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Global Leaf Trait Relationships:
Mass, Area, and the Leaf
Economics Spectrum
Jeanne L. D. Osnas,1,2* Jeremy W. Lichstein,2 Peter B. Reich,3,4 Stephen W. Pacala1

The leaf economics spectrum (LES) describes multivariate correlations that constrain leaf traits
of plant species primarily to a single axis of variation if data are normalized by leaf mass.
We show that these traits are approximately distributed proportional to leaf area instead of mass,
as expected for a light- and carbon dioxide–collecting organ. Much of the structure in the
mass-normalized LES results from normalizing area-proportional traits by mass. Mass normalization
induces strong correlations among area-proportional traits because of large variation among species
in leaf mass per area (LMA). The high LMA variance likely reflects its functional relationship with
leaf life span. A LES that is independent of mass- or area-normalization and LMA reveals
physiological relationships that are inconsistent with those in global vegetation models designed
to address climate change.

Leaf size varies by several orders of mag-
nitude between species, and leaf traits are
typically normalized by mass or area to

study relationships among them. The leaf eco-
nomics spectrum (LES) (1, 2) has received con-

siderable attention in part because the tight
relationships among mass-normalized leaf traits
appear to constrain the biodiversity of leaves to a
single axis (Fig. 1). The apparent simplicity of
this relationship is appealing because of the need

to summarize functionally important aspects of
biodiversity in models of the terrestrial carbon
cycle and climate change (3–6).

The GLOPNET (Global Plant Trait Network)
leaf traits data set (2), from which the LES was
generated, reports values of maximum rate of net
photosynthesis (Amax), dark respiration rate
(Rdark), nitrogen (N) and phosphorus (P), leaf life
span (LL), and leaf mass per area (LMA, which
increases with leaf thickness and tissue density)
(throughout this paper, we use “N” and “P” to
refer to concentrations per unit leaf area or mass,
and we use the words “nitrogen” and “phospho-
rus” to refer generically to the elements). Cor-
relations among traits in GLOPNET [primarily
reflecting interspecific variation (7)] are much
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Fig. 1. Observedmass-normalized
LES (left three columns) and mass-
normalizedpredictions fromanarea-
proportional null model with no
functional correlations involving
Amax, Rdark, N, or P (right three col-
umns). The observed mass-normalized
LES and the null model (which leaves
intact the actual LMA-LL relationship)
have similar overall structure but dif-
fer quantitatively due to relationships
not caused by mass normalization. All
values are log10-transformedwithmeans
rescaled to (0,0).
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stronger if Amax, Rdark, N, and P are normalized
by mass than if normalized by area (Fig. 1 and
fig. S1).

By definition, a trait is distributed proportion-
al to mass if normalizing by mass makes the trait
statistically independent of mass, area, and LMA
(7). Similarly, area normalization removes all
effects of leaf size from an area-proportional trait.
If a trait is mass-proportional, then the total (non-
normalized) trait amount in leaves of species with
the same leaf mass does not increase with leaf
area (i.e., the trait does not vary with LMA
among species that share the same leaf mass),
whereas if a trait is area-proportional, it does not
increase with leaf mass among species with the
same area. We statistically partitioned Amax,
Rdark, N and P inGLOPNET into area- andmass-
proportional components (Fig. 2) (7). Almost
all Amax and P are proportional to area in nearly
all species, and most leaf N and Rdark are area-
proportional in more than 90% of species (Fig. 2)
(7). If mass- and area-proportionality hypotheses
are given equal prior probabilities, then the pos-
terior probability of the former is less than 10−25

for each of the four traits (7).
The possibility that the strong correlations

among per-unit-mass traits are largely the result
of mass normalization of area-proportional traits
was discussed in qualitative terms by Field and
Mooney (8, 9). This alert has gone largely unno-
ticed in subsequent studies of leaf traits, perhaps
because quantitative estimates of mass versus
area proportionality were unavailable until now
(Fig. 2). Mass normalization of area-proportional
traits induces positive covariance between these
traits and negative covariance between each of
them and LMA by an amount equal to the var-
iance of LMA [using log-transformed data (7)],
which is large in GLOPNET (LMA range: 14 to
1509 g m−2). Thus, much of the structure of the
mass-based GLOPNET LES is a direct joint re-
sult of (i) traits being primarily area-proportional
and (ii) high LMAvariance, which is a result of
the global LL-LMA tradeoff. LL is neither area-
normass-based, so the strong LL-LMA correlation
reported in (1, 2) is unaffected by normalization
and likely indicates a robust relationship. The
high LMA of long-lived leaves may be neces-
sary to provide the structure and defense needed

