and ***P < 0.001.
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positive in two, which contrasts with the negative MTD effects in 
the broad-scale analysis (Fig. 3B). The inconsistent signs of MTD 
effects across ecoprovinces may reflect differences in community 
assembly processes, which may warrant additional exploration.

Finally, although SP has no intrinsic correlation with MTD and 
MBL, the variances of MTD and MBL tend to decrease as SP 
increases [see Materials and Methods and an analogous result in 
Fig. 2E of Laliberté and Legendre (36)]. To evaluate the potential 
effects of this heteroskedasticity on our results, we repeated our 
regression analysis within groups of FIA plots separated into SP 
bins, which constrains the SP range and thus the degree of het-
eroskedasticity (each bin was roughly three species wide; see 
SI Appendix, Table S9). The positive dependence of productivity 
on SP and the negative dependence of productivity on MTD and 
MBL, as observed in the analysis of all FIA plots combined 
(Fig. 3B), were also observed within most SP bins (SI Appendix, 
Fig. S9B and Table S9). Eight of the 15 diversity effects (three met-
rics in five SP bins) were nonsignificant (SI Appendix, Table S9), 
which may be due to the limited sample size and limited range of 
diversity (especially for SP) within each bin. To further evaluate 
the potential effects of heteroskedasticity, we translated the observed 
MTD and MBL in each FIA plot to standardized effect size (SES) 
values relative to a null model, and we repeated our regression 
analysis with these SES values substituted for the original MTD 
and MBL values. In this null model–adjusted analysis, productivity 
had a significant positive dependence on SP and a nonsignificant 
negative dependence on MTD and MBL (SI Appendix, Fig. S10). 
Together, these analyses suggest limited issues with heteroskedas-
ticity, a robust positive dependence of productivity on SP, and a 
negative or nonsignificant dependence of productivity on MTD 
and MBL (Fig. 3B and SI Appendix, Figs. S9B and S10).

Tests of Effects of Missing Data. Species with missing trait data 
generally accounted for a small proportion within any given FIA 
plot (less than 5% of the species or less than 6% of the total basal 
area in a plot, SI Appendix, Table S10). Even for this well-studied 
flora and set of ecologically important traits, we were missing 
about 20% of all species-trait combinations, albeit mostly 
for rare species. The effect of missing data on functional trait 
diversity was further reduced for the metrics weighted by basal 
area as missing values were mostly associated with less abundant 
species (Eq. 2). The exception was rooting depth (Rmax), which 
was missing for approximately 29% of all species or 23% of the 
total basal area. Due to this large percentage of missing data, we 
did not include Rmax when calculating trait diversity (MTD and 
FAD) in our primary analyses presented above. To evaluate the 
potential effects of excluding an important trait, we repeated 
the analyses with Rmax included (with weights in Eq. 1 set to 0 
for missing data). The results with Rmax included (SI Appendix, 
Tables S1 and S2) were generally the same as the results without 
Rmax (Tables 1 and 2). Finally, to evaluate the effect of variation 
in the number of traits used for distance measures of different 
species on estimates of species distances in trait space, we imputed 
missing values (Materials and Methods, Missing Data). The results 
with imputation (SI Appendix, Tables S3 and S4) were generally 
the same as the results without imputation (Tables  1 and 2). 
Because both sets of additional analyses were nearly identical, we 
conclude that our results are robust to missing data.

Discussion

Our study is one of the largest analyses of the productivity–biodi-
versity relationship in natural forests to date and explores the effects 
of how different metrics of phylogenetic and functional trait 

diversity might alter our perception of that relationship. Although 
both functional trait and phylogenetic diversity hold promise for 
advancing our understanding of the determinants and predictors 
of ecosystem functioning, few studies have quantified how these 
two facets of biodiversity relate to each other, to species richness, 
and to primary productivity. Our results show that the number of 
species in a community (i.e., species richness), despite its simplicity 
as a metric, has as much or more explanatory power as functional 
trait or phylogenetic diversity, likely because species richness is 
determined, in part, by assembly processes that act on the func-
tional and phylogenetic diversity of the available species pool (37). 
This result was consistent across different datasets and analyses: 
the entire eastern United States; within ecoprovinces; within data 
subsets of similar stand age, initial biomass, or species richness; 
and in a null model that accounted for heteroskedasticity.

