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Abstract
The interplay of positive and negative species interactions controls species assembly in communities. Dryland plant 
communities, such as savannas, are important to global biodiversity and ecosystem functioning. Sandhill oaks in xeric 
savannas of the southeastern United States can facilitate longleaf pine by enhancing seedling survival, but the effects of 
oaks on recruitment and growth of longleaf pine have not been examined. We censused, mapped, and monitored nine 
contiguous hectares of longleaf pine in a xeric savanna to quantify oak-pine facilitation, and to examine other factors 
impacting recruitment, such as vegetation cover and longleaf pine tree density. We found that newly recruited seedlings 
and grass stage longleaf pines were more abundant in oak-dominated areas where densities were 230% (newly recruited 
seedlings) and 360% (grass stage) greater from lowest to highest oak neighborhood densities. Longleaf pine also grew faster 
under higher oak density. Longleaf pine recruitment was lowest under longleaf pine canopies. Mortality of grass stage and 
bolt stage longleaf pine was low (~1.0% yr−1) in the census interval without fire. Overall, our findings highlight the complex 
interactions between pines and oaks—two economically and ecologically important genera globally. Xeric oaks should be 
incorporated as a management option for conservation and restoration of longleaf pine ecosystems.
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Introduction

Community assembly reflects the accumulation of positive 
(facilitative) and negative interactions within and among 
trophic levels. Facilitation can balance negative species 
interactions and prevent competitive exclusion (Callaway 
and Walker 1997; Bruno et al. 2003). The importance of 
facilitative interactions is thought to increase under stress, 
variable environmental conditions, and possibly distur-
bances (Bertness and Callaway 1994). For instance, nurse 
plants in xeric systems provide refuge for many plant species 
by reducing evaporative stress and enhancing recruitment 
(Tewksbury and Lloyd 2001; Filazzola and Lortie 2014). 
Xeric longleaf pine (Pinus palustris Mill.) savannas of the 
southeastern United States are shaped by both stress (e.g., 
excessively drained soils) and widespread disturbances—
fires and hurricanes (Myers and Van Lear 1998; Gilliam and 
Platt 1999; Provencher et al. 2001; Zampieri et al. 2020), 
suggesting a potential role for facilitation in this system.
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Most studies of species interactions in longleaf pine 
systems have focused on the interplay between fire and 
negative species interactions, including aboveground 
(e.g., light) and belowground (e.g., water and nutrients) 
competition (Grace and Platt 1995a; McGuire et al. 2001; 
Jose et al. 2003). Much less attention has been given to 
positive species interactions in longleaf pine systems. 
However, analyses of spatial patterns, which find that 
longleaf pine densities are higher where oak density is high, 
suggest that positive interactions are happening in some 
xeric savannas (Johnson et al. 2021; Magee et al. 2022; 
Loudermilk et al. 2016). This implies a potentially important 
knowledge gap because forecasting population dynamics and 
species coexistence relies on understanding both positive 
and negative ecological interactions across species’ life 
stages and for various vital rates.

The xeric sandhill savannas dominated by longleaf pine 
provide an excellent system to explore both intra- and inter-
specific interactions. In addition to providing an excellent 
system for looking at interactions, the results of these inter-
actions have important consequences for management and 
restoration of the longleaf pine ecosystem, whose coverage 
in the SE US has been reduced 95% from its original range 
(Frost 2006). Longleaf pine savannas are characterized by a 
diverse herbaceous understory, a scattered midstory of hard-
wood species (mainly oaks; Quercus spp.), and a canopy 
dominated by sparse longleaf pine trees (Landers et al. 1995). 
Frequent fires (2–7 years) maintain savanna conditions, 
reducing southern mixed-hardwood species encroachment 
(e.g., Liquidambar styraciflua, Quercus nigra, Quercus hemi-
sphaerica, Carpinus caroliniana; Hartnett and Krofta 1989), 
or preventing conversion to sand pine scrub (Myers 1985; 
McCay 2001). Fires enhance longleaf pine seedling recruit-
ment (Ford et al. 2010) by top-killing individuals of compet-
ing species (Glitzenstein et al. 1995). Juvenile longleaf pine 
are thought to capitalize on the high light availability typical 
of savanna ecosystems to acquire carbon reserves, then initi-
ate rapid growth (“bolt”) to reach a fire-resistant size and thus 
escape recurrent fires (O’Brien et al. 2008). High light avail-
ability enhances juvenile longleaf pine survival and growth 
(Pessin 1944; Palik et al. 1997; Pecot et al. 2007; Pope et al. 
2023), potentially leading to aggregations in canopy gaps 
(Brockway and Outcalt 1998). Thus, longleaf pine has often 
been described as a “light-demanding” or “gap-demanding” 
species, particularly early in the history of longleaf pine sci-
ence and management (Chapman 1936).