for long life, which increases nutrient-use efficien-
cy (1, 2, 10–12). Also, because high-LMA leaves
are expensive to produce (per unit area) and have
similar mean Amax per area as low-LMA leaves
(1), these high-LMA leaves must live a long time
if they are to pay back their construction costs
(2, 10). The tradeoff between fast returns on con-
struction costs (low LMA) and long-term returns
combined with high nutrient-use efficiency (high
LL) likely contributes to the interspecific covaria-
tion between LMA and LL (1, 2). Unlike the LL-
LMA relationship, most of the covariance between

mass-based traits and LL in GLOPNET is due to
mass normalization of primarily area-proportional
traits that are only weakly correlated with LL (7).
The LMA-induced covariances in GLOPNET are
quantitatively close to the actual covariances in
the mass-normalized LES (Fig. 3), which illus-
trates the dominance of the covariances created
by mass normalization.

To further illustrate the effects of mass nor-
malization,we generated randomarea-proportional
values for Amax, Rdark, N, and P from statistically
independent log-normal distributions with the

Fig. 2. Frequency of species with
area-proportional trait fraction pA
and mass-proportional fraction
1 − pA for N, Rdark, P and Amax in
GLOPNET. A pA value of 1 indicates
pure area proportionality, whereas 0
indicates pure mass proportionality.
The histograms are estimated from
the posterior distribution of param-
eters from Model-C and account for
parameter uncertainty and the distri-
bution of LMA values in GLOPNET (7).
All four traits (especially Amax and P) are
primarily area proportional for most
species.

Fig. 3. Actual covariances between logarithms of mass-normalized traits in GLOPNET versus
those induced by mass normalization of area-proportional traits. If Amax, Rdark, N, and P were
distributed across species purely proportional to area, then mass normalization would induce the
following covariances: −VAR(log10LMA) for comparisons involving LMA, −COV(log10LL, log10LMA) for
comparisons involving LL, and VAR(log10LMA) for all others (7), where COV is covariance and VAR is
variance. Values of VAR(log10LMA) and COV(log10LL, log10LMA) differ for each combination of traits
because not all trait values are reported for every species in GLOPNET. Departures of the actual
covariances from those predicted to occur solely because of mass normalization are caused by covariances
among the minor mass-distributed trait fractions (Fig. 2) and by normalization-independent correlations
(figs. S4 and S5).
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same means and variances as the area-normalized
GLOPNET data. We then mass-normalized these
random values by dividing them by randomly
chosen GLOPNET LMAvalues (Fig. 1). All cor-
relations in the right-hand panels of Fig. 1 are
caused solely by mass normalization and simply
reflect the correlation of LMAwith either itself
or LL. The random values reproduce the general
structure in the mass-normalized LES (area-
normalized counterpart in fig. S1), even though
they lack any functional correlations among
Amax, Rdark, N, and P, such as the physiological
dependence of Amax on N (2, 6, 8, 9, 13). Dis-
crepancies between the correlations, slopes, and
intercepts of the mass-based LES and those gen-
erated from the random LES reflect trait relation-
ships that are not induced by mass normalization
and that represent the core of the normalization-
independent LES discussed below. Area normal-
ization of randomly generated mass-proportional
values produces results unlike the data (fig. S3).

A simple hypothesis explains both the area
proportionality of traits and the strong inter-
specific correlations in the mass-normalized LES
in GLOPNET. Evolution has distributed traits as-
sociated with photosynthetic function primarily
proportional to area, because all leaves are de-
signed to intercept light and capture CO2. Re-
gardless of mesophyll depth, only a few cell layers
of mesophyll are responsible for the bulk of light
capture and photosynthesis (11, 13, 16, 17).
However, the large variation in LMA and the
strong global LL-LMA relationship imply that
plant species vary in their investment in non-
photosynthetic functions that increase longevity
and require large LMA, such as structural rigidity
and defense. Thus, area-normalized light inter-
ception, water loss, and photosynthetic traits vary
much less than isometrically with LMA. Large
variance in LMA reflects variation in ecologi-
cal conditions that select for different optimal
LLs. Together, these factors lead to nearly area-
proportional Amax, Rdark, N, and P; large mass-
normalized variance of these traits at any given

leaf area; and thus, large correlations induced by
mass normalization.

Dark respiration rate, N, and P are primarily
proportional to area because their main func-
tion is to support photosynthesis. The significant
but minor portion of Rdark that is distributed
proportional to mass (Fig. 2) likely reflects inter-
specific variation in GLOPNET in the number
and depth of respiring cell layers. The mass-
distributed portion of N may be both structural
and functional. Every cell wall in a leaf contains
nitrogen in structural proteins. Some nitrogen
may also contribute to nonphotosynthetic func-
tions, such as carbohydrate dynamics and de-
fense (8). The role of the mass-distributed portion
of N and Rdark in structural rigidity and defense
probably contributes to the strong relationship
between LMA and LL. Phosphorus is located
primarily in organelles in the cytosol (14) and is
therefore not as closely bound to LMA as struc-
tural nitrogen. The stoichiometric ratio of N to
P increases with LMA in GLOPNET (12) be-
cause, on average, mass-proportional fractions
are larger for N than for P.

Because normalization-induced covariance
scales with the variance of logLMA, it can be
minimized by sorting species into groups with
similar LMA. Doing so with GLOPNET reveals
that area and mass normalization produce similar
trait relationships, both within a given LMAgroup
(compare the slopes of same-colored lines be-
tween Fig. 4, A and B) and between groups with
different LMA (compare the slopes of lines with
different colors within Fig. 4, A and B). The sim-
ilarity of slopes across LMA groups reflects the
approximate multivariate log-normality of the
GLOPNET data and points to a new LES defined
by the multivariate normal distribution of the log-
arithms of Amax, Rdark, N, and P conditional on
log(LMA) (7). Previous analyses included LMA
as a covariate when regressing one trait on an-
other (1, 2, 9). Here, we extend this approach to
derive a normalization-independent LES for Amax,
Rdark, N, and P that is independent of LMA and

mass or- area normalization (7). Consider the fol-
lowing ordinary least-squares (OLS) regressions

log10XAik = Ii + Si × log10LMAk + nik (1)

log10XMik = Ii + (Si − 1) × log10LMAk + nik (2)

where log10XAik and log10XMik are, respectively,
log10-transformed area- and mass-normalized val-
ues for trait i, species k; Ii and Si are intercept and
slope parameters for trait i; and nik is a normally
distributed residual. Subtracting log10LMAk from
both sides of Eq. 1 yields Eq. 2. Thus, Eqs. 1 and 2
aremathematically identical: Both regressions yield
identical estimates for Ii and Si and identical values
for nik. Plotting the residuals for two traits against
each other shows the normalization-independent
relationships (Fig. 4C),which are very similar to those
obtained from sorting species into LMA groups
(Fig. 4,A andB). Estimates of Si are consistentwith
the independently estimated area- versus mass-
proportional fractions in Fig. 2 (see comparison
in fig. S6), which suggests that the normalization-
independent LES accurately captures functional
relationships between traits that are altered by area
and (especially) mass normalization.

The normalization-independent LES probably
reflects universal functional constraints and/or
adaptation affecting leaf carbon and nutrient dy-
namics (2, 11, 15). Pairwise and multivariate trait
relationships estimated from the normalization-
independent values (i.e., residuals from Eqs. 1 and
2) are usually intermediate in strength between
those estimated from area- and mass-normalized
values and sometimes have significantly different
regression slopes. For example [see also (7)], the
standardizedmajor axis regression slope [commonly
used in allometry (12)] betweenmass-normalized
N and P inGLOPNET is 0.67, as predicted bymeta-
bolic scaling theory (15). However, 2/3 is signif-
icantly steeper than the normalization-independent
slope of 0.59 (table S2) (7), implying that across
the global flora, leaves accrue less N per unit P
than predicted by metabolic theory.

Fig. 4. Scatter plots of N
versus P from GLOPNET.
(A) Mass-normalized data. (B)
Area-normalized data. (C)
Normalization-independent
values (residuals from Eqs.
1 and 2). Values are log10-
transformed with means re-
scaled to zero and colored by
the log10LMA z score (number
of standard deviations from
mean log10LMA): z ≤ −1, or-
ange; −1 < z≤ 0, red; 0 < z ≤
1, violet; 1 < z ≤ 2, blue; and
2 < z, green. Lines show ma-
jor axis regressions (black, full
data set; colored, LMA bins).
Slopes of colored lines are not
significantly different from each other or from the black line in (C), but they are significantly different from slopes of black lines in (A) and (B) (7), indicating that the
normalization-independent LES is approximately equivalent to sorting species by LMA.
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The normalization-independent LES has im-
portant implications for global vegetation models
(5, 6), which include coupled carbon-nitrogen
cycles but lack explicit treatment of biodiversity
within a small number (roughly 10) of plant func-
tional types (PFTs).Most of thesemodels assume
that Amax and Rdark are proportional to leaf nitro-
gen, which appears justified within the vertical
canopy gradient of individual plants (5, 13, 16–18).
However, much variation in N is the result of dif-
ferences among species, and less than half of this
interspecific variation is explained by global PFT
classifications [see figure 5 in (19)]. The assump-
tion that Amax and Rdark are proportional to N (log-
log slopes of 1) appears reasonably consistent with
the log-log OLS slopes of per-unit-massAmax and
Rdark versus N (1.25 T 0.04 and 1.06 T 0.06, re-
spectively; OLS regression because changes in N
are assumed causal), but these slopes are amplified
by hidden changes in LMA (7). If a high-N species
replaces a low-N species with the same LMA, then
the correct dependencies ofAmax andRdark onN are
given by the normalization-independent OLS slopes
(0.68 T 0.05 for Amax versus N; 0.66 T 0.0 for Rdark
versus N), which control for LMA. The slopes ob-
tained from mass-normalized traits are too steep,
implying a carbon-nitrogen feedback that is too
strong. In contrast, the carbon-cycle feedback im-
plied by area-based OLS slopes is too weak (0.45 T
0.04 for Amax versus N; 0.65 T 0.06 for Rdark versus
N) because N per area (but not Amax per area) in-
creases with LMA due to its substantial mass-
proportional fraction (Fig. 2); this inflates the
variance in the independent variable (N) in the
regression and reduces the estimated slope (7).

The preceding example assumes that spe-
cies replacement is associated with increasing
N but constant LMA. Because LMA may also
change, we now consider the opposite extreme, in
which normalization-independent N is held con-
stant andLMA is variable, so that per area increases
as LMA increases. In this case, interspecific patterns
in GLOPNET imply that an increase in N per area
(holding normalization-independent N constant)
would be associated with almost no change in
Amax and a weak increase in Rdark (log-log slopes
of Amax per area and Rdark per area on N per area,
conditional on constant normalization-independent
N: 0.06 T 0.04 and 0.50 T 0.07, respectively). Thus,
the Amax-N and Rdark-N relationships in many
global models are again steeper than the interspe-
cific patterns in GLOPNET. Because Rdark per area
increases more quickly with N per area than Amax
per area, net carbon gain per unit leaf area may ac-
tually decrease as N per area increases. Interme-
diate cases involving changes in both LMA and
normalization-independent N produce leaf-level
Amax-N and Rdark-N dependencies that are inter-
mediate between the two extreme cases.

Inconsistencies between the interspecific trait
relationships in GLOPNET and the relationships
in global vegetationmodels, and the large amount
of within-PFT trait variation in nature (19), imply
that global models will need more realistic treat-
ments of biodiversity if they are to predict global

carbon-nitrogen feedbacks. Greater biodiver-
sity could be included in global models by re-
placing discrete PFTs with a species continuum
(2). On the surface, the 15 tight correlations of
the mass-normalized LES appear to offer the
possibility of capturing 75% of global leaf trait
diversity with a single principal component axis
(2). However, because much of this visually ap-
pealing structure is the result of normalization
combined with LMA variation, this single axis
excludes important aspects of biodiversity that
are orthogonal to LMA. Accurately representing
biodiversity in global models will probably
require including at least two axes of variation,
such as LMA and the first principal component
of the normalization-independent LES (7). Al-
ternatively, this normalization-independent axis
could be used to represent interspecific variation
within the PFTs currently used in global models.
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Early Mesodermal Cues Assign Avian
Cardiac Pacemaker Fate Potential
in a Tertiary Heart Field
Michael Bressan, Gary Liu, Takashi Mikawa*

Cardiac pacemaker cells autonomously generate electrical impulses that initiate and maintain
the rhythmic contraction of the heart. Although the majority of heart cells are thought to originate
from the primary and secondary heart fields, we found that chick pacemaker cells arise from a
discrete region of mesoderm outside of these fields. Shortly after gastrulation, canonical Wnts
promote the recruitment of mesodermal cells within this region into the pacemaker lineage.
These findings suggest that cardiac pacemaker cells are physically segregated and molecularly
programmed in a tertiary heart field prior to the onset of cardiac morphogenesis.

The rhythm of the heart is maintained by a
specialized subclass of myocytes known
as cardiac pacemaker cells (PCs). These

cells generate action potentials (APs) in a cyclic
manner to stimulate cardiac contractions. The an-
atomic position of mature PCs, the sinoatrial node
(SAN), was described more than 100 years ago

(1), however, little is known regarding the on-
togeny or molecular mechanisms that specify PCs
during development. This study was designed to
address the timing, location, and mechanisms of
PC cell fate acquisition.

Electrophysiological studies (2–4) havemapped
cells that initiate cardiac APs to the inflow region
at heart tube, looping, and septation stages. How-
ever, recent evidence indicates that as the heart
matures, it continually expands, with cells being
added to both the inflow and outflow segments

Cardiovascular Research Institute, University of California, San
Francisco, CA 94143, USA.
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