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Methods 
Data set description and modifications 
We modified the original 2004 Wright et al. (2) GLOPNET leaf trait data set by deleting 
the 178 (out of 2548 total) observations that lacked LMA data and two observations not 
identified to genus (“Unidentified compositae” and “Leguminosae sp”), leaving us with 
2368 observations. We also converted units of mass-normalized N and P from percent to 
g g−1 (by dividing by 100). Units for area-normalized N and P were g m−2. Finally, we 
converted area-normalized Amax and Rdark to units of nmol m−2 s−1 so that they were 
more easily compared to the mass-normalized units of nmol g−1 s−1. Units of LMA and 
LL were g m−2 and months, respectively. This left us with 2368 observations for LMA, 
1957 for N, 763 for Amax, 739 for P, 274 for Rdark and 677 for LL.  

After these modifications the 2368 observations remaining in the dataset were 
comprised of 1852 unique species. While there are multiple observations of some species 
in the GLOPNET dataset, no trait values are the same within a species, and no species 
has more than 8 observations. This version of the dataset that includes intraspecific 
variation is the appropriate dataset to investigate the contribution of both normalization-
independent and normalization-induced correlation to the LES presented by Wright et al. 
(2). A version of the dataset free of intraspecific variation, however, is more appropriate 
for characterizing interspecific normalization-independent trait relationships and 
estimating the area- and mass-proportionality of traits. Toward this end, we created 



another version of the GLOPNET dataset purged of intraspecific variation by replacing 
multiple observations per species with the mean of those values. We repeated analyses 
with this dataset. Doing so only negligibly altered the results and did not change our 
conclusions, so we only present analyses using the complete dataset. So, we will 
henceforth here and in the main text refer to any observation in GLOPNET as a “species” 
observation. 
 
Models 
We used a suite of statistical models to quantify the degree to which traits are distributed 
across species proportional to mass vs. area (see explanation of terms below). In this 
section, we describe the models. In subsequent sections, we described the methods used 
to (i) obtain maximum likelihood estimates and confidence intervals of model 
parameters, (ii) simulate random data from select models, and (iii) partition traits into 
area- and mass-associated fractions.  

Although LMA does vary within species, we treat it here as a species-specific 
constant because global variation in LMA is much larger between species than within 
(11, 19). Below we report analyses of mass- and area-normalized values reported in 
GLOPNET. We repeated these analyses except that we used each species’ mean LMA 
times its mass-normalized trait value in place of the area-normalized value reported in 
GLOPNET; and similarly, we used each species’ area-normalized trait value divided by 
its mean LMA instead of the mass-normalized value in GLOPNET. These values differ 
slightly from the area- and mass-normalized values reported in GLOPNET because area- 
and mass-normalized are not inter-converted exactly with species mean LMA values in 
GLOPNET. Nevertheless, these analyses returned nearly identical results to those 
described below (based on the mass- and area- normalized values reported in 
GLOPNET), which further justifies our treatment of LMA as a species-specific constant. 

In addition to analyzing both mass- and area-normalized data, we also obtained 
unpublished values of total leaf mass and total leaf area for a subset of the leaves in 
GLOPNET. These mass and area values allowed us to fit the models described below 
using total (non-normalized) trait data. These analyses (which we do not report here) 
confirmed that our models yield nearly identical results whether fit to non-normalized, 
mass-normalized, or area-normalized trait data. 

Formally, a trait is distributed proportional to mass if normalizing by mass makes 
the trait statistically independent of all measures of leaf size, including mass, area and 
LMA. Area-normalization similarly removes all effects of leaf size from an area-
proportional trait. A definition of mass-proportionality that is easier to visualize is the 
per-unit-mass increase in the total (non-normalized) trait amount as mass increases across 
leaves while controlling for leaf area. We refer to the mass-proportional trait fraction as 
being ‘distributed across species proportional to mass.’ Similarly, we define area-
proportionality as the per-unit-area increase in the total trait amount as area increases 
across leaves while controlling for leaf mass. We refer to the area-proportional trait 
fraction as being ‘distributed across species proportional to area.’ Leaf traits may be 
purely mass-proportional, purely area-proportional, or both mass- and area-proportional. 
To illustrate our use of these terms, consider a collection of leaves with the same area but 
variable mass. If at least some fraction of trait-i were distributed proportional to mass, 
then the total (non-normalized) amount of trait-i would tend to increase with increasing 