Given the high-light conditions of savannas, longleaf 
pine seedlings might associate with canopy gaps due to 
mechanisms unrelated to light availability, such as reduced 
underground resource competition in gaps (Brockway and 
Outcalt 1998; McGuire et al. 2001; Rodrı́guez-Trejo et al. 
2003; Palik et al. 2003). A variety of experiments—includ-
ing trenching and greenhouse experiments—have been 

used to separate above versus belowground competitive 
effects on longleaf pine seedlings revealing positive seed-
ling growth and survival responses to increased availability 
of belowground resources, particularly water and nitrogen 
(McGuire et al. 2001; Jose et al. 2003; Palik et al. 2003; 
Harrington 2006; Pecot et al. 2007). Thus, gap dynamics in 
these high-light environments likely depend on belowground 
processes, which produces distance-dependent longleaf pine 
recruitment patterns during non-fire intervals (Grace and 
Platt 1995b). Spatially heterogeneous fuel loading and fire 
severity (Platt et al. 1991; Thaxton and Platt 2006; Wenk 
et al. 2011; Loudermilk et al. 2014; Whelan et al. 2021) may 
further reinforce conspecific distance-dependence due to the 
fire-sensitivity of some longleaf pine life stages, leading to 
the ‘patchiness’ commonly observed in longleaf pine savan-
nas (Platt et al. 1988; Robertson et al. 2019).

Competition, distance-dependency, and patchiness have 
been considered the dominant drivers of longleaf pine 
dynamics for decades (Boyer 1963; Grace and Platt 1995a) 
with studies almost exclusively focused on negative effects 
of both adult pines and hardwoods on longleaf pine recruit-
ment. Recently though, more attention has been given to the 
hypothesis of Wahlenberg (1946, pg 106) that oak canopies 
‘favor survival and growth [of longleaf pines] in early life 
stages’, with recent studies discussing the importance of 
oaks to wildlife and forest structure (Greenberg and Simons 
1999; Hiers et al. 2014). Consistent with the oak-facilitation 
hypothesis, recent studies have shown positive associations 
of oaks on longleaf pine sapling abundance (Johnson et al. 
2021) and seedling survival during both during fire (Magee 
et al. 2022) and non-fire intervals (Loudermilk et al. 2016).

Several important questions remain about oak facilita-
tion of longleaf pine recruitment (hereafter oak-pine facilita-
tion). To our knowledge, no previous studies have examined 
oak-pine facilitation of seedling growth. Longleaf pine has 
drastic and ecologically distinct life stage transitions that 
are growth-dependent, particularly at its earliest life stages. 
After an initial non-woody, fire sensitive, seedling stage 
(typically the first year only), longleaf pines transition to a 
fire-resistant grass stage (typically 2–7 years; Pessin 1934; 
Boyer 1993). Individuals persist in the grass stage—during 
which a dense bundle of needles and the ground surface 
boundary conditions provide protection from fire—until 
enough carbon reserves have accumulated to enter the bolt 
stage of rapid stem elongation (Aubrey 2021). Bolt longleaf 
pine can grow more than 1 m yr−1 in height but are vulner-
able to fire mortality for several years until the apical mer-
istem grows beyond the flame length of fires (Magee et al. 
2022). Thus, longleaf pine juveniles trade high survivorship 
(grass stage) for rapid growth but low survivorship (bolt 
stage) (Heyward 1939). This so-called intra-individual trade-
off confers an advantage in fire-frequented systems, although 
these traits did not necessarily evolve with fire, nor evolve 
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to promote fire (Mutch 1970; Bowman et al. 2014; Freeman 
et al. 2017).

The overall demographic importance of oak-pine facilita-
tion depends on how this relation influences various longleaf 
pine vital rates and how the effects vary across gradients of 
light, forest structure, and community composition. Interspe-
cific (oak) effects may help offset the negative intraspecific 
(pine) effects (Grace and Platt 1995a, b; Johnson et al. 2021); 
however, oak-pine facilitation may be a transient effect that 
shifts abruptly across longleaf pine life stages (Soliveres et al. 
2010). As longleaf pine seedlings shift from a survival to a 
growth strategy, neighborhood effects might shift as well. 
Neighbors could function as benefactors during one individ-
ual life stage and compete during others (Miriti 2006). Thus, 
understanding oak-pine facilitation requires a demographic 
assessment across multiple life stages.