The most surprising result was the negative relationship between 
functional trait diversity and productivity. This relationship is 
opposite of that predicted based on the theory that species with 
different functional traits will either use a wider variety of resources 
or respond in different ways to temporal heterogeneity, leading to 
greater total productivity (38). The associated negative relationship 
of MTD (which is the primary metric of functional diversity in 
our study) with both productivity and species richness is neither 
expected a priori from its mathematical formulation nor consist-
ently observed in other studies (15, 16). We have four hypotheses 
for this seeming contradiction. We emphasize that these hypotheses 
are not mutually exclusive; all these mechanisms may play a role.

First, the theory linking functional traits to productivity may be 
correct, but data limitations may obscure the positive diversity–
productivity relationship in some empirical analyses. If functional 
trait data do not include all relevant traits, as species richness 
increases, “true” functional trait diversity may also increase, but in 
unmeasured dimensions. Species richness may thus be a better 
proxy for true, unmeasured functional diversity than any functional 
diversity metric itself. Over the past few decades, the scientific com-
munity has made remarkable progress in assembling open, global 
trait databases [e.g., TRY (27) and BIEN (https://bien.nceas.ucsb.
edu/bien/)] that can facilitate studies of functional diversity and its 
ecosystem consequences. For example, an analysis of data from 
>46,000 plant species identified the "global spectrum of plant form 
and function" (39), which explains the majority of variation in six 
key plant traits with just two main axes: plant size and the leaf 
economics spectrum, the latter ranging from short-lived leaves with 
fast photosynthetic returns on investment to long-lived leaves with 
high lifetime returns (40). Although relevant traits (e.g., adult stat-
ure and leaf mass per area) have been measured for only a small 
fraction of the global flora (41), these traits are already available for 
many taxa in some regions of the world (e.g., woody plants in North 
America and Europe), and it is conceivable that these traits could 
be measured for most of the global flora in the foreseeable future. 
Even so, clear gaps, especially in belowground traits, are still perni-
cious and will require concerted community effort to close them.

Second, the theory may be correct, but only up to a limit. One 
way that greater functional diversity can lead to greater productivity 
is through a reduction in year-to-year variation in productivity by 
species that compensate for one another in their responses to envi-
ronmental variation. A simulation model of the effects of diversity 
on temporal stability in a community found that the greatest negative 
covariance among species (i.e., greater community stability) was at 
intermediate values of niche separation (see figure 1C in ref. 36). It 
may be that greater functional trait diversity does lead to higher 
productivity, but only up to a point. After that, it may be that higher 
functional redundancy (42) leads to greater ecosystem functioning. 
A large value of MTD indicates little redundancy because all the D
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species are very different from each other. Thus, it may be that the 
mean difference in trait values is not the best metric of functional 
diversity, despite its common usage, most typically as functional 
dispersion [FDis; (36)].

Third, it may be that the theory is wrong, and it is the addition 
of redundant species into a community that provides ecological 
buffering. This hypothesis is a combination of the previous two: 
Different species with similar trait values may still have differences 
in their responses to environmental variation because of other 
differences in their physiology or morphology. The result would 
be a positive correlation of species richness with productivity and 
a negative correlation with MTD.

Finally, it may be that other processes affect the relationship 
between functional trait diversity and productivity. For example, 
an increase in functional redundancy may reduce the impacts of 
natural enemies because each species occurs at lower density (25). 
Such negative density dependence would result in a positive depend-
ence of productivity on species richness and functional redundancy, 
but a negative dependence of productivity on functional trait diver-
sity. Alternatively, it may be that environmental stress and compe-
tition are linked to species richness. Low species richness may be 
due to greater environmental stress, and it is hypothesized that 
greater stress results in more competition (43). As environmental 
stress decreases, species numbers increase, competition decreases, 
and productivity increases. The decreased competition could allow 
the additional species in the community to be more similar in their 
trait values, resulting in a smaller mean difference among the spe-
cies—a lower MTD. In sum, more research is needed to understand 
how various facets of functional diversity relate to community 
assembly processes and ecosystem functioning.