mass across these equal-area leaves. Conversely, consider a collection of leaves with the 
same mass but variable area. If at least some fraction of trait-i were distributed 
proportional to area, then the total amount of trait-i would tend to increase with 
increasing area across these equal-mass leaves.  
 It is important to note that, according to our definitions, the terms mass- and area-
proportionality do not imply anything about the physical location of traits within 
individual leaves. For example, a trait could (in principle) be distributed within leaves 
uniformly throughout the entire leaf mass (or thickness), yet be distributed across species 
proportional to area (and independent of mass) if the amount of trait per unit mass were 
inversely proportional to LMA. Conversely, a trait could (in principle) be concentrated 
within leaves in a thin layer (e.g., the palisade layer), yet be distributed across species 
proportional to mass (and independent of area) if the amount of trait per unit area were 
proportional to LMA. Thus, as defined here, the terms mass-proportional and area-
proportional simply refer to how the total amount of trait tends to change across leaves as 
mass and area change (i.e., how traits are distributed across species), but do not imply 
anything about how traits are distributed within leaves (e.g., distributed uniformly 
throughout the thickness of the leaf vs. concentrated in a thin layer).  

We now describe five statistical models that quantify how the total amount of trait 
in a leaf depends on leaf mass and/or area. The first model, which we refer to as ‘Model-
M&A,’ allows for both mass- and area-proportional trait. Let  and  be constants 

that quantify mass- and area-proportionality, respectively, for trait-i. The units of  

and  are the amount of trait-i per-unit-mass and per-unit-area, respectively. The 

expected value of the total amount of trait-i in a species-k leaf is Massk  + Areak . 
The model has three mathematically identical forms, depending on how data are 
normalized: 
 
(Model-M&A)  Xik = (Massk  + Areak )εik 

(Model-M&A)  XMik = (  + LMAk
−1)εik 

(Model-M&A)  XAik = (LMAk  + )εik 
 
where Xik, XMik, and XAik are, respectively, the total, mass-normalized, and area-
normalized amounts of trait i in a species-k leaf; and εik is a species-specific, unit-mean, 
unitless random variable that quantifies interspecific variation (we assume that 
measurement error in GLOPNET is small relative to interspecific variation, and we 
henceforth ignore it). The three forms of Model-M&A are easily inter-converted via 
mass, area, or LMA. Note that XMik and XAik are simply normalized trait values for 
species-k; these values imply nothing about mass- or area-proportionality as defined here. 
In contrast,  and  quantify mass- and area-proportionality across species. No 
matter how large or small the mass- or area-proportional amounts might be for trait-i of 
species-k (Massk  or Areak , respectively), we can still express the trait on a mass 
or area basis (XMik or XAik) by dividing the total trait amount (Xik) by mass or area. This 
highlights the difference between mass- or area-normalization (i.e., expressing a trait on a 

XMi XAi

XMi

XAi

XMi XAi

XMi XAi

XMi XAi

XMi XAi

XMi XAi

XMi XAi



mass- or area-basis, which has nothing to do with how the traits are distributed across 
species) and mass- or area-proportionality (which reflects how traits are distributed 
across species, regardless of how they are normalized). 

