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Summary

1. Plant functional traits are important determinants of survival and fitness, and wood density (WD)
is a key trait linked to mechanical stability, growth rates and drought- and shade-tolerance strategies.
Thus, rigorous WD estimates are necessary to identify factors affecting tree performance.
2. We obtained 1766 records of WD from the literature for 141 tree species in the United States.
We implemented a hierarchical Bayesian (HB) meta-analysis that incorporated sample size, variance,
covariate (e.g. moisture content and latewood proportion) and methodological information to obtain
standardized estimates of WD for 305 U.S. tree species. The HB framework allowed ‘borrowing of
strength’ between species such that WD estimates for data-poor species were informed by data-rich
species via taxonomic or phylogenetic relationships.
3. After accounting for important covariates and sampling effects, evaluation of the residual varia-
tion revealed the potential importance of environmental factors and evolutionary history. Differential
variation in WD between species within genera and between genera within orders suggested that
WD is relatively conserved in some genera and orders, but not in others. WD also varied between
studies (or sites) indicating the potential influence of edaphic, topographic, or population factors on
intraspecific variation in WD.
4. Synthesis. Our hierarchical Bayesian approach overcomes many of the limitations of traditional
meta-analyses, and the incorporation of phylogenetic or taxonomic information facilitates estimates
of trait values for data-poor species. We provide relatively well-constrained WD estimates for 305
tree species, which may be useful for tree growth and forest models, and the uncertainties associated
with the estimates may inform future sampling campaigns.

Key-words: borrowing of strength, evolutionary history, hierarchical Bayesian model,
meta-analysis, plant development and life-history traits, plant functional traits, wood density, wood
specific gravity

Introduction

Plant functional traits describing morphological, physiological
and phenological characteristics influence vital rates such as
survival, growth, reproduction and ultimately, fitness (Ackerly
2003). Functional traits capture fundamental trade-offs that
determine species’ ecological roles and integrate the ecologi-
cal and evolutionary history of a species, enabling predictions
of the conditions under which a species is likely to succeed.

Studies of interspecific variation in plant traits have generated
important insights into the occurrence of trait trade-offs (Lam-
bers & Poorter 1992), the classification of plants into func-
tional groups (Grime 2001), and the consequences of these
trade-offs and functional groups for ecosystem functioning
(Ter Steege & Hammond 2001; Diaz et al. 2004). Thus, eval-
uation of species-specific functional traits is essential to
understand how interspecific trait differences mediate commu-
nity response to perturbations such as climate change and dis-
turbances (Klumpp & Soussana 2009; Bernhardt-R€omermann
et al. 2011).*Correspondence author. E-mail: Kiona.Ogle@asu.edu
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Several key functional traits have been proposed as univer-
sally important for plant performance and represent relatively
independent aspects of ecological strategies (Ackerly 2004).
Among these, seed size, specific leaf area, wood density (for
woody plants) and maximum plant height at maturity often
play a central role in growth or survival (Thomas & Bazzaz
1999; Wright et al. 2003, 2007; Poorter et al. 2008; Cornwell
& Ackerly 2010; Kraft et al. 2010; McMahon, Metcalf &
Woodall 2011). These traits are also easily measured and thus
can be obtained for large numbers of species (Westoby 1998).
Wood density (WD) is a particularly important trait for trees,
and it represents the biomass invested per unit wood volume.
WD plays a central role in tree growth and survival (Marti-
nez-Vilalta et al. 2010) via its importance for tree mechanical
stability, carbon storage potential, and water relations; thus,
WD is often a key parameter in models of tree growth (e.g.
King et al. 2005; Ogle & Pacala 2009). Hence, it is important
to obtain rigorous estimates of species-specific WD for under-
standing constraints on tree performance and for predicting
forest dynamics. Here we provide rigorous estimates of WD
for 305 tree species occurring in the United States; impor-
tantly, the estimates are standardized for influential covariates
(e.g. latewood proportion and moisture content) such that the
WD estimates can be compared across species.
Trees with low WD often have relatively fast stem growth

rates because greater height and/or diameter (i.e. volume) can
be achieved per unit biomass increment when compared with
trees with higher WD (King et al. 2005). Conversely, high-
density wood tends to be constructed from small cells with
thick cell walls and limited intercellular space (Castro-Diez
et al. 1998), making stems with high WD more resistant to
breakage (Van Gelder, Poorter & Sterck 2006) and pathogen
attack (Augspurger 1984), contributing to enhanced plant sur-
vival under such stressors (Muller-Landau 2004). Higher WD
may also reduce the likelihood of xylem conduit implosion
under low water potentials (Hacke et al. 2001), thereby
improving survival in water-stressed areas. For a given amount
of carbon allocation to wood, low WD may actually convey
greater strength and resistance to breakage than high WD
(Larjavaara & Muller-Landau 2010, 2012). Nevertheless, high
WD species tend to be shade tolerant and have low mortality
rates (Kitajima 1994; Wright et al. 2003; Poorter et al. 2010).
Recent analyses that compiled data from a large number of

sites in the northern hemisphere showed correlations between
community-averaged WD and environmental variables related
to resource availability, and the main influential factors
included precipitation, temperature, wind and soil conditions
(Swenson & Enquist 2007). WD has also been reported to
vary along elevation and latitudinal gradients, which represent
proxies for environmental conditions (Chave et al. 2009; Da-
lla-Salda et al. 2009). Clearly, variation in WD across species
represents a nexus of various physiological, ecological and
environmental interactions.
It also appears that evolutionary history is an important

determinant of interspecific variation in WD (Zhang & Mor-
genstern 1995; Swenson & Enquist 2007). That is, WD is
conserved at different taxonomic levels, with most of the

variation being explained by genus membership and secondar-
ily by family membership (Chave et al. 2006). WD may be
considered a composite trait that integrates other more basic
anatomical and physiological traits (such as cell size and
chemical structure) that may be phylogenetically conserved,
thus resulting in conservation of WD. However, intra and
interspecific variation in WD may be advantageous, reflecting
adaptations to spatial and/or temporal environmental variabil-
ity. For example, we might expect WD to vary greatly within
genera containing species that have radiated into different
environments (Lawton 1984). Hence, phylogenetic conserva-
tion of WD and the degree to which evolutionary history and
environmental variation influence WD may vary by clade
association and/or environmental conditions.
Extensive work has been carried out to improve the under-

standing of ecological and evolutionary influences on WD
(Chave et al. 2006; Swenson & Enquist 2007; Kraft, Valencia
& Ackerly 2008; Flores & Coomes 2011). However, many
studies often deal with instances of WD correlations with rel-
atively few environmental variables, within a single study,
and typically such data are not available for several species or
for multiple individuals or species across different environ-
mental conditions. There is a wealth of information about
WD contained in the literature, which could provide species-
level WD information across multiple studies and environ-
mental conditions. Compilation of such literature information,
however, often results in a sparse data set due to incomplete
spatial or temporal representation, and frequently, potentially
important covariates may not be measured or reported. Thus,
synthesis methods must be able to accommodate such incom-
plete reporting.
Classical meta-analysis approaches exist for synthesizing