To better understand the positive and negative species 
interactions controlling longleaf pine demography across 
early life stages, we mapped all living longleaf pine indi-
viduals one-year-old and older in 8.96 ha of xeric sandhill 
longleaf pine savanna and followed individuals for one year, 
during a non-fire interval. We modeled longleaf pine density 
and growth rates as a function of pine and oak densities as 
well as canopy openness. We tested the following hypoth-
eses: first, we hypothesized that juvenile longleaf pine den-
sity, growth, and new recruitment would increase with oak 
density, as predicted by the oak-pine facilitation hypothesis. 
Second, we hypothesized that canopy openness would posi-
tively affect juvenile longleaf pine growth, but new recruit-
ment and occurrence would be influenced more through posi-
tive and negative effects from neighboring oaks and pines, 
respectively. Third, we hypothesized that all vital rates and 
occurrence would decline with increasing longleaf pine tree 
density due to intraspecific competition. We examined each 
hypothesis at three different early longleaf pine life stages to 
better understand how positive and negative species interac-
tions shift across different stages of longleaf pine regenera-
tion. Finally, we discuss the implications of the oak and pine 
interactions for management and restoration of longleaf pine 
ecosystems.

Methods

Site description

This study was conducted in the 23.04-ha Forest Dynamics 
Plot (FDP) at the University of Florida Ordway-Swisher 
Biological Station in Putnam County, FL, USA (Johnson 
et  al. 2021), located on the ancestral homelands of the 
Potano Tribe of the Timucua peoples (Johnson 1991; Hann 
1996, Ch. 1). Beginning in 2019, all stems ≥1 cm diameter 
at breast height (DBH) were tagged and mapped, and 

the health status was recorded according to standardized 
ForestGEO protocols (Condit 1998; Anderson-Teixeira et al. 
2015; Davies et al. 2021). The 480 × 480 m plot was gridded 
and subdivided into 40 × 40 m quadrats monumented with 
corner and center posts. We conducted mortality censuses 
of stems ≥1 cm DBH between September–November 2020 
and again between September–October 2021. Mortality 
data were screened for quality assurance, particularly in the 
second census, where data were continuously integrated with 
quality assurance coding scripts (sensu Kim et al. 2022). 
The FDP is characterized by Enstisolic soils, with a mean 
elevation of 47.5 m.a.s.l and 14.9 m of relief across the plot. 
Precipitation is seasonal with 60–70% of the average annual 
1290 mm of rain occurring between May and September. 
Mean annual temperature is 20 ℃. The site has been pine 
savanna since at least the 1930s with little, if any, timber 
harvesting occurring in that time, and limited turpentine 
collection. There was a 37 year interval of fire suppression 
that ended in 2000 (Varner et al. 2005). Since April 2000, 
prescribed burns have been conducted at 2–4-year intervals 
in the area that includes the FDP (Magee et al. 2022).

Longleaf pine recruitment data collection

To measure longleaf pine seedling demographics, we mapped, 
tagged, and measured all longleaf pines older than one year 
(i.e., not germinated in the current calendar year) and <1 cm 
DBH (i.e., not in the main census described above) between 
February and May 2021 and again in 2022. During the 2021 
census, we did not tally seedlings <1 year old, which were 
distinguished from older seedlings by the lack of a woody 
stem. We used a strategic gridded search to locate seedlings. 
Utilizing the established grid of the FDP (40 × 40 m), we fur-
ther divided our searches into four 20 × 20 m sub-quadrats 
to sample a 280 × 320 m (8.96 ha) core area of the plot that 
was representative of the variation in longleaf pine and oak 
densities across the 23-ha area. The sampling area included a 
40 m buffer of mapped trees to provide data on neighborhood 
effects (Fig. 1). Proceeding from the center of sub-quadrat, 
we searched in a clockwise direction, mapping and measuring 
all individuals. All sub-quadrats were searched at least twice, 
and all longleaf pines were mapped and measured for height 
and basal diameter. We conducted a second follow-up survey 
in January–April 2022, recording any mortality, measuring 
living individuals for height and basal diameter, and mapping 
and measuring all newly recruited seedlings.

Life stage delineation

All longleaf pines tallied during the first census 
(2021) were classified as grass stage or bolt stage. We 
distinguished bolt stage from grass stage longleaf pines by 
quantitatively examining size-dependent growth behavior. 
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We first estimated seedling height growth (cm yr−1) as a 
function of basal diameter (cm) by fitting a logistic curve 
(Fig. S1a). We then identified the inflection point of the 
curve’s derivative, where height growth is accelerating 
most rapidly (Fig. S1b–c; see Supplement for methods 
details). We used this inflection point, 3.51  cm basal 
diameter, to define the breakpoint between the grass 
and bolt stages. Newly recruited seedlings that entered 
the census in 2022 were treated as a separate, pre-grass 
(recruitment) life stage.