Previous studies that have quantified relationships among eco-
system functioning and various facets of biodiversity (functional 
trait, phylogenetic, and species richness) typically have been 
restricted in geographic scope, limited in the number of commu-
nities sampled, or used metrics of functional and phylogenetic 
diversity that are confounded with species richness (15, 44, 45). 
A recent study, spanning much of China, overcame these limita-
tions and showed that a composite measure of ecosystem func-
tioning was positively related to plant functional diversity, but 
negatively related to phylogenetic diversity and species richness 
(16). Their results differ from ours, but a direct comparison is 
difficult because the two studies used different measures of eco-
system functioning. We also found that the performance of species 
richness in predicting productivity varied among ecoprovinces. 
Therefore, the generality of our results for other regions and their 
implications for primary productivity are unknown. Standardizing 
metrics of ecosystem functioning and biodiversity may facilitate 
reaching more general conclusions.

There is broad consensus in the scientific community that pro-
tecting both biodiversity and ecosystem functioning should be 
high priorities (46), but the contributions of different facets of 
biodiversity to ecosystem functioning (14, 15, 17), as well as the 
feedbacks and causal links between them (2), are complicated. 
While our study does not attempt to resolve questions about feed-
backs or causality, we show—using a large dataset spanning a 
broad geographic region—that functional trait and phylogenetic 
diversity explained very little of the variation in the productivity 
of eastern US forests that could not be explained by tree species 
richness alone. Furthermore, when considered across the entire 
eastern United States, measures of functional trait and phyloge-
netic diversity that are formulated to be independent of species 
richness were negatively correlated with productivity, whereas the 
effects of species richness on productivity were consistently posi-
tive in all analyses. This result demonstrates the potential 

confusion that can arise when interdependencies among different 
diversity metrics are ignored.

Our study points to the potential value of species richness alone 
as a predictive tool for biodiversity science. Maximizing species rich-
ness was also shown in a recent case study to be an optimal 
reserve-design strategy, as it successfully captured phylogenetic and 
functional trait diversity (47). Thus, focusing conservation efforts 
on species richness may be a simple, yet powerful, conservation 
strategy (48–51). However, our results may not be universal. 
Although species richness is relatively easy to estimate, and phyloge-
netic diversity is increasingly so given the rapidly expanding availa-
bility of open phylogenetic data [e.g., Open Tree of Life (52, 53)], 
our understanding of functional diversity is far from complete (27). 
The easiest-to-measure functional traits are only available for a small 
fraction of the world’s biota, and data for more difficult-to-measure 
traits [e.g., belowground (54) and hydraulic traits (55)] are even 
scarcer. Mechanistic ecophysiological studies linking traits to the 
functioning of individuals and ecosystems are critical to developing 
a process-based understanding of global biogeochemical cycles (56) 
and to designing reserves (57), but making such connections remains 
a major challenge.

Given the limitations of the available trait data, our capacity to 
directly quantify functional trait diversity across broad geographic 
scales will likely be constrained for the foreseeable future. Advances 
in understanding the effects of functional trait diversity on eco-
system functioning will rely on detailed site-level studies, as well 
as indirect insights that can be gleaned from broader-scale studies 
of species richness and phylogenetic diversity, which may serve as 
useful proxies for functional trait diversity. Although functional 
trait diversity has been found to be sensitive to gaps in trait data 
(58), the conclusions here are based on a temperate forest system 
in eastern North America, where such data are relatively compre-
hensive compared to most other biomes in the world, especially 
the species-rich tropics (41). Still, we were missing on average up 
to 4% of trait-species combinations in each plot for well-studied 
aboveground traits and 29% for a belowground trait (Table S10). 
Although our results appear robust to missing data (compare 
Tables 1 and 2 and SI Appendix, Tables S1–S4), the effect, in gen-
eral, of missing data on trait diversity estimation and predicting 
ecosystem productivity is unclear. Thus, an important remaining 
challenge is to understand under what conditions (e.g., commu-
nity assembly processes or geographic regions) phylogenetic and 
functional trait diversity provide additional critical information, 
beyond that provided by species richness. Furthermore, our study 
focuses on productivity, which is only one aspect of ecosystem 
functioning. The various facets of biodiversity may have different 
relationships with other ecosystem functions, such as litter decom-
position and carbon sequestration (59), pest and pathogen control, 
and cultural services (60). Studies of other ecosystem functions 
besides productivity are limited, especially in natural forest com-
munities. Further exploration is needed into the relationships 
among different facets of biodiversity and various aspects of eco-
system functioning (61, 62).