information from the literature (Gurevitch & Hedges 1999;
Gurevitch, Curtis & Jones 2001; Gates 2002; Lajeunesse &
Forbes 2003), but they are generally not appropriate for esti-
mating species-specific traits and to quantify sources of varia-
tion affecting such traits. They also do not directly account
for non-independence induced by within-study correlations,
and they cannot explicitly handle incomplete reporting (or
missing data). Until recently, such approaches did not incor-
porate phylogenetic relationships to account for non-indepen-
dence between species. Chamberlain et al. (2012) showed
that the incorporation of phylogenies can significantly change
the effect sizes, and the assumption of a common variance
(Lajeunesse 2009) is often inappropriate since the rate of spe-
ciation—and hence, variation between species—may differ
between clades. Although such advances can accommodate
evolutionary dependence, the method for doing so is some-
what restrictive because it requires ‘data’ (e.g. effects sizes) at
the level of an individual species and estimates of uncertainty
must be available (see, Chamberlain et al. 2012). Alterna-
tively, Flores & Coomes (2011) described a hierarchical
Bayesian (HB) model that incorporates phylogenies using
branch lengths to define covariance matrices, which they
employed to obtain species-specific WD estimates for hun-
dreds of species. We significantly build-upon Chamberlain
et al. (2012) and Flores & Coomes (2011) by employing a
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new model-based HB meta-analysis approach that has been
recently described (Ogle, Barber & Sartor 2013); the approach
employs a flexible, probabilistic framework for incorporating
species relationships, addressing within study non-indepen-
dence, accommodating incomplete reporting and quantifying
the effects of important covariates.
The objectives of this study were two-fold. First, we sought

to obtain rigorous estimates of species-level WD for 305 U.S.
tree species that accounted (‘standardized’) for study-level
effects, methodological or sampling artifacts and covariates
related to wood properties. Second, we aimed to evaluate the
evolutionary and environmental influences on WD in these
tree species. We addressed these objectives by extracting
1766 WD values (sample means) from the literature, which
we analysed in the context of important covariates (e.g. late-
wood proportion, moisture content, wood type) and species
relationships using an HB meta-analysis approach. We speci-
fied a phylogenetically structured hierarchical model for the
species-specific, standardized WD values. To further explore
the utility of incorporating phylogenetic relationships, we
compared this model to ones that used taxonomic relation-
ships and to a model that assumed independence among spe-
cies. The incorporation of phylogenetic and taxonomic
information facilitated the separation of evolutionary and
environmental influences, and the approach has the potential
to greatly improve trait estimates for data-poor taxa.

Materials and methods

DATA SOURCES

Wood density data base

Wood density information was obtained from published books and
journal articles. Relevant journal articles were identified by searching
Web of Science using different search terms including: ‘(wood and
(density or volume or mass or structure or properties)) or specific
gravity’. The vast majority of the search was completed on/before
August 23, 2006. We used sources containing WD data for tree
species occurring in the continental U.S. according to the Plants Data-
base (USDA 2008). We specifically focused on the 285 species and

20 subspecies (305 total, which we referred to as simply ‘species’ as
we do not explicitly distinguish between species and subspecies in
our analysis) identified by the U.S. Forest Service’s Forest Inventory
and Analysis (FIA) program (Miles et al. 2001). The resulting 1766
records of WD represented 141 species, 55 genera, 20 orders and two
divisions (Magnoliophyta and Coniferophyta) that were synonymous
with the major clades Angiospermae and Coniferae respectively
(Cantino et al. 2007).

Wood density sample means, standard errors, samples sizes, associ-
ated covariates and details of the study location were entered into the
TreeTraits data base (Kattge et al. 2011; Ogle, Barber & Sartor
2013). When available, covariates extracted from published studies
included wood moisture content (%), moisture content type (i.e. cate-
gorical description of the moisture content: air dry, green, oven dry,
or saturated) associated with the moisture content data and the weight
measurement used to compute WD, latewood proportion, sample type
(i.e. core, disc, core section, disc section), and whether extractives
were removed or not (Table 1 lists the covariates used in the final
analyses and their per cent reporting). We also obtained the wood
type (ring porous, diffuse porous and softwood) for each species; see
Fig. 1 for examples of the three different wood types.

Phylogenetic information

A complete phylogeny for all 305 species was not readily available in
the literature, so we used a variety of published sources to compile a
phylogeny. We first created a genus-level tree based on the phyloge-
nies available in the Phylocom database (www.phylodiversity.net/
phylocom/, version 4.0.1). We then identified families in need of
further resolution and performed a literature search for published phy-
logenies targeted at these taxa. Discrepancies between two published
phylogenies were resolved conservatively, often resulting in a polyto-
my. Molecular-based phylogenies were not available for three families
that contained the genera Pinus, Juniperus and Ulmus and genera from
these families were grouped by taxonomic subgenera or ‘section’.
Next, we searched the literature and obtained a phylogeny of the spe-
cies within each of the 86 genera using similar methods to those
described for the genus-level phylogenies. The only exception was
Quercus, where we used published sequence data in GenBank to create
a phylogeny. Sequences were aligned using MEGA (www.megasoft-
ware.net/, version: MEGA 4) and imported to the CIPRES Portal
website (www.phylo.org/portal2/login!input.action). The RaXML tool
was used to perform phylogenetic tree inference using maximum
likelihood with bootstrapping; the 450 bootstrapped trees were

Table 1. Per cent of unreported (‘missing’) data for the covariates used in this study, and the number of wood density (WD) records (N) by
wood type and overall (total records)

Covariate

Wood type

Overall (N = 1766)
Diffuse porous (N = 404) Ring porous (N = 360) Softwood (N = 1002)

Per cent unreported data

Latewood proportion (L) 100.0 99.7 70.7 83.3
Moisture content (W) 29.2 23.6 50.6 40.2
Moisture content type (M)
For W measurement (MW) 1.0 0.6 2.2 1.6
For WD mass measurement (MM) 1.0 1.1 2.2 1.7

Sample size (N) 56.7 63.6 45.2 51.6
Standard error (se) 74.5 70.6 67.2 69.5
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imported to Phylip (evolution.genetics.washington.edu/phylip.html,
version 3.67), and the Consense program was used to create one tree.
Although the final phylogeny we developed for all 305 species does
not have branch lengths, it does establish the general evolutionary rela-
tionships among the species. The genus-level phylogeny that we
compiled is given in Appendix S1 in the Supporting Information.

HIERARCHICAL BAYESIAN META-ANALYSIS

We conducted a hierarchical Bayesian (HB) (Clark 2003; Wikle 2003;
Ogle & Barber 2008) meta-analysis of the published WD information
following Ogle, Barber & Sartor (2013). Few studies reported multiple
covariates known to affect WD, such as latewood proportion and
moisture content (Table 1). A classical meta-analysis approach (e.g.
Gurevitch & Hedges 1999) would require that we ignore such covari-
ates or that we delete all records that did not report the covariates. The
first option precluded accounting for the effects of covariates that are
thought to be important, and the second would substantially reduce the

sample size and taxonomic coverage of the dataset (Table 1). The HB
approach, in contrast, enabled the use of all available data by treating
missing covariates as unknown parameters wherein values were
informed by the covariance structure of the non-missing data (Ogle,
Barber & Sartor 2013). For example, Ogle, Barber & Sartor (2013)
conducted simulation studies to test the ability of this HB meta-analy-
sis to yield realistic results in the face of similar levels of incomplete
reporting; the method was successful in such situations.

The WD data base only provided data for 46% of the 305 species.
Thus, we explored four different ways of modeling the species-spe-
cific standardized WD values to evaluate the importance of borrowing
of strength among species for inferring WD of data-poor species. The
phylogeny model (PM) implemented a hierarchical model based on
the phylogeny we compiled for the 305 species, allowing borrowing
of strength between closely related species (e.g. Figs 2 and 3). The
taxonomy model (TM) replaced the phylogenetic relationships with a
taxonomic hierarchy such that species were nested within genera,
genera within order and orders within major division (e.g. Fig. 2a).

(a) (b) (c)

(d) (e) (f)

Fig. 1. Example images of wood cross-sections representing different wood types for (a–c) 49 magnification and (d-f) 109 magnification for (a,
d) Acer macrophyllum (diffuse porous), (b, d) Fraxinus latifolia (ring porous) and (c, f) Taxodium distichum (softwood). Images were obtained
from the InsideWood data base (InsideWood 2004-onwards; Wheeler 2011) and were contributed by Elisabeth Wheeler. The black horizontal bar
in the lower right corner of each image gives the scale: (a–c) 200 lm and (d–f) 100 lm.
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The division-level model (DM) treated species as nested in their
respective major division (Coniferophyta or Magnoliophyta), and
additional phylogenetic or taxonomic relationships were not incorpo-
rated. In the DM, if we are missing data for a particular oak species,
for example, its WD value is informed by the division-level WD for
Magnoliophyta, which is informed by data on all other species in this
division, not just oaks. The independent species model (ISM) treated
species as completely independent entities wherein WD values were
not related to each other. That is, the ISM treated species as root
nodes and no information was borrowed between species such that
the WD of data-poor species was not informed by other species. We
compared the results of the four models to explore the utility of incor-
porating phylogenetic or taxonomic information for estimating
species-level WD values, and to evaluate the relative importance of
study effects (e.g. potential environmental, site, or population effects)
vs. evolutionary history.

Below we describe the important aspects of the HB meta-analysis,
including: (i) the WD data model, (ii) the process model that incorpo-
rated covariate effects to obtain the standardized WD values, (iii) the
data models for the covariates that provided a mechanism for estimating
missing covariate data, (iv) the four different approaches to model the
species-specific standardized WD values and (v) the parameter models

that specified priors for all remaining model parameters. Figure 2
provides a graphical representation of the HB meta-analysis model.

WD data model

The WD data model included the likelihoods of the reported WD
sample means, standard errors and sample sizes. We assumed that the
WD sample mean (�yi) reported for record i = 1, 2, …, 1766 was
normally distributed such that:

�yi �Normal li;
r2

Ni

� �
eqn 1

The �yi were assumed conditionally independent given the record-level
‘true’ (expected) WD value (li), the population-level variance (r2)
and the reported sample size (Ni). We explored allowing r2 to vary
by sample type (i.e. core, disc, core section or disc section), but r2

did not differ between sample types, thus we assumed a common r2

that quantified uncertainty in the reported WD values due to observa-
tion error and intraspecific variability within a site.

The unknown r2 was partly informed by the record-level Ni and
standard errors (sei). Not all studies reported N and se, thus we trea-
ted these quantities as stochastic, as done for �yi, to obtain the poster-
ior distributions of their missing values. Assuming that individual
WD measurements were normally distributed, then according to distri-
bution theory, sei

2 followed a gamma distribution with parameters
that depended on Ni and r2 (Ogle, Barber & Sartor 2013). For Ni, we
assumed that a minimum of two observations were obtained, which
would allow for the calculation of an associated sei, and we assumed
that Ni�2 followed a Poisson distribution.

Note, in subsequent text, for ease of presentation, we often
dropped subscripts when referring to particular quantities, but we
always explicitly indicated subscripts (when relevant) in equations.

Process model

We specified a relatively simple process model for li in Eqn (1) that
incorporated the effects of record-level covariates (see Fig. 2b) such
as mean latewood proportion (Li; 0 ≤ L ≤ 1) and mean moisture con-
tent (Wi, g water g�1 wood; W ≥ 0) of the WD mass measurement:

li ¼ /jðiÞ;sðiÞ � ð1þWiÞ � bTsðiÞ þ Li � 1� bTsðiÞ

� �� �
eqn 2

/j,s denoted the standardized ‘latent’ WD value for study (j) and spe-
cies (s) associated with record i, denoted j(i) and s(i), and it could be
thought of as a study random effect. Specifically, / represented the
latent WD in terms of grams dry weight (at W = 0) per fresh volume
(cm3) of latewood (at L = 1; for ring-porous and softwood) or bulk-
wood (for diffuse-porous since b = 1). The term (1 + W) simply con-
verted from the latent WD to the moisture content (W) associated
with the reported WD value for record i. Τhe expression involving b
and L adjusted for the observed latewood proportion of record i, and
it was derived by assuming that the WD of earlywood was propor-
tional to the WD of latewood, with the constant of proportionality
given by b; if b = 1, then the WD of latewood was equal to that of
earlywood, and if b < 1, then earlywood was less dense than late-
wood. We allowed b to vary by wood type (T), where T was a spe-
cies (s) trait; we set b = 1 for diffuse-porous species as L was
difficult to measure and was never reported for this wood type, and
we estimated b for ring-porous and softwood species. We explored
incorporating an effect of whether extractives were removed or not,
but this effect was not significant and thus was not included in the
model for simplicity.

(a)

(b)

(c)

Fig. 2. Graphical representation of the hierarchical Bayesian (HB)
meta-analysis model. Each circle is a stochastic node (data or parame-
ters) defined by an underlying distribution. The edges (arrows) indi-
cate conditional relationships between nodes; for example, the
distribution of N (sample size) depends on k, a parameter in the Pois-
son likelihood for N. Key model components include: (a) model for
the species-specific latent wood density (hs), where the taxonomy
model (TM) version is shown; (b) covariate effects describing the
effects of wood type (d) and latewood proportion (b), where b varies
by wood type (T); and (c) covariate models for L, W and M (see
Appendix S2 for a detailed description). The valves (?|) in (c) depict
feedback control such that the covariate parameters are only informed
by observed covariate data (white region of node), thus missing co-
variate data (gray region of node) and associated wood density data
(�y) do not influence the covariate parameters.
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Covariate data models

We treated missing covariate values as stochastic and assumed likeli-
hoods for each to obtain posterior predictive distributions for each
missing value (Ogle, Barber & Sartor 2013). These stochastic values
were generated within the MCMC simulation procedure and subse-
quently used in the WD process model in Eqn (2). Here we summa-
rized the models for L, W and moisture content type (M) (see
Fig. 2c). As wood types differed in their cellular anatomy and wood
structure, we assumed that L and W depended on wood type (T). We
modelled L on the logit scale and W on the log scale to obey the
constraints 0 ≤ L ≤ 1 and W ≥ 0, which was important for estimat-
ing missing L and W values. We assumed that logit(L) and log
(W + 1) followed normal distributions, and the mean of each distri-
bution was decomposed into a fixed effect that varied by T (l’s in
Fig. 2c) plus a random effect for each study (e’s in Fig. 2c). Given
data limitations, a common variance was assumed for all L records,
but the variance for W was allowed to vary by M. Finally, M could
take-on one of four possibilities (air dry, green, oven dry, or
saturated), and we assumed that M followed a categorical distribution—
analogous to a multinomial distribution with the total number of ‘trials’
equal to one—with a probability vector (e.g. p, Fig. 2c) whose
elements varied by study, which essentially allowed for a study random
effect. See Appendix S2 for a detailed description of the covariate data
models.

Hierarchical models for species-specific parameters

The study by species latent WD (/j,s) in Eqn (2) was assumed to
vary around a species-level latent WD (hs; g cm�3) according to a
normal hierarchical model:

/j;s �Normal hs; r
2
/

� �þ
eqn 3

The variance r/
2 described study-to-study variation in latent WD

within each species, and for simplicity, we assumed that r/ was the
same for all species. We used the superscript + notation, e.g. x ~ Nor-
mal(a,b)+, to indicate that the normal distribution was truncated at
zero such that x could only take-on positive values; thus, in Eqn (3)
/ was restricted to positive values.

Similar to /j,s, hs was interpreted as the species-level latent WD of
dry latewood, but we also wished to obtain estimates of the latent
WD for dry bulkwood (xs, g cm�3). This was done by evaluating
Eqn (2) at the mean latewood proportion for each wood type ( �LT ),
setting W = 0, and replacing /j,s with hs to obtain the species-level
dry bulkwood estimates:

xs ¼ hs � bTðsÞ þ �LTðsÞ � 1� bTðsÞ
� �� �

eqn 4

Note that xs = hs for diffuse-porous species as they had b = 1. Ana-
logs of Eqn (4) could be applied to obtain the latent bulkwood WD
estimates for other taxonomic levels (genus, division, etc.) by replac-
ing hs with the appropriate parameter. Next we described the four dif-
ferent approaches to modelling hs; we began with the phylogeny
model (PM) and ended with the independent species model (ISM).

Phylogeny model. In the phylogeny model (PM), hs in Eqn (3)
was modelled hierarchically based on the species- and genus-level
phylogenies (see Fig. 3 and Appendix S1). Each hs was assumed to
vary around a mean that depended on its parent (ancestral) node, and
the variability among species given their parent node latent WD was
allowed to differ according to their genus affiliation (see Fig. 3):

hs �Normal d�s � _hpnðsÞ; _r2gðsÞ
� �þ

eqn 5

d* (defined below) accounted for evolutionary transitions in wood
type (T), and _hpnðsÞ was the standardized WD for parent node (pn)
associated with species (s). The variability among species having the
same parent node was captured by _r2gðsÞ, which was allowed to differ
according to the genus g associated with species s. We allowed for
17 different variances at the genus level; the first 16 were associated
with genera containing five or more species, and the mean standard
deviation (squared) across these 16 genera defined the 17th variance
term, which was applied to the remaining 70 genera.

Let T(s) and T(pn(s)) indicate the wood types associated with child
node (species) s and its parent node pn, respectively, then d�s in
Eqn (5) is defined as:

(a)

(b)

Fig. 3. Example of the hierarchical structure
associated with the phylogeny model (PM).
This only shows part of the complete
phylogeny to illustrate the relationships (a)
between genera and their parent nodes within
the genus-level phylogeny, with root nodes
corresponding to each division, and (b)
species and their internal (parent) nodes
within the species-level phylogenies, with
root nodes corresponding to each genus.
Gray filled nodes indicate species, genus, or
division levels based on taxonomic
relationships. The hierarchical model based
on phylogenetic relationships for the PM
replaces the hierarchical model based on
taxonomy (TM) in Fig. 2a.
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d�s ¼
d if TðsÞ ¼ RP andTðpnðsÞÞ ¼ DP
d�1 if TðsÞ ¼ DP andTðpnðsÞÞ ¼ RP
1 if TðsÞ ¼ TðpnðsÞÞ

8<
: eqn 6

Thus, d* = d if the ancestral (parent) node was diffuse porous (DP)
but the child node (here, species) was ring porous (RP); d* = 1/d if
the parent node was RP, but the child node was DP; d* = 1 if the
wood type of the parent and child nodes were the same. d* = 1 for
all Coniferophyta (softwood), so wood type transitions were only rel-
evant for the Magnoliophyta. Within the Magnoliophyta, the basal
parent node (root node) was defined as being diffuse-porous, and the
assignment of wood types to each genus and the internal nodes in the
genus-level phylogeny is shown in Appendix S1. Note, d was a scalar
parameter (to be estimated); d < 1 indicated that ring-porous latewood
was less dense than that of diffuse-porous latewood, and d > 1 indi-
cated the opposite. Based on Eqn (4), the relative difference in bulk-
wood WD between ring- vs. diffuse-porous wood (dx) is given by
dx ¼ d � ðbRP þ �LRP � ð1� bRPÞÞ.

Next, we defined a hierarchical model for the standardized WD
values associated with each internal (parent) node ( _hpn) of the spe-
cies-level phylogeny (Fig. 3b) and their corresponding root nodes that
defined the genus affiliation. The model for _hpn is analogous to
Eqn (5) such that each _hpn is assumed to come from a normal distri-
bution with a mean given by its parent node. Note that pn was simply
an indexing variable, and nodes 1, 2, 3,…, 86 represented the genus-
level root nodes of each species-level phylogeny, which we indexed
by g, and nodes 87, 88, …, 179 represented internal nodes, which we
indexed by z such that:

_hz �Normal d�z � _hpnðzÞ; r̂2
� �þ

eqn 7

The variation in latent WD between internal nodes nested in the same
parent node was described by r̂2, and we assumed a common vari-
ance for the internal nodes. Again, pn(z) indicates the parent node of
node z, and d�s is defined in Eqn (6), with z replacing s.

We modelled the genus-level values as varying around a mean
given by the parent node associated with each genus (determined by
the genus-level phylogenies, Fig. 3a), denoted €hpnðgÞ, such that for
genus g = 1, 2, 3, …, 86:

_hg �Normal d�g �€hpnðgÞ; €r2oðgÞ
� �þ

eqn 8

The variability between genera given their parent node was captured
by €r2oðgÞ, which we allowed to differ depending on the order o that
genus g was nested in. In total, 11 order-level variance terms corre-
sponded to orders with at least three genera; the 12th was based on
the mean standard deviation across the 11 orders, which was applied
to all other 15 orders. dg* is defined in Eqn (6), with g replacing s.

Finally, we defined a hierarchical model for the internal nodes of
the genus-level phylogeny similar to that for the internal nodes of the
species-level phylogenies. The genus-level phylogeny (Fig. 3a) was
also associated with one of two root nodes corresponding to the divi-
sion that each genus belonged. We assigned non-informative normal
priors to the division-level root nodes such that for z = 1, 2, …, 70
nodes were associated with the genus-level phylogeny:

€hz �Normal d�z �€hpnðzÞ; ~r2
� �þ

for z an internal node

€hz �Normal 0; 10000ð Þþ for z a root node
eqn 9

For simplicity, we assumed a common variance (~r2) that described
the variability between internal nodes. dz* is defined in Eqn (6), with
z replacing s.

Taxonomy model. For the taxonomy model (TM), hs was
modeled similar to the PM, but the hierarchical structure was based
on taxonomic relationships (see Fig. 2a). Here, species (s) were
nested in genus (g), genera in order (o), order in the division (d), and
divisions were again treated as root nodes:

hs �Normal d�s � _hgðsÞ; _r2gðsÞ
� �þ

eqn 10

_hg �Normal d�g �€hoðgÞ; €r2oðgÞ
� �þ

eqn 11

€ho �Normal d�o � h
...

dðoÞ; r
... 2

� �þ
eqn 12

h
...

d �Normalð0; 10000Þþ eqn 13

The variances in Eqn (10) and (11) are modeled the same as in the
PM such that there were 17 _r2g terms that described variability
between species within a genus, and 12 €r2o terms that described vari-
ability between genera within an order. We assumed a common vari-
ance (r

... 2) for the variability between orders, and we bypassed the
family level because there were too few families in each order. d* is
defined in Eqn (6), where the parent node is given by the identity of
the higher taxonomic level; for example, for species s, pn(s) = g(s).

Division-level model. For the division-level model (DM), the
only information used to construct the hierarchical model for hs was
the division affiliation; for division d associated with species s:

hs �Normal d�s � _hdðsÞ; _r2dðsÞ
� �þ

eqn 14

We assumed a division-level variance _r2d that described the variability
between species within each division, and we assigned non-informa-
tive normal priors to the division-level latent WD ( _hd) analogous to
Eqn (13); d* is defined in Eqn (6), with pn(s) = d(s).

Independent species model. The independent species model
(ISM) treated each hs as a root node and assigned each an
independent, non-informative normal prior: hs ~ Normal(0, 10 000)+.
That is, there was no borrowing of strength between species. The
ISM was somewhat analogous to treating hs as a fixed effect, whereas
the PM, TM and DM essentially treated hs as a random effect.

Priors for remaining parameters

We defined relatively non-informative priors for the remaining param-
eters in the above HB meta-analysis model following the approaches
employed in Ogle, Barber & Sartor (2013). We provided a detailed
description of the priors in Appendix S2.

Implementation

The above model components were combined to obtain the posterior
distribution(s) of the standardized latent WD values, covariate effects,
covariate parameters, variance terms and missing covariate data. To
avoid unrealistic feedback between model parameters and missing
data, we modularized (Liu, Bayarri & Berger 2009; Lunn et al.
2009a) the covariate models as done in Ogle, Barber & Sartor (2013)
(Fig. 2c). The HB meta-analysis was implemented in OpenBUGS
(version 3.2.2) (Lunn et al. 2009b), and the built-in ‘cut’ function
was used to control unrealistic feedbacks (Lunn et al. 2009a) between
the covariate parameters and the missing covariate data; the model
code for the PM is given in Appendix S3.
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OpenBUGS employed Markov chain Monte Carlo (MCMC) to
sample from the posterior distribution. The PM, TM, DM and ISM
were run with three parallel MCMC chains. The chains were moni-
tored for convergence using the built-in Brooks-Gelman-Rubin (BGR)
diagnostic tool. After an initial burn-in period (>10 000 iterations),
the chains were run for more than 350 000 iterations, and were
thinned every 10th iteration to reduce storage requirements and were
within chain autocorrelation. A post burn-in posterior sample size
greater than 100 000 was used for computing posterior statistics.

Model comparisons and cross-validation

We employed a combination of graphical and quantitative
approaches to compare the four models (PM, TM, DM, ISM) to
explore the influence of borrowing of strength between species. For
each model, we computed the correlation coefficient (R2) from a
regression of observed vs. predicted WD (to evaluate overall model
fit) and the posterior predictive loss (D∞) (Gelfand & Ghosh 1998).
The model with observed vs. predicted values that fell around the
1:1 line had the highest R2, and the lowest D∞ was deemed the
‘best’ model.

We also conducted cross-validation analyses by removing WD data
for a subset of species, thus creating ‘reduced’ data sets. To create
the reduced data sets, we removed WD observations for four ‘target’
species, including two ring-porous (Ilex opaca and Carpinus carolini-
ana) and two softwoods (Pseudotsuga menziesii and Pinus taeda).
These species were selected because they represented both divisions,
included both data-rich (P. taeda, P. menziesii) and comparatively
data-poor species (I. opaca, C. caroliniana), and they belonged to
genera that included many species (Pinus) or few species (Pseudotsu-
ga, Ilex, Carpinus). For example, I. opaca (n = 4 records) and
C. caroliniana (n = 5) were the only representatives of their genera
amongst our 305 species. Conversely, P. menziesii was associated
with many observations (n = 100), but it occurred in a genus that
supported one other species (P. macrocarpa) and two subspecies of
P. menziesii, P. taeda was also a data-rich species (n = 87), but it
occurred in a genus with 41 other species. The ‘base-line’ standard-
ized bulkwood WD (xs) was obtained for each species by running
each model with the full data set. Then, xs estimates were obtained
again by re-running each model four times using the reduced datasets
created by removing data for the target species (data were removed
for one species at a time). We also compared the ability of each
model to predict the data that were removed.

Results

MODEL FITS AND COMPARISONS

The phylogeny model (PM), taxonomy model (TM), division-
level model (DM) and independent species model (ISM) fit
the observed WD data equally well; regressions of the
predicted vs. observed WD data yielded R2 = 0.93 for all four
models (Fig. 4). Moreover, the uncertainty associated with
the WD predictions was nearly identical among the four
models (Fig. S1). The posterior predictive loss (D∞) (Gelfand
& Ghosh 1998) suggested that all four models were equally
acceptable given their similar D∞ values [D∞ = 6.078 (PM),
6.082 (TM), 6.082 (DM) and 5.975 (ISM)]. Thus, R2 and
D∞ did not provide strong support for one model over the
other.

MODEL CROSS-VAL IDATION

Comparison of the base-line (for the complete dataset) poster-
ior estimates of the latent bulkwood WD (xs, Eqn (4)) with
those obtained from the reduced data sets (created by discard-
ing data for individual target species) indicated that the PM,
TM and DM performed better than the ISM (Fig. 5). The
ISM yields were highly uncertain and/or biologically unrealis-
tic estimates of xs for the species that were removed from the
data set; their posterior medians for xs spanned 0.47 to
30.66 cm�3 and the 95% credible interval (CI) widths ranged
from 2.09 to 85.84 g cm�3 (see Fig. 5d insert). The posterior
distributions for hs, and thus xs, for species not represented in
the data base were strongly influenced by the prior that was
specified for hs under the ISM.
For the PM, TM and DM, the posterior medians for xs for

each target species obtained from the reduced data sets were
similar to the base-line values (Fig. 5a–c). That is, the 95%
CI for the reduced dataset xs values contained the corre-
sponding base-line posterior median, and the 95% CI for the
base-line xs contained the posterior median for the reduced
data set for all species except C. caroliniana (Fig. 5a–c).
Moreover, although the 95% CIs for these models were wider
under the reduced data sets when compared with the complete
data set, they spanned biologically realistic values and were
notably narrower than the ISM CIs. The PM, TM and DM
provided nearly identical estimates of xs (medians and 95%
CIs) for the reduced data set, for all four species; although,
the DM tended to slightly underestimate xs for C. caroliniana
and I. opaca relative to the base-line. The PM and TM both
produced relatively wide CIs for xs of C. caroliniana and

Fig. 4. Predicted vs. observed wood density (WD) for the phylogeny
model (PM) (R2 = 0.93, y = 0.0334 + 0.9362x). The observed vs.
predicted results for the PM are nearly identical to those obtained for
the taxonomy model (TM), the division-level model (DM) and the
independent species model (ISM). Predicted values are the posterior
medians and 95% credible intervals (gray whiskers) of the replicated
WD data. The diagonal line represents the 1:1 line.
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I. opaca when compared with the DM. All four models
yielded narrower CIs for the two Coniferophyta species when
compared with the two Magnoliophyta species.
The PM, TM and DM also predicted the removed data

equally well. The mean (or median) absolute error (AE)—
absolute difference between the observed WD value and the
corresponding predicted value—ranged from about 0.07 to
1.42 g cm�3 (Table 2). Conversely, with the exception of
P. taeda, the ISM produced huge AE values, ranging from
3.4 to 81.6 g cm�3 for the other three species, thus spanning
biologically unrealistic WD values. Similarly, the uncertainty
associated with the predicted WD was relatively low for the
PM, TM and DM, with the mean (or median) 95% CI widths
spanning 0.06 to 1.21 g cm�3, whereas the ISM model pro-
duced 95% CI widths that were 1–3 orders of magnitude
wider (Table 2).

COVARIATE EFFECTS

The woodtype effect (d, Eqn (6)) was only relevant to the
PM, TM and DM. The posterior median for d (and dx, for
bulkwood) was consistently greater than one across all three
models (Fig. 6a), indicating that within the Magnoliophyta,
diffuse-porous wood was potentially less dense than ring-
porous wood. However, d (and dx) was only significantly
greater than one (95% CI did not contain one) for the DM.
Likewise, the estimates of the latewood effect (b Eqn (2))

were generally consistent across all four models, with the

exception of the ISM yielding slightly lower estimates of b
for ring-porous species (Fig. 6b). All models indicated that
b < 1, and b of softwoods was significantly lower than that
of ring-porous species. In particular, latewood was about 1.9
times denser than earlywood in softwoods (1/b ffi 1/
0.52 = 1.9, Fig. 6b). Although the difference between late-
wood and earlywood was less pronounced in ring-porous
wood, latewood was still about 1.1 times denser than early-
wood (1/b ffi 1/0.91 = 1.1, Fig. 6b). Recall, b was not esti-
mated for diffuse-porous wood given the lack of L data.

SOURCES OF VARIAT ION

To evaluate the potential role of environmental vs. evolution-
ary history, we focused on the associated variance terms
obtained from the PM and DM (the TM and PM results are
nearly identical). The DM suggested that environmental (or
site, study, or methodological) factors and evolutionary his-
tory explained a comparable amount of the variation in WD
(Fig. 7b). That is, the variation between studies within species
(posterior median for r/ = 0.079 g cm�3; Eqn (3)) was only
marginally lower than the variation between species within a
division (posterior median for _r = 0.103 and 0.088 g cm�3

for Magnoliophyta and Coniferophyta, respectively; Eqn (14),
Fig. 7b). The PM suggested that the variation between species
within a genus ( _r, Eqn (5)) and between genera with an order
(€r, Eqn (8)) might differ between genera and orders respec-
tively. For example, the posterior medians for _r spanned

(a) (b)

(c) (d)

Fig. 5. Posterior medians and 95% credible
intervals (CIs) for standardized bulkwood
wood density (xs; g cm�3) obtained from the
cross-validation analyses that removed
records for Pinus taeda [data-rich (n = 124
records) softwood from a specious genus],
Pseudotsuga menziesii (n = 100, softwood
from a genus that contains two species and
two subspecies), Ilex opaca [relatively data-
poor (n = 4), diffuse porous], or Carpinus
caroliniana (n = 5, diffuse porous); the latter
two are the only species in their genera.
Results are shown for (a) the phylogeny
model (PM), (b) the taxonomy model (TM),
(c) the division-level model (DM) and (d) the
independent species model (ISM). The filled
circles depict the base-line xs values
(complete data set); open circles depict the xs

values when the target species was removed
(reduced datasets). The inset in (d) rescales
the y-axis to contain the 95% CIs for the
reduced data set estimates.
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0.017 g cm�3 (Populus) to 0.108 g cm�3 (Cupressus), and €r
spanned 0.066 g cm�3 (Pinales) to 0.356 g cm�3 (Ebenales)
(Fig. 7a).

Although the variation attributed to study within species
(posterior median for r/ = 0.078 g cm�3 for the PM) was
higher than the variation among species within a genus ( _r)
for 12 of the 16 diverse genera (Fig. 7a), the relatively high
uncertainty (wide 95% CIs) for most _r indicated that _r could
potentially be of a similar order of magnitude as r/.
However, the variation among genera within an order (€r) was
significantly greater than r/ for genera in Ebenales and
orders supporting less than three genera (Fig. 7a). Moreover,
the widest CIs for _r tended to occur for genera supporting
relatively few species, such as Cupressus and Cercocarpus
(five species each), and the narrowest for diverse genera such
as Pinus and Quercus (42 and 47 species, respectively; see
Fig. 7a and Fig. S2 in the Supporting Information). The rela-
tionship between the uncertainty in €r was even more strongly
related to clade size (i.e. the number of genera within an
order) such that the widest CI for €r occurred for Ebenales
(three genera) and the narrowest for Pinales (14 genera, most
diverse) (Fig. 7a and Fig. S2).

SPECIES-SPECIF IC STANDARDIZED WOOD DENSITY

ESTIMATES

We focused on the standardized bulkwood WD (xs, Eqn (4))
estimates yielded by the PM and DM (results for the PM and
TM were very similar). One goal of the HB meta-analysis
was to obtain species-specific xs estimates for all 305 U.S.
tree species, and we provided these estimates in Table S1.
Across the 141 species represented in the WD data set
(Fig. 8a–c), Rhizophora mangle had the least dense wood
[posterior median for xs = 0.164 g cm�3 (PM) and
0.242 g cm�3 (DM)] and Quercus virginiana, Maclura pomif-
era and Diospyros virginiana had the densest wood [posterior
medians for xs spanned 0.704 to 0.785 g cm�3 (PM) and
0.75 to 0.805 g cm�3 (DM); Table S1]. Across all models,
the softwood species tended to have the lowest xs, which ran-

Table 2. Cross-validation statistics for the records that were removed from the wood density (WD) dataset. All data for each of the four species
(below) were removed (one species at a time), and the absolute error (AE, g cm�3) was computed as the absolute value of the difference between
the observed WD value and the posterior median of the corresponding record-level predicted value. The 95% credible interval (CI) width (g
cm�3) for each predicted value was also recorded. The mean and median AE and CI width were computed across the records that were removed
for each species. Results are shown for the phylogeny model (PM), taxonomy model (TM), division-level model (DM), and independent species
model (ISM)

PM TM DM ISM

AE CI width AE CI width AE CI width AE CI width

Pinus taeda
Mean 0.096 0.413 0.092 0.414 0.089 0.419 0.094 2.205
Median 0.078 0.398 0.078 0.400 0.078 0.404 0.079 2.137

Carpinus caroliniana
Mean 0.152 1.015 0.157 0.988 0.178 0.734 9.358 46.771
Median 0.194 0.827 0.201 0.800 0.235 0.588 7.916 38.229

Ilex opaca
Mean 0.203 0.062 1.421 1.212 0.161 0.848 81.570 140.995
Median 0.196 0.064 1.359 1.149 0.158 0.780 80.912 131.463

Pseudotsuga menziesii
Mean 0.108 0.523 0.104 0.509 0.107 0.464 3.682 19.717
Median 0.070 0.480 0.067 0.465 0.069 0.427 3.428 18.163

(a)

(b)

Fig. 6. Posterior medians and 95% credible intervals: (a) the wood
type effect that describes the relative difference in wood density (WD)
of diffuse- vs. ring-porous wood for latewood (d, Eqn (6)) and for
bulkwood (dx) within the Magnoliophyta and (b) the latewood effect
(b, Eqn (2)) that describes the relative difference in WD of latewood
vs. earlywood, which is only relevant for softwoods and ring-porous
species. Results are shown for the phylogeny model (PM), taxonomy
model (TM), division-level model (DM) and independent species
model (ISM). The horizontal dashed line at 1.0 in (a) indicates the lack
of an effect. If d < 1 then ring-porous wood is less dense than diffuse-
porous wood; d > 1 implies the opposite. If b < 1 then earlywood is
less dense than latewood; b > 1 implies the opposite.
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ged from 0.329 (Thuja occidentalis) to 0.605 g cm�3 (Taxus
brevifolia) (PM; Fig. 8c and Table S1). The xs estimates for
ring-porous species were generally highest, ranging from
0.429 (Catalpa speciosa) to 0.785 g cm�3 (D. virginiana)
(PM; Fig. 8b and Table S1). The diffuse-porous species
spanned the widest range in median xs values, from 0.164
(R. mangle) to 0.668 g cm�3 (Cornus florida) (PM; Fig. 8a
and Table S1). Across all wood types, the PM and DM
produced similar estimates (medians and 95% CIs) of the spe-
cies-specific xs (Fig. 8a–c).
Both the PM and DM produced realistic median estimates

of xs for the 164 data-poor species, which spanned 0.135 to
0.638 g cm�3 for the PM and 0.240 to 0.627 g cm�3 for the
DM (Fig. 8d–f). The DM, however, predicted that all species
within a particular wood type had very similar xs (see narrow
range of xs median values, Fig. 8d–f) and the uncertainty in
the predicted xs was consistent across all species (see CI
widths, Fig. 8d–f). Conversely, the PM produced species-spe-
cific posterior medians and 95% CI widths for xs that were
more variable across species (Fig. 8d–f). Additionally, under
the PM, the range of median xs values was greatest for the
diffuse- and ring-porous species (Fig. 8d,e), and was generally
lower for the softwoods (Fig. 8f), which paralleled the results
obtained for the data-rich species (Fig. 8a–c). The ISM yielded
unrealistic estimates for xs that reflected the influence of the
non-informative priors for _h (results not shown).

Discussion

Wood density (WD) is an important plant functional trait that
is a determinant of tree biomass and carbon storage potential
(Chave et al. 2006, 2009). Species-level WD estimates are

often required by tree growth and survival models, especially
physiologically based models (Ogle & Pacala 2009). However,
obtaining field-derived estimates of WD may be difficult and
logistically restrictive if desired for many species, as might be
required by a regional forest simulator. Thus, we draw-upon
the large body of published WD values compiled in the Tree-
Traits data base (Kattge et al. 2011; Ogle, Barber & Sartor
2013), which included 1766 WD sample means (‘records’)
derived from about one million samples (based on a combina-
tion of reported and estimated sample sizes). The WD data in
the TreeTraits data base is complimented by information on
covariates—such as latewood proportion and moisture content
—that are important for estimating species-specific WD that is
standardized for moisture content and latewood proportion.
Below, we highlight the unique and important contributions of
the HB meta-analysis that we employed to synthesize these
WD data, which leads us to highlight the potential importance
of incorporating taxonomic or phylogenetic information into
such analyses. We follow this with a discussion of the species-
specific patterns in WD revealed by this analysis, and
subsequently, the potential roles of evolutionary history vs.
environmental drivers of variation in WD.

MODEL ING FRAMEWORK OVERVIEW

Flores & Coomes (2011) describe a Bayesian analysis that
employs a hierarchical parameter model for species-specific
WD that is somewhat analogous to our taxonomy model
(TM). However, their approach was not intended to address the
issues that we encountered when analyzing information
extracted from the literature. We implemented a hierarchical
Bayesian (HB) meta-analysis that overcomes several limitations

(a) (b)

Fig. 7. Posterior medians and 95% credible intervals for standard deviations describing sources of variation affecting wood density (WD) for: (a)
the phylogeny model (PM) and (b) the division-level model (DM). Dotted vertical lines separate different sources. The left-most symbol in (a)
and (b) represents the variation explained by studies within species (r/, Eqn (3)). The middle group of 17 symbols in (a) represent variation
among species within a genus ( _r, eqn (5)), ordered from lowest to highest _r: Populus (lowest), Abies, Carya, Quercus, Fraxinus, Magnolia,
Betula, Ulmus, Juniperus, Acer, Prunus, mean _racross the 16 genera (with asterisk), Pinus, Picea, Cercocarpus, Juglans and Cupressus (high-
est). The right-most group of 12 symbols in (a) represent variation among genera within an order (€r, Eqn (8)), ordered from lowest to highest €r:
Pinales, Magnoliales, Fabales, Ericales, Rosales, Laurales, Urticales, Scrophulariales, Fagales, Sapindales, mean €racross the 11 orders (with aster-
isk) and Ebenales. The right-most group of two symbols in (b) represent variation among species within a division ( _r, Eqn (14)), with the lowest
for Coniferophyta and the highest for Magnoliophyta.
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of traditional meta-analysis methods (Rosenberg, Adams &
Gurevitch 2000), as discussed in Ogle, Barber & Sartor
(2013). Unique to our approach is the ability to simultaneously
estimate WD for data-poor species (including ones not repre-
sented in the TreeTraits database) and to accommodate miss-
ing covariate data. For example, if records with missing data
were discarded from our analysis, then the total number of
useable records would have dropped from 1766 to 103.
Moreover, WD values used in tree growth or forest simula-

tion models are typically obtained from the literature, from
disparate studies that may have employed different
approaches to measuring WD. Some studies report WD for
green wood and some for oven-dried wood, and factors such
as moisture content, wood type and latewood proportion can
also influence WD (Zobel & Van Buijtenen 1989; Fromm
et al. 2001). Hence, it seems problematic to simply average
values obtained from the literature to approximate WD of dif-
ferent species or functional types. Our HB approach addresses
these issues by (i) integrating methodological and covariate
information reported by each study, thus producing standard-
ized WD estimates that account for such factors and (ii)
incorporating study random effects such that the likelihood of

reported (‘observed’) WD values is conditioned on study
effects (Ogle, Barber & Sartor 2013).

UNCERTAINTY QUANTIF ICAT ION AND BORROWING OF

STRENGTH

Importantly, the HB meta-analysis explicitly quantifies uncer-
tainty in parameters, such as standardized bulkwood WD (xs,
g cm�3)—i.e. WD of dry wood characterized by the mean late-
wood proportion of a given woodtype—for the 305 species.
The uncertainty in the xs estimates (Fig. 8 and Table S1)
produced by the PM, TM or DM could be propagated to the
outputs of tree growth or forest dynamics models or used to
prioritize future sampling efforts. For example, it may be
unrealistic to obtain sufficient WD data for all 164 species not
represented in the TreeTraits data base, and targeted sampling
of a subset of species associated with highly uncertain xs

estimates may be desirable. The PM yields CI widths for xs for
data-poor species that differ between species such that some are
relatively narrow, whereas others are relatively wide (Fig.
8d–f). Thus, the PM may be particularly helpful for identifying
particular species, genera, or clades for targeted sampling.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Posterior medians and 95% credible intervals (CIs) for the species-level standardized bulkwood wood density (WD) (xs, g cm�3; Eqn (4))
estimates obtained from the phylogeny model (PM) and the division-level model (DM). Species are grouped by wood type and representation in
the data base: (a, d) diffuse-porous (DP), (b, d) ring-porous (RP), (c, f) softwood (Sw) and (a-c) species for which WD data were reported and
(d-f) species lacking WD records in the data base. In each panel, the range of species-level xs estimates is depicted for the PM and DM, which
represents the difference between the maximum (highest median) and minimum (lowest median) xs across the species represented in each panel.
Variation in the CI widths, an index of uncertainty, is also depicted such that the group of three bars for the PM (vertical bars, upper right cor-
ners) and DM (horizontal bars, lower left corners) denote the narrowest, median and widest CI across the species represented in each panel.
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Differences in the CI widths for xs reflected different
degrees of borrowing of strength within the four different
models. That is, borrowing of strength within the PM is
affected by relationships between species within a genus; for
example, data-poor species occurring in depauperate genera
were generally associated with CI widths for xs that were up
to four times wider than those for data-poor species occurring
in diverse genera (see Fig. S3 in the Supporting Information).
The ISM treats species as completely independent such that
borrowing of strength between species does not occur, result-
ing in highly uncertain or unrealistic xs estimates for data-
poor species. Thus, some degree of borrowing of strength—as
in the DM, TM or PM—is required to obtain realistic and
well-constrained estimates of xs for data-poor species. This is
further illustrated in the cross-validations (Fig. 5); in the DM,
the CI widths for xs are more consistent across the four target
species, which is expected since borrowing of strength occurs
‘equally’ among all species within a division. Conversely, the
95% CIs obtained from the PM and TM were relatively wide
for species from depauperate genera (e.g. C. caroliniana and
I. opaca) when compared with species from diverse genera
(e.g. P. taeda or P. menziesii) (Fig. 5).

IMPORTANCE OF PHYLOGENETIC AND TAXONOMIC

INFORMATION

Chamberlain et al. (2012) stress the importance of addressing
non-independence between species in traditional meta-analy-
ses and suggest that phylogenetic information can help over-
come this problem. We explicitly address this issue by
specifying hierarchical models for species-specific parameters
that are based on phylogenetic or taxonomic relationships.
However, Chamberlain et al. (2012) also caution against
using phylogenetic information in meta-analyses when unbal-
anced phylogenies are involved; this is not an issue here
because our HB framework can explicitly accommodate such
unbalanced designs. Importantly, as noted above, incorpora-
tion of phylogenetic or taxonomic information can be particu-
larly useful for obtaining trait estimates of data-poor species
(Figs 5 and 8d–f) via the borrowing of strength mechanism.
Flores & Coomes (2011) come to a similar conclusion by
incorporating phylogenetic information indirectly. In contrast
to our approach that uses the phylogenies to define the hierar-
chical model for the mean terms (i.e. latent _h, €h, etc.), they
used branch lengths, which were unavailable to us, to define
the covariances between genus- or family-level latent WD
values. A combination of both approaches is worth exploring.

SPECIES-SPECIF IC WOOD DENSITY PATTERNS

The PM and TM produced similar estimates for the species-
specific xs, and thus, we focus on the PM and DM results
(we do not discuss the ISM because the xs estimates for the
data-poor species are unrealistic). The species-level xs esti-
mates differ by about 4.8-fold across the 141 species repre-
sented in the TreeTraits database (Fig. 8a–c). Some of this
variation in xs can be attributed to wood type, whereby

softwoods generally exhibited lower WD when compared
with diffuse- and ring-porous species. Lower WD of
softwoods may be due to xylem anatomy differences. For
example, Pinus taeda (loblolly pine; softwood) and Acer
rubrum (red maple; diffuse porous) stems supported ~62%
and ~12% conducting area relative to sapwood area, respec-
tively (Ogle & Pacala 2009). This 5-fold difference in propor-
tion of conducting area may help to explain the 1.2-fold
difference in the estimated xs of A. rubrum (posterior median
for xs = 0.525 g cm�3) vs. P. taeda (xs = 0.410 g cm�3).
The proportion of latewood also contributes to variation in

species-level xs. Our results indicate that latewood is denser
than earlywood (Fig. 6b), which is expected (e.g. Koubaa,
Zhang & Makni 2002; Knapic et al. 2007) because latewood
conducting elements tend to be smaller with thicker cell walls
and less lumen area (Domec & Gartner 2002; Woodcock &
Shier 2002; Berg�es, Nepveu & Franc 2008). Thus, trees with
a higher proportion of latewood tend to have denser bulk-
wood when compared with trees with lower proportions
(Zhang & Morgenstern 1995). Based on the PM, the average
latewood proportion ( �LT in Eqn (4)) potentially differed
between softwood and ring-porous species given that the pos-
terior medians and 95% CIs for �LT were 0.253 (0.193, 0.321)
and 0.591 (0.404, 0.760), respectively; �LT could not be esti-
mated for diffuse-porous wood given the lack of latewood
proportion data. These differences in �LT align with the overall
lower xs estimates for softwoods (lower proportion of late-
wood) when compared with ring-porous species. The differ-
ences in �LT between ring-porous and softwood species could
be partially explained by difference in their anatomical struc-
ture (e.g. Fig. 1), or our results could also be an artifact of
the limited amount of L data available on ring-porous species
(Table 1), which only represents a single species (Robinia
pseudoacacia), whereas L data were available for 12 soft-
wood species.

EVOLUTIONARY HISTORY VS. ENVIRONMENTAL

INFLUENCES

We explored the degree to which the residual variation in the
reported WD can be explained by environmental factors not
explicitly included in this analysis (as represented by the
study random effects) vs. evolutionary history (as represented
by the variability between species and between higher taxo-
nomic levels). Overall, we found that once woody type, late-
wood proportion and moisture content were accounted for,
the study random effects and species identity explained a sim-
ilar amount of variation (Fig. 7). The study random effects
reflected the influence of study-specific environmental, sam-
pling, or population factors that were not explicitly accounted
for in the HB model. For example, intraspecific variation in
WD has been attributed to site-level differences in soil mois-
ture (Preston, Cornwell & DeNoyer 2006; Fajardo & Piper
2011), tree age or size (Sungpalee et al. 2009; Fajardo &
Piper 2011) and genetics (Vargashernandez & Adams 1991).
Similarly, stand- or community-level mean WD often varies
among sites and along gradients in elevation or topographical
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complexity, which probably reflects gradients in temperature
and water availability (Chave et al. 2006; Sungpalee et al.
2009). Thus, more refined estimates of xs could be obtained
by incorporating study- or site-specific indices of ontogeny,
temperature and/or water availability. Unfortunately, severe
incomplete reporting of candidate variables hampered our
ability to include such factors within our HB meta-analysis.
Previous studies suggest that WD is conserved at the genus

level (Chave et al. 2006; Swenson & Enquist 2007). Our
results lend some support for this conclusion because point
estimates for the variances among species within genera ( _r)
tended to be smaller than for the variances among genera with
orders (€r) (Fig. 7a). However, our results also imply variabil-
ity among taxa in the degree of WD conservatism. For exam-
ple, although WD appears to be relatively conserved within
certain genera (e.g. Populus, Abies, Carya, Quercus, Fraxinus,
Betula, Magnolia, and Ulmus; low _r) and orders (e.g. Pinales,
Magnoliales, and Fabales; low €r), several of the _r and €r esti-
mates are moderately large (e.g. for Ebenales) and/or highly
uncertain, indicating that WD may be a variable or labile trait
within some clades. Uncertainty in the _r and €r estimates
tended to decrease with clade size, but the point estimates for
_r and €r were not clearly related to clade size (Fig. S2). Simi-
larly, Chave et al. (2006) reported that genera with highly var-
iable WD may include either few or many species (see their
Table 5). This suggests that taxonomic diversification may be
largely uncoupled from WD diversification.
The importance of study effects and evolutionary history

may reflect the fact that WD is a complex trait that is influ-
enced by other more rudimentary traits—such as xylem anat-
omy and cellular structure (Hacke et al. 2001; Searson,
Montagu & Conroy 2004)—some of which may be strongly
influenced by the environment, whereas others may be tightly
constrained by ancestry. Moreover, the incorporation of evolu-
tionary relationships helped to identify potential species that
should be targeted for future WD measurements. On the other
hand, the relatively large study effects indicated that estimates
of intra-specific variation in WD could be refined by incorpo-
rating site-level (e.g. edaphic properties, topography, climate)
and tree-level (e.g. age, size, growth rate) information. WD is
a key parameter in tree growth and forest simulation models,
and more accurate forecasts of forest structure and productivity
may be achieved by allowing this parameter to vary among
forest stands, reflecting local environmental influences on WD.
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