Oak and longleaf pine neighborhoods

We leveraged the spatially explicit main tree census 
(i.e., stems ≥1 cm DBH) to calculate size and distance-
weighted oak and pine tree neighborhoods, which were 
used as explanatory variables in models of longleaf pine 
density (in a 1 × 1 m grid cells) and individual seedling 
growth. We calculated the simplified form of a commonly 
used neighborhood crowding index (NCI; Hegyi and Fries 
1974; Canham et al. 2004; Uriarte et al. 2004) for every 
individual or grid cell (1 m2), i:

where n is the number of oak or pine trees in the 
neighborhood of grid cell or seedling i, basal areaj is the 
basal area (m2) of the jth neighbor, and distanceij is the 
distance from the jth tree to the center of grid cell i or to 
seedling i. We used a 15 m neighborhood radius, because 
15 m is the approximate distance over which interactions 
occur at this study site (Johnson et al. 2021; Magee et al. 
2022). A previous longleaf pine neighborhood study used 
an exponential decay functional form (Bigelow and Whelan 
2019); however, another study found the inverse-distance-
weighted formula to be more effective at our study site 
(Magee et al. 2022).

Lidar data collection and processing

Lidar data were obtained from the NEON aerial observatory 
fixed-wing platform collected on September 30, 2021. The 
sensor platform flew at 54 m s−1 at approximately 1000 m 
aboveground. Successive flight passes had approximately 
37% overlap. Lidar data are freely available for download 

(1)NCIi =

n
∑

j=1

basal areaj∕distanceij

Fig. 1   Longleaf pine seedling 
census region in the forest 
dynamics plot with the back-
ground colors representing rela-
tive neighborhood competition 
index dominance by longleaf 
pine or oak species at the 1-m 
resolution. Red tones indicate 
pine dominance, and blue tones 
indicate oak dominance. All 
mapped longleaf pine seedlings 
are shown in black circles and 
scaled by regeneration basal 
diameter
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through the NEON data portal (NEON 2022; https://​www.​
neons​cience.​org/​data).

The original average point density was 53.3 points m−2. 
Point cloud processing was conducted in the R environment 
(R Core Team 2023) using the lidR package (Roussel and 
Auty 2019; Roussel et al. 2020). The preprocessing stage 
included filtering out points having scan angles higher than 
15° off-nadir, noise remotion, ground point classification 
and interpolation, and point cloud height normalization (i.e., 
scaling point altitude values to aboveground height values). 
Post-processed average point density of the normalized point 
cloud was 35 points m−2.

Previous studies focusing on plot-level estimates have 
shown that LAI and light availability strongly correlate with 
lidar-based canopy or vegetation cover, albeit in different 
forest types (Solberg et al. 2009; Korhonen et al. 2011). We 
used the lidar-based vegetation cover index metric (Eq. 2 
below) to quantify the effects of light availability, with lower 
values of Eq. 1 indicating more available light. Following 
Solberg’s Cover Index (SCI), we calculated:

where “Single,” “First,” and “Last” refer to the number of 
single, first, and last returns from one lidar emitted pulse; 
and the subscripts All and ground specify if all or only 
ground returns were considered (i.e., Singleground is the 
number of points that were single returns from a lidar pulse 
and were classified as ground). We set the bottom return 
profile equal to 0.5 m, as this value combines returns that 
would be intercepted by canopy, midstory, and understory 
vegetation. We calculated SCI at a 5 m resolution (Fig. S3).

Seedling density analysis

We used a spatial inhomogeneous Poisson point process 
model to examine the influence of canopy openness and 
oak and longleaf pine neighborhoods on the spatial density 
of grass stage, bolt stage, and newly recruited longleaf 
pine individuals. The sampling units for this analysis were 
1 × 1 m grid cells, spanning the 8.96 ha seedling monitoring 
area. We chose 1 × 1 because it matched the grid cell size 
for oak and pine NCI values. We calculated longleaf pine 
and oak NCIs (Eq. 1) from the center of every meter across 
a 1 × 1 m grid cell. Grid cells whose centers were very near 
(e.g., <1 cm) a mapped stem had greatly inflated the NCI 
values. These were assigned the 99th quantile NCI value 
to avoid extreme data outliers. We used a 5 × 5 m raster of 
vegetation cover (i.e., Solberg’s Cover Index). All raster data 
were transformed into spatial pixel images using the spatstat 
library in R (Baddeley and Turner 2005, 2014).

(2)
SCI = 1 − [Singleground + 0.5(Firstground + Lastground)]

∕[SingleAll + 0.5(FirstAll + LastAll)]

We modeled longleaf pine seedling point intensity ( � ) 
of the three juvenile life stages: newly recruited seedlings, 
existing grass-stage individuals, and bolt stage individuals 
as defined by their log-linear relationship with the canopy 
cover index (SCI), and oak and pine NCI.

where lambda is equal to the seedlings point intensity 
(expected number of seedlings m−2) at the 1 m2 grid cell the 
individual was located l; SCI(l) is the value from the 5-m 
SCI raster that includes grid cell l; and oak NCI(l) and pine 
NCI(l) are the NCI values (Eq. 1) at location l.

We implemented our point process model (Eq. 3) using 
the ‘ppm’ function in spatstat (Baddeley et al. 2015, Ch. 
9, Renner et  al. 2015), which uses maximum pseudo-
likelihood estimation to obtain parameter estimates for 
the point process model (Baddeley and Turner 2000). We 
specified in spatstat a Berman-Turner quadrature scheme 
and a 5  m Ripley’s boundary correction (Berman and 
Turner 1992; Baddeley et al. 2015, Ch. 9). The assumption 
of independent observations was evaluated by simulating 
999 realizations of fitted models with the ‘Kinhom’ 
function in spatstat (Ripley 1977; Baddeley et al. 2015, 
Ch. 11; Renner et al. 2015), which allowed us to evaluate 
the potential for interpoint spatial interactions (Fig S4). We 
added scaled x and y Cartesian coordinates as covariates 
to one model with spatial independence violations because 
grass stage longleaf pine densities gradually decreased 
from west to east and decreased from south to north. To 
better understand the marginal response to each covariate, 
we interpreted each covariate independently by multiplying 
the associated parameter estimate by a 10% increase in the 
covariate and holding other variables constant (Table S1). 
We further quantified the marginal effects of NCI parameters 
by adding a single neighboring tree of a standardized size, at 
a specified distance (Supplementary Methods).

Growth analysis

We modeled the volume growth rate (cm3 y−1) of longleaf 
pine as a function of oak and pine NCI (Eq.  2) and 
vegetation cover (i.e., SCI, Eq. 3), assuming a Gaussian error 
distribution. We first derived a local allometric equation to 
approximate seedling volume based on seedling height and 
diameter data from 32 randomly selected juvenile longleaf 
pines (see Fig. S2 and Supplemental Methods). We then 
applied our derived allometry to calculate volume for all the 
established seedlings (n = 892).

We modeled the volume growth rate (cm3 y−1) of seedling 
i as a linear combination of four predictor variables:

(3)
�(l) = exp(�0 + �1 ∗ pineNCI(l) + �2 ∗ oakNCI(l) + �3 ∗ SCI(l))

https://www.neonscience.org/data
https://www.neonscience.org/data
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where growth rate was calculated as the change in volume 
divided by the remeasurement interval (0.72–1.05 years), 
volumei is the volume (cm3) of the individual in the first 
census (2021), SCIi is the SCI (Eq. 2) 5-m raster value 
interpolated to the location of the seedling i (see details 
below), and oak and pine NCIs are the neighborhood 
crowding indices (Eq. 1). Initial volume (cm3) was included 
as a covariate because growth is a size-dependent process. 
We used a bilinear extraction method in the raster R package 
to associate the 5-m SCI raster to individual longleaf 
pine based on the average of the four nearest cells to the 
individual (Hijmans 2021). We fit Eq. 4 using the ‘lm’ 
function in R. We used Moran’s I to test model residuals 
for spatial autocorrelation (Crase et al. 2012); there was 
no significant autocorrelation, which justifies treating 
each seedling as an independent sample. We report model 
parameters in the results as partial effects the same as in the 
seedling density models (Tables S2, S3).

Results

In 2021, we mapped and measured 892 longleaf pine 
individuals (553 grass stage and 339 bolt stage) within 
the 8.96 ha study area. In spring 2022, we observed 1209 
longleaf pines, including 881 seedlings tallied in 2021, 235 
newly recruited seedlings (~1 year old), and 88 that may 
have been missed during the previous year (established 

(4)
E
[

growth ratei
]

= �0 + �1 × volumei + �2
× pinNCIi + �3 × oakNCIi + �4 × SCIi + �i

grass stage individuals >2  cm basal diameter) or were 
newly recruited individuals. Of the 892 juvenile longleaf 
pine tallied in 2021, five were found dead, and another 
four were not relocated. If the four missing individuals 
died, the juvenile longleaf pine annual mortality rate was 
approximately 1.01% (Sheil et al. 1995; Eq. 6). If the four 
seedlings survived, this equals a 0.55% annual mortality 
rate. For reference, within the same 8.96-ha study area, 
between October 2020 and October 2021 (also a non-fire 
interval), oaks (>96% Quercus laevis) and longleaf pine 
≥1 cm DBH had annual mortality rates of 9.1 and 1.3%, 
respectively (Magee and Johnson unpublished data).

Seedling densities

Longleaf pine densities varied considerably across the plot 
(Fig. 1, Fig S3). The density models revealed mostly con-
sistent effects of longleaf pine and oak neighbor indices on 
juvenile longleaf pine densities across three longleaf pine 
stages. Specifically, we observed significant and strong nega-
tive effects of longleaf pine neighbors and positive effects of 
increasing oak neighbor index. Vegetation cover (lidar-based 
SCI) varied in its relationship with longleaf pine seedling 
density depending on life stage but positively affected grass 
stage density (Fig. 2, Table S4–S6).

The average density (�recruits ) of newly recruited longleaf 
pine seedlings (n = 235) was 0.00263  seedlings  per  m2 
(26 seedlings ha−1). Of the measured covariates (SCI, oak 
NCI, and pine NCI), pine NCI had the strongest effect; in 
areas with 10% greater pine NCI (Z-stat = −9.12, P < 0.001), 
the expected number of new recruits was 49% lower 
(Table S4, Fig. 2). For reference, assuming Eq. 1, a 10% 
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Fig. 2   Predicted seedling density (seedlings m−2) as a function of a 
longleaf pine neighborhood crowding indices, b oak neighborhood 
crowding indices, and c canopy cover. Separate models were run for 
each life stage: newly recruited seedlings, grass stage longleaf pines, 

and bolt stage longleaf pines. Solid lines indicate significant effects 
(p < 0.05). See Supplemental Tables S2–S4 for parameters and asso-
ciated statistics
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increase in longleaf pine NCI corresponds to adding, one 
50 cm DBH tree 9.34 m from the focal individual (or grid 
point) or two 20 cm DBH trees at 3.0 m. Oak neighborhood 
density positively affected recruitment: with 10% higher 
oak NCI, the expected number of longleaf seedlings was 
9% lower (Z-stat = 2.87, P < 0.001; Table S4, Fig. 2). A 10% 
increase in oak density corresponds to adding two 20 cm 
DBH trees at 7 m from the focal individual. The density of 
new recruits was not significantly related to the vegetation 
cover (SCI).

Mean grass stage density was 0.006 seedlings per m2 
(60 per hectare, n = 553). For a 10% increase in longleaf 
pine NCI, we found a 49% decrease in grass stage density 
(Z-stat = −13.57, P < 0.001), but a 10% increase in oak 
NCI resulted in a 13.7% increase in grass stage density 
(Z-stat = 6.91, P < 0.001; Table  S5, Fig.  2). For a 10% 
increase in canopy coverage (SCI), grass stage seedling 
abundance was 5.01% lower (Z-stat = 2.21, P < 0.05).

Bolt stage seedlings (n = 339) had an average density of 
0.0037 m−2 (37 seedlings per hectare), and patterns differed 
from the earlier two life stages in that the oak effect was 
nonsignificant (Fig. 2, Table S6). Across the range of oak 
NCI values, bolt stage density was 7.7% higher from lowest 
to highest longleaf pine NCI locations (Z-stat = −10.4, 
P < 0.001). Spatial association with SCI was nonsignificant 
at this seedling stage.

Seedling growth

For the 339 bolt stage longleaf pine, mean height, 
basal diameter, and volume growth rates were equal to 
12.2 cm yr−1 (sd = ±11.6), 0.43 cm yr−1 (sd = ±0.81), and 
238.4  cm3 yr−1 (sd = ±355.3), respectively. As evidence 
for the potential prolific growth of bolting seedlings, one 
seedling grew 97.0  cm in one  year. For the 553 grass 
stage individuals, mean grass stage height, basal diameter, 
and volumetric growth were 1.4  cm  yr−1 (sd = ±0.41), 
0.48 cm yr−1 (sd = ±0.41), and 13.24 cm3 yr−1 (sd = ±20.5). 
Initial seedling volume, tree neighborhoods, and SCI values 
explained 56.7 and 42.8% of the variation in volumetric 
growth for bolt stage and grass stage seedlings, respectively. 
There was no evidence of multicollinearity as all variance 
inflation factors fell below 2.0.

For bolt stage seedlings, the most important growth 
predictor was the individual’s volume in the previous year 
(Fig. 3, Table S8). Holding other variables constant, bolt 
stage seedling volumetric growth increased by 0.40 cm3 yr−1 
for every additional 1 cm3 of seedling volume (t-stat = 20.93, 
P < 0.001; Table S8). Grass stage seedling growth was also 
size-dependent; predicted volumetric growth increased 
by 0.71  cm3  yr−1 for a 1  cm3 increase in initial volume 
(t-stat = 19.78, P < 0.001). Oak NCI positively affected grass 
stage growth rate. For a 10% increase in oak NCI, grass 

stage volume was predicted to increase by 0.68 cm3 yr−1 
(t-stat = 1.98, P < 0.05; Fig. 3, Table S9). In contrast, bolt 
stage growth rate was unaffected by oak NCI. Neighboring 
longleaf pines had stronger negative effects on bolt stage 
seedlings than grass stage seedlings, but this effect was not 
significant at either life stage. Vegetation coverage (SCI) 
had a significant negative effect on grass stage growth but 
was not significantly related to bolt stage growth. For a 
10% increase in SCI, the growth of grass stage seedlings 
decreased by 1.12 cm3 yr−1 (t-stat = −2.83, P < 0.01).

Discussion

As we hypothesized, oaks positively affected juvenile lon-
gleaf pine density, particularly for new recruits and grass stage 
individuals. Contrary to our hypothesis, the SCI, an index of 
vegetation cover, negatively correlated with grass stage seed-
ling growth, suggesting that grass stage volumetric growth 
was lower under increasing canopy cover. In addition, lon-
gleaf pine neighbors negatively affected seedling occurrence 
for all life stages, but longleaf pine neighbors only weakly 
reduced the growth of their recruits when they were able to 
establish during a census interval without fire. Mortality rates 
among juvenile longleaf pines were spatially variable but low 
over two annual censuses. We discuss the demographic con-
sequences of oak-pine interactions in sandhill communities 
below, management implications, and recommend research to 
expand scientific understanding of this phenomenon.

Oak‑pine facilitation

Oaks have been described as obstacles to longleaf pine 
recruitment because they compete with seedlings and 
occlude canopy gaps (Provencher et al. 2001; Pecot et al. 
2007), which have been considered the best conditions for 
longleaf pine recruitment. Yet, we found increased longleaf 
pine recruitment, abundance, and growth in areas of higher 
oak density. Oak effects on longleaf pine abundance and 
dynamics were consistently positive across three early life 
stages. Oak-pine facilitation has been shown at other lon-
gleaf pine life stages. For example, Loudermilk et al. (2016) 
found increased longleaf pine seedling survival under oak 
mid-stories during the earlier, pre-grass seedling stage. 
Longleaf pine trees have also been shown to grow faster in 
oak-dominated areas (Bigelow et al. 2023). Our findings of 
increased abundance and recruitment near oaks also agree 
with spatial point-patterns analyses of longleaf pine that 
found longleaf pine saplings to be clustered near pyroph-
ytic oaks (Johnson et al. 2021). With the addition of our 
study, oak-pine facilitation has now been shown to influence 
recruitment, growth, or survival of longleaf pine across five 
distinct life stages.
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We documented apparent oak-pine facilitation operating 
during a non-fire interval. This complex process is also 
prevalent during fire as indicated by a previous analysis 
at this site that observed the highest survival probabilities 
during fires in areas of high oak densities (Magee et al. 
2022). In our study, mortality was so low (~1.0% yr−1) that 
we could not test for differences in neighborhood effects on 
seedling survival. The low longleaf pine seedling mortality 
observed in this study further emphasizes fire’s role on 
mortality, where mortality rates of grass and bolt stage 
seedlings appear to be 10–70% higher during fire years 
(Magee et al. 2022).

Reduced fire severity in areas of high oak density acts as 
a facilitation mechanism by allowing seedlings to escape the 
fire trap (Williamson and Black 1981; Bigelow and Whelan 
2019; Hoffmann et  al. 2020). Although pyrophytic oak 
species (e.g., turkey oak) might have leaf litter properties 
‘similar’ to longleaf pine (Kane et al. 2008), oaks provide a 
fire rescue effect via a reduction in litter quantity, differences 
in flammability, or both, which decreases longleaf pine 
seedling mortality during fires (Whelan et  al. 2021). 
Longleaf pine litter flammability may have intraspecific 

variation, as measured in another pine species, and may 
also contribute to fire heterogeneity (Kane et al. 2022). We 
also did not distinguish between different species of oaks in 
making neighborhood calculations because more than 95% 
of oak individuals were turkey oak (Q. leavis). Variation 
in litter and combustion surrounding other, less pyrophytic 
oaks (e.g., Q. geminata) might create larger fire rescue 
effects (Varner et al. 2016), which feedback to promote oak 
islands (Guerin 1993) and longleaf pine seedling refugia.

Canopy openness on longleaf pine recruitment

We found mixed results regarding canopy cover effects on 
longleaf pine seedling dynamics. The vegetation cover index 
(SCI) negatively affected grass stage longleaf pine growth, 
but not the growth of bolt stage individuals. Our findings 
contrast with some previous accounts of longleaf pine 
regeneration being strongly enhanced by light (Chapman 
1936; Boyer 1963; Jose et al. 2003), given that we found 
increased abundance of grass stage longleaf pine seedlings 
under higher vegetation cover. A potential explanation for 
this observation is that intact, fire-maintained xeric savannas 
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are typically not light-limited (Dell et al. 2017; Atkins et al. 
2018). Therefore, facilitation by oaks, including hydraulic 
lift and fire rescue, may overcome light disadvantages under 
oak canopies. Our measurements of canopy cover were 
derived from lidar measurements taken when oak leaves 
were fully emerged. Turkey oak, by far the dominant oak in 
the study plot, is deciduous such that canopy cover measured 
at different times of the year would have different spatial 
patterns.

Longleaf pine tree effects on seedling recruitment

We found that longleaf pine NCI had negative effects on the 
densities of existing (grass stage and bolt stage) and newly 
recruited seedlings, as well as the growth rate of bolt stage 
individuals. This negative intraspecific effect is consistent 
with previous accounts of longleaf pine growth dynamics. 
For example, spatial pattern analyses that examine the 
locations of longleaf pine recruitment in relationship to 
oaks and longleaf pine trees typically document longleaf 
bolt stage and sapling overdispersion relative to longleaf 
pine trees (Johnson et al. 2021; Phillips et al. 2022; Fan 
et al. 2022). Similarly, Rebertus et al. (1989a, b) documented 
Q. laevis tree overdispersion from longleaf pines. Dynamic 
assessments of longleaf pine seedlings also show reduced 
survival near longleaf pine trees (Grace and Platt 1995b; 
Knapp et al. 2018), likely driven by increased fire intensity 
under longleaf pine canopies (Whelan et al. 2021).

Our study found lower early-life-stage longleaf pine 
densities in areas of higher longleaf pine abundance. Newly 
recruited seedlings had not yet experienced fire effects; 
therefore, other mechanisms likely drove non-random 
relations between neighboring longleaf pine and new 
recruits. As seedlings progressed to the subsequent grass 
stage and then bolt stage, the overdispersion from longleaf 
pine trees became stronger. This pattern is thought to emerge 
into patches of the uneven-aged mosaic typical of longleaf 
pine savannas (Robertson et al. 2019).

Restoration implications for xeric savannas

Identifying longleaf pine population bottlenecks and 
conditions (or species) that allow individuals to escape 
demographic constraints is a priority restoration objective.

Oaks, which enhanced longleaf pine seedling recruitment 
in our study, have long been viewed as a barrier to longleaf 
pine regeneration. Our study, in contrast, shows that in a 
xeric setting, pyrophytic oaks can promote regeneration. 
There are several distinct longleaf pine communities 
(Zampieri and Pau 2022), such as mountainous (upland) 
longleaf pine, mesic flatwoods, and scrub flatwoods that all 
vary according to climate, fire, and herbaceous communities. 
Oak-pine facilitation appears to operate more in xeric 

sandhills savannas. We have not found reports of oak-pine 
facilitation in sandhill savannas with Ultisol soils that have 
higher water-holding capacity. Hardwood species in these 
sandhills (e.g., Quercus falcata, Carya tomentosa) may not 
enhance longleaf pine recruitment. Our results support the 
suggestions by Loudermilk et al. (2016) that oak retention 
should be considered in longleaf pine restoration on xeric 
sites, as long as the savanna remains sufficiently open. To 
gain a deeper understanding of the demographic processes 
and mechanisms controlling oak-pine facilitation, more 
research across different longleaf pine communities is 
warranted. Results from this research and others (e.g., Hiers 
et al. 2014) support planting or retaining certain oak species 
in savanna restoration.

Applications and conclusions

In the southeastern United States, ecologically and eco-
nomically important longleaf pine savannas have received 
attention due to their significant range reduction (~2.2% of 
original range; Frost 2006). However, restoration efforts are 
challenged by a lack of understanding of the biophysical 
factors influencing natural regeneration dynamics, among 
other reasons. Our findings suggest that if management 
goals include maximizing longleaf pine demographic per-
formance, xeric oaks should be maintained on the landscape. 
We have not quantified the optimal oak density, basal area, 
and spacing for longleaf pine individual and population 
growth, and it seems likely that excessive oak abundance, 
particularly mesophytic oaks, would have negative con-
sequences for longleaf pine. However, in a xeric savanna, 
we have documented strong and consistent effects of oak 
presence on longleaf pine seedling recruitment. Evidence 
suggests that oak-pine facilitation operates during intervals 
with and without fire, but the largest benefit may be gleaned 
during fires when oak neighborhoods promote heterogene-
ous fires, increasing the survival of longleaf pines. At our 
study site, recent mortality rates for oak trees (DBH > 1 cm) 
were 9% yr−1 (2020–21) and 12% yr−1 (2021–22), including 
mortality of large (>30 cm DBH) Q. laevis, which exhibit an 
inverse DBH-resprouting probability (Rebertus et al. 1989b). 
The high mortality rates suggest that the oak population at 
our study site may be in decline. In addition to understand-
ing mechanisms of oak-pine facilitation, successful manage-
ment and restoration of longleaf pine ecosystems may also 
require a better understanding of the mechanisms that con-
trol oak population dynamics. Positive and negative species 
interactions influence community dynamics, and both should 
be considered integral components of the complex ecologi-
cal processes that maintain xeric savanna ecosystems.
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