Materials and Methods

Data Overview. We quantified relationships among forest productivity, 
functional trait diversity, PD, and species richness in nonplantation forests of 
the eastern United States. Our analysis is based on 1,821,107 individual tree 
measurements in 23,145 systematically sampled forest inventory plots that were 
measured and remeasured from ~2000 to 2020 (Fig. 1). These forest inventory 
data were combined with publicly available trait data and a phylogeny derived 
from the Open Tree of Life. As an index of productivity, we calculated the rate 
of aboveground biomass production (Mg/ha/y) from plot remeasurements; this D
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biomass growth rate (G) comprises ~40% of total net primary production in tem-
perate forests (63) and accounts for ~70% of changes in total ecosystem carbon 
stocks in US forests over recent decades (64). We detail the assembly of these 
data products below.

FIA Data and Plot Filtering. Our analyses used national-scale, systemati-
cally sampled forest inventory data from the FIA program of the United States 
Department of Agriculture Forest Service. Because eastern US forests are con-
siderably more diverse both functionally and phylogenetically than western US 
forests (65), and because FIA remeasurement intervals are longer in the western 
United States (~10 y) than in the eastern United States (~5 y), we restricted our 
analyses to plots from the eastern United States (Fig. 1). Each plot consists of four 
7.32-m-radius subplots, one centrally located and the other three spaced 36.6 
m apart in a triangular arrangement. Within each plot, trees with a diameter at 
breast height (DBH) greater than 12.7 cm are inventoried. Trees with a DBH 2.54 
to 12.7 cm are inventoried in 2.07-m-radius “microplots” (one per subplot). Data 
reported for each inventoried individual include DBH, height, species identity, 
aboveground biomass, and other tree-level variables (66).

We used FIA database version 9.0, downloaded in November 2022 from 
https://www.fia.fs.usda.gov/. We restricted our analyses to plot locations that 
were measured at least twice (i.e., at least one remeasurement) using the current 
national standardized annual sampling design (67), which was implemented in 
most US states beginning around 2000. We further restricted our analyses to plot 
measurements on accessible forest lands that were classified into a single con-
dition (e.g., stand age and soil type) and not classified as artificially regenerated 
plantations. We did not include plots incapable of supporting at least 1.40 m3/
ha/y of wood volume growth (which excludes plots assigned to the lowest of FIA’s 
seven site productivity classes) or plots that lost more than 20% of their standing 
biomass stock to natural mortality or timber harvest between measurements (see 
SI Appendix, Table S5 for details). The dataset we analyzed included 62,698 sur-
veys at 23,145 plot locations. Each plot location was assigned to an ecoprovince 
by aggregating the ecological subsection codes reported by FIA to the province 
level (29). Each ecoprovince (Fig. 1) represents an area of similar geology, soil 
type, and climate that supports a similar potential natural vegetation type.

Measuring Biomass Growth Rate. For each plot, we calculated the plot-level 
aboveground biomass growth rate (G; Mg/ha/y) of trees with DBH ≥ 2.54 using 
a mass balance approach, described in detail below. In our dataset, 11,114 plots 
were measured twice (resulting in one G estimate), 8,143 plots were measured 
three times (two G estimates), 3,399 plots were measured four times (three G 
estimates), and 489 plots were measured five times (four G estimates). For plots 
with multiple G estimates, we used the mean value in subsequent analyses so 
that each plot was represented just once in each analysis.

To estimate G, we first calculated the plot-level live aboveground biomass stock 
(Bt; Mg/ha) of trees with DBH ≥ 2.54 for each plot at each time t by summing 
the product of individual tree aboveground biomass estimates (bi for tree i) and 
their expansion factors (TPHAi, the number of trees per hectare that a tallied 
tree represents) for all trees (i = 1 to n) alive at time t: Bt =

∑n

i=1

�
bi × TPHAi

�
   . 

Data on bi and TPHAi are in the FIA Tree table for all trees with DBH ≥ 2.54(66), 
where bi (DRYBIO_AG from the FIA Tree table) is estimated by combining DBH 
measurements with allometries and the component-ratio-method (66, 68), and 
TPHAi is calculated as the inverse of the tree’s sampling area. In our analysis, bi is 
converted from pounds to metric tons (Mg), and the TPHA values are a constant 
(2.47 acre/ha) times the “trees per acre unadjusted” values reported in the FIA 
Tree table. We then estimated G based on the biomass dynamics of a plot between 
times t and t+Δt: Bt+Δt − Bt = Δt·G − Mt − Ct, where Mt and Ct, respectively, 
are the time-t biomass stocks of trees that died or were cut (harvested) between 
times t and t+Δt (69). Rearranging yields the estimate of G over the interval t to 
t+Δt: G =(Bt+Δt − Bt + Mt +Ct)/Δt.