The second model is similar to Model-M&A above, but allows for species-
specific variation separately in the mass- and area-associated traits amounts. We call this 
second model ‘Model-C,’ where the letter “C” indicates that the likelihood includes a 
convolution integral (see next section below). Model-C is used in the main text and in 
Fig. 2 to quantify the species distribution of trait fractions associated with mass vs. area; 
similar mean fractions are obtained from Model-M&A described above (see details 
below in the section titled “Partitioning Traits into Area- and Mass-Fractions”). In 
Model-C, the amount of mass-associated trait-i in a species-k leaf is the product of three 
terms: leaf mass (Massk); the mass-proportional constant ( , with per-unit-mass units); 
and a species-specific, unit-mean, unitless value (εMik). Similarly, the amount of area-
associated trait-i in a species-k leaf is the product of leaf area (Areak); the area-
proportional constant ( , with per-unit-area units); and a species-specific, unit-mean, 

unitless value (εAik). As in Model-M&A,  and  quantify, respectively, mass- and 
area-proportionality across species. In contrast, εMik and εAik quantify species-specific 
deviations from the expected mass- and area-proportional trait amounts. The three 
mathematically identical forms of Model-C are: 

 
(Model-C)   
(Model-C)  XMik = XMiεMik + LMAk

−1XAiεAik  
(Model-C)   
 

The third and fourth models (Model-M and Model-A) assume that traits are either 
purely mass-proportional or purely area-proportional and are used in the main text to 
evaluate the two competing hypotheses that traits are either mass- or area-proportional. 
We define a trait as being ‘purely mass-proportional’ if the total amount of trait increases 
isometrically with mass (controlling for area) but is unrelated to area (controlling for 
mass). In other words, a trait is purely mass-proportional if the mass-proportional 
constant ( ) is greater than zero, but the area-proportional constant ( ) is zero. In 
this case, the total trait amount may increase across leaves as area increases, but only due 
to the positive correlation between area and mass. If a trait is purely mass-proportional, 
then mass, not area, causes the total trait amount to increase from small leaves to large 
leaves. This extreme case, which we label as Model-M, has three mathematically 
identical forms: 

 
(Model-M)  
(Model-M)  
(Model-M)  
 
where terms are defined as above for Model-M&A. The non-normalized form of Model-
M (the first expression above) states that if a trait is purely mass-proportional, then 
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interspecific variation in the amount of trait in a leaf is due to two factors alone: 
interspecific variation in leaf mass (Massk) and interspecific variation in the amount of 
trait per unit leaf mass (εMik). This seemingly trivial statement has important implications. 
Firstly, if we divide both sides of the expression by leaf mass to obtain the mass-
normalized form of Model-M (second expression above), we see that mass-normalized 
values of purely mass-proportional traits are uncorrelated across species with mass, area, 
or LMA. Secondly, if we instead divide through by leaf area to obtain the area-
normalized form of Model-M (third expression above), we see that area-normalized 
values of purely mass-proportional traits increase across species with LMA. Thus, if traits 
are purely mass-proportional, then mass-normalized trait values should be uncorrelated 
with LMA, whereas area-proportional trait values should increase with LMA. 

We define a trait as being ‘purely area-proportional’ if the total amount of trait 
increases isometrically with area (controlling for mass) but is unrelated to mass 
(controlling for area). In other words, a trait is purely area-proportional if the area-
proportional constant ( ) is greater than zero, but the mass-proportional constant ( ) 
is zero. This extreme case, which we label as Model-A, has three mathematically 
identical forms: 
 
(Model-A)  
(Model-A)  
(Model-A)  
 
The interpretation of Model-A is analogous to Model-M, described above. Briefly, the 
non-normalized form of Model-A (the first expression above) states that if a trait is 
purely area-proportional, then interspecific variation in the amount of trait in a leaf is due 
to two factors alone: interspecific variation in leaf area (Areak) and interspecific variation 
in the amount of trait per unit leaf area (εAik). The area-normalized form (second 
expression) states that area-normalized values of purely area-proportional traits are 
uncorrelated with mass, area, or LMA. Finally, the mass- normalized form (third 
expression) states that mass-normalized values of purely area-proportional traits are 
inversely proportional to LMA. 

Finally, the fifth model (Model-LN) is equivalent to the normalization-
independent LES defined by Equations 1 and 2 in the main text. Like Model-M&A and 
Model-C above, Model-LN allows for both mass- and area-associated trait amounts. This 
model’s three mathematically identical forms are: 
 
(Model-LN)  
(Model-LN)  
(Model-LN)  
 
where Ki and SAi are constants and εik is a unitless, unit-mean value representing 
interspecific variation in the amount of trait. The area- and mass-normalized forms of 
Model-LN (second and third expressions, respectively) are obtained from the non-
normalized form (first expression) by dividing through by area or mass, respectively. 

XAi XMi

Xik = AreakXAiεAik
XAik = XAiεAik
XMik = XAiLMAk

−1εAik

Xik = Ki (Massk
SAi Areak

1−SAi )ε ik
XAik = Ki (LMAk

SAi )ε ik
XMik = Ki (LMAk

SAi−1)ε ik



Note that the residual variation (εik) is identical across the three forms of Model-LN. 
Although Models-LN, -M&A, and -C have different mathematical forms, all three lead to 
a similar quantitative partitioning of mass and area trait fractions (see the section below 
titled “Comparisons of Models-LN and -C”). 

Taking natural logs of the area- and mass-normalized forms of Model-LN, and 
assuming that εik is lognormally distributed, leads directly to Equations 1 and 2 in the 
main text: 
 
(Model-LN) lnXAik = !I i + !SAi lnLMAk + !nik  
(Model-LN) lnXMik = !Ii + !SAi −1( ) lnLMAk + !nik  
 
where I'i = ln(Ki) − σ2

i/2, and n'ik is a zero-mean normal random variable with variance 
σ2

i. The σ2
i/2 term in the intercept I'i is due to the fact that the mean of exp(n'ik ), a 

lognormal random variable with a mean of zero on the log-scale, is exp(σ2
i/2). The n'ik 

terms in the above equations are formally the random variables for the natural log of trait-
i conditional on ln(LMA). Because the logarithms of the traits are normal, the constants 
are estimated by ordinary least squares (OLS) regression, and the variance-covariance 
matrix of the random variables (n'ik) is estimated from the variances and covariances of 
the OLS residuals. The slope of the regression line for mass-normalized data, S'Mi, is 
equal to S'Ai − 1. To see this, subtract ln(LMAk) from both sides of the first equation 
above to convert it into the second. By dividing both sides of the above equations by 
ln(10), and thus converting to base ten logarithms, we arrive at Equations 1 and 2 in the 
main text, where I = I'/ln(10), S = S'/ln(10) and n = n'/ln(10). The mathematical 
equivalence of the mass- and area-normalized forms of Model-LN is the reason that 
log10LMA-OLS regression residuals from mass- and area-normalized data (Equations 1 
and 2 in main text) produce the same normalization-independent LES (Fig. 4, Fig. S4 and 
Fig. S5).  

 
Maximum Likelihood Estimation and Confidence Limits 
With the exception of Model-C, all of the models described above can be fit using 
standard linear and nonlinear least-squares statistical software by (i) assuming that the 
random variables, ε, are lognormally distributed; and (ii) log-transforming the models so 
that the random variables become additive, normally distributed errors. However, Model-
C includes two random variables and, therefore, cannot be fit with standard software. For 
consistency, we fit all models by maximum likelihood without log-transformations (i.e., 
we back-transformed the log10 values reported in GLOPNET). To perform equivalent 
analyses on a log-scale with least-squares software (for all models except for Model-C), 
one must adjust for the fact that the expected value of a lognormal random variable is 
exp(µlog + σ2/2), where µlog and σ2 are, respectively, the mean and variance on the log-
scale. Ignoring this fact would still yield results that are qualitatively similar to the results 
we report here. 

We fit the models to the GLOPNET data for Amax, Rdark, N and P by assuming 
that each species’ set of six traits represents an independent draw from a multivariate 
lognormal distribution. For example, in Model-M&A, the εik for k =1, 2, …, Q (where Q 
is the number of species) are assumed to be independent unit-mean lognormal random 



variables for trait-i. Traits are allowed to be correlated within a species: εik may be 
correlated with εjk. In Model-C, these same assumptions also apply to εAik and εAjk, and to 
εMik and εMjk. Additionally, εAik and εMik are assumed to be statistically independent in 
Model-C.