Trait Data. We selected five functional traits for analysis that were available for 
most eastern US tree species. Four of the traits—WD (g/cm3), LN (mg/g), plant max-
imum height (Hmax, m), and SLA (mm2/mg)—are included in the global spectrum 
of plant form and function (39). For supplementary analyses, we also included a 
fifth trait, maximum rooting depth (Rmax, m); greater variability in rooting depth 
among species is expected to increase the efficiency of belowground resource 
uptake [e.g., shallow vs. deep-soil water and nutrients (70)]. WD, LN, and SLA 
values were obtained from the TRY database (27) (accessed in May 2022). Rmax 

values also were obtained from TRY and augmented using the latest data from 
Tumber‐Dávila et al. (71) and Guerrero-Ramírez et al. (72). WD values were aug-
mented using data reported by FIA (WOOD_SPGR_GREENVOL_DRYWT in the 
FIA REF_SPECIES table). Hmax was estimated for each species using individual 
tree heights reported by FIA. Specifically, we defined Hmax as the 95th and 99th 
percentile of heights [HT in the FIA Tree table (66)] reported for a given species. 
The Hmax values based on the 95th and 99th percentiles were highly correlated 
with each other (r = 0.98); thus, only the 99th percentile of heights was used in 
measuring Hmax in further analyses. Because not all species had measurements 
of all traits, we evaluated the impact of missing data by performing additional 
analyses (see below).

The trait values of a species vary in space, which may bias trait distance meas-
urements in each FIA plot. To account for variation in traits within species among 
plots, we used a geographical buffer prior to calculating trait distances among 
species in each FIA plot, making use of the fact that multiple measures of geo-
referenced trait values existed in the data sources that we used. Specifically, we 
set a circular spatial buffer (moving window) for each FIA plot location, using the 
“st_buffer” function in the sf R package (73), and then intersected the FIA plot 
locations (using the approximate coordinates reported in the public FIA data) 
with the georeferenced trait records using the “st_intersection” function. The 
geographical coordinates of trait records were obtained from FIA plots (for Hmax) 
and the TRY database (for the other four traits). The trait value of a species in a 
plot was assigned the mean value of all trait records located within the buffer. The 
diameter of the buffer ranged from 100 to 900 km. The buffer size varied by trait 
and was determined by maximizing trait coverage (i.e., at least 1 georeferenced 
trait record located within the buffer of a plot) for all FIA plots at the finest possible 
geographic scale. Specifically, WD of a species in a given plot was assigned the 
mean value of WD of this species in all plots within a 900-km diameter buffer; 
the buffers for LN, SLA, Rmax, and Hmax were 600 km, 400 km, 500 km, and 100 km,  
respectively. After the buffer process, some trait data of a certain species may be 
missing in a FIA plot because the trait data are outside the buffer of the FIA plot. In 
these instances, we replaced missing values with the mean values of all available 
trait data for the species. Distances in trait space among species coexisting in the 
same plot were calculated following Gower (74):

	 [1]Dij = 1 −

∑n

k=1
wkij

�
1 −

�xkj − xki�
xk.max − xk.min

�

∑n

k=1
wkij

,

where Dij is the trait distance between species i and j, and xki and xkj are the values 
of trait k of species i and j, respectively. xk.max and xk.min are the maximum and 
minimum values of trait k, respectively, and wkij is the weight of trait k for the 
species i-j pair, which is 1 if both species have values for trait k and 0 if trait k is 
missing in either species i or j.

Measuring Diversity. Phylogenetic trees for the species in FIA plots (SI Appendix, 
Fig. S3) were extracted from the ALLMB tree presented by Smith & Brown (28), 
which uses GenBank data and the Open Tree of Life (52, 53) with a phylogenetic 
backbone provided by Magallón et al. (75). Prior to calculating diversity metrics, 
species names from FIA plots, trait databases, and the phylogeny were standard-
ized using the Taxonomic Name Resolution Service V5.0 (https://tnrs.biendata.
org/, accessed: 6 April 2022), following Tropicos (https://www.tropicos.org/) and 
World Flora Online (http://www.worldfloraonline.org). Pairwise branch distances 
were then calculated.

Because site productivity is the sum of the productivity of each individual  
(1, 76), functional trait diversity and phylogenetic diversity were both calculated 
using a basal area-weighted approach, where the weight for each tree was its 
DBH2 multiplied by its TPHA value (see above); this is equivalent to weighting 
each tree by its basal area. MTD and MBL were calculated as:

	
[2]X =

∑S

i=1

∑S

j≠i
dijninj

S(S − 1)N2
,

where X is either MTD or MBL, dij is either the pairwise phylogenetic distance 
(branch length) or trait distance (Eq. 1) between species i and j, ni is the total basal 
area of species i, N is the total basal area of all species, and S is species richness.

We also calculated two commonly used metrics, Faith’s PD (19), the sum of 
all branch lengths [in million years (Ma)]:D
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[3]PD =

S∑

i

∑

∈b(Si)

Lib,

where Lib is the length of the bth branch segment of the ith species on the phy-
logenetic tree, and FAD (30), the sum of the pairwise trait distances:

	
[4]FAD =

S∑

i= 1

S∑

j≠i

dij.

Because both PD and FAD are sums of branch lengths or trait distances, they 
inherently contain species richness as a component.

Statistical Analyses. Unless stated otherwise, the sampling unit in all analyses was 
an inventory plot location. All variables were calculated for each plot remeasurement 
and then averaged across all remeasurements at each location, as described above 
for G. For example, for a plot measured three times (t1, t2, and t3), all diversity metrics 
and other covariates were calculated at t2 and t3 and then averaged. Thus, each plot 
location occurred once in each analysis. First, we calculated pairwise correlations 
among growth and the diversity metrics and among the SD of the five traits weighted 
by basal area. Then, we explored the association between growth and the diversity 
metrics using linear mixed-effects models. To control for stand history and broad 
edaphic-climatic factors, each model included a random intercept term for ecoprov-
ince (ECO) and fixed effects for stand age (STD), initial biomass (IniBio), and between 
one and three diversity components: species richness (SP), phylogenetic diversity 
(PD or MBL), and functional trait diversity (MTD or FAD), or the basal area-weighted 
SD of a single trait. For the single-trait models, the basal area-weighted SD was 
determined for each trait in each plot as the square root of the basal area-weighted 
variance, which was calculated using the "wtd.var" function in the Hmisc package 
version 5.1-0 (77) in R, with basal area weights as described above. All numeric 
variables (i.e., all variables except ecoprovince) were standardized to zero mean and 
unit variance prior to fitting the models so that the model coefficients (slopes) are 
standardized to a common, unitless scale. We compared model fits using R2 and AIC. 
We recognize that biodiversity–productivity relationships often are not linear over 
their entire range (78). We used linear model forms, however, because they can easily 
accommodate random effects and are straightforward to interpret in terms of the 
sign and magnitude of effects and because preliminary analyses using generalized 
additive (nonlinear) models yielded qualitatively similar inferences. The robustness of 
our results to linear vs. nonlinear forms likely indicates that most FIA plots fall within 
the linear portion of the biodiversity–productivity relationships.

For additional exploration of the effects of stand age, the initial biomass of the 
plots, and environmental heterogeneity as captured by ecoprovince, we divided 
the plots into groups of different stand ages (10-y intervals) or initial biomass 
(50-Mg intervals). We then repeated linear mixed-effects models for each group. 
For each group of stand ages, biodiversity metrics (i.e., SP, MBL, and MTD) and 
initial biomass are fixed factors, and ecoprovinces are random factors; for each 
group of initial biomass, biodiversity metrics and stand age are fixed factors, and 
ecoprovinces are random factors. We also explored biodiversity–productivity rela-
tionships within each ecoprovince. For each ecoprovince, we conducted ordinary 
least squares regressions, with species richness (SP), phylogenetic diversity (MBL), 
trait diversity (MTD), stand age (STD), and IniBio included as independent variables.

Missing Data. To account for missing data, we did three sets of analyses: 1) exclud-
ing the trait with substantial missing information, Rmax, 2) including Rmax because 
it is known to be important for productivity in trees, and 3) excluding Rmax but 
imputing missing values for the other four traits. We imputed the missing values 
for LN and SLA using the “phylopars” function in Rphylopars version 0.3.9 (79). The 
missing values were replaced by restricted maximum likelihood values that were 
estimated based on the trait values of other species and the phylogeny under a 
Brownian evolution model. The results of the first set are reported in the main text 
(Tables 1 and 2). The other two sets (SI Appendix, Tables S1–S4) provide tests of the 
robustness of our conclusions by either including a potentially important functional 
trait or by estimating missing values so that all pairwise measures of trait distances 
are based on the complete set of traits. The number of species with missing values 
(no data for a given trait), out of the 188 species, was 0 for WD, 54 for LN, 21 for 
SLA, 108 for maximum rooting depth (Rmax), and 0 for maximum height (Hmax). 
For each trait, we measured the average percent of species without data and the 
average percent of basal area (m2/ha) of these species across FIA plots. The average 

percentage across plots for each trait was calculated as the average percentage 
among species within each plot and then averaged across all plot locations.

Relationships between Species Richness and Other Diversity Metrics. 
The form of Eq. 2, a mean value, ensures that the MBL and MTD metrics that we 
used for phylogenetic and functional trait diversity, respectively, have no intrinsic 
correlation with species richness (SP). Thus, any correlations that arise in any 
given empirical dataset will be due to processes affecting community assembly.

An additional issue is heteroskedasticity in the relationships between species 
SP and other diversity metrics. If all species in the regional species pool are pres-
ent at a single site, SP takes on its maximum possible value, and both MBL and 
MTD metrics become highly constrained as the only variance is due to differences 
in species abundances. Conversely, as the number of species in a site declines, the 
range of possible values increases for both MBL and MTD [see results for a related 
metric, FDis, in Fig. 2E of Laliberté and Legendre (36)]. This heteroskedasticity 
might affect our conclusions, depending on the amount of heteroskedasticity over 
the observed range of SP. In our data, SP values for single inventories of FIA plots 
ranged from 3 to 21, out of a total of 188 species in the eastern US FIA dataset. 
Because all variables, including SP, were averaged over multiple inventories of 
each FIA plot to calculate means for subsequent statistical analyses, the SP values 
used in our analysis were often not integers and ranged from 3.0 to 19.5.

To explore the potential effects of heteroskedasticity on our results, we con-
ducted two analyses. The first analysis involved implementing the mixed-effects 
model reported in Fig. 3B for groups of FIA plots that were separated into the 
following SP bins: (3, 4.5), (4.5, 7.5), (7.5,10.5), (10.5,13.5), and (13.5,19.5), 
with the last bin being wider due to the small number of FIA plots with SP 
> 13.5 (see sample sizes in SI Appendix, Table S9). The mixed-effects model 
reported in Fig. 3B was fit separately to the FIA plots in each bin so that the SP 
range and potential heteroskedasticity were constrained. The second analysis 
involved translating the observed MBL and MTD values into SES values using a 
null model and then using the SES values in place of the observed MBL and MTD 
as explanatory variables in the mixed-effects model reported in Fig. 3B. The null 
model was based on simulated communities following the methods of Laliberté 
and Legendre (36). Specifically, we created 10,000 simulated communities for 
each observed SP value from 3 to 21 as follows: In each simulated community, 
each species identity was randomly assigned from the pool of 188 species, and 
each abundance was randomly drawn from a lognormal distribution; the log-
scale parameters were mean 0 and SD 1, but the results are insensitive to the 
lognormal parameter values because numeric variables were standardized prior 
to fitting the mixed-effects model. We then paired each FIA plot with the set of 
simulated communities whose SP level matched the rounded (nearest integer) 
SP value of the FIA plot, and we calculated the FIA plot’s SES for MTD as (observed 
MTD value − mean of simulated MTD values)/(SD of simulated MTD values). 
We calculated SES values for MBL in the analogous way. Finally, we fit the same 
mixed-effects model reported in Fig. 3B, except using the SES values for each 
FIA plot as explanatory variables instead of the observed MTD and MBL values.

Data, Materials, and Software Availability. The code and the assembled 
dataset for traits, phylogeny of species found in FIA plots, and the abundance 
of each species in each FIA plot can be found at https://github.com/yunpeng-
liu1994/FIAplot (80). All materials are also available in Zenodo at DOI: https://
doi.org/10.5281/zenodo.10711336 (81). All other data used in this manuscript 
are from public databases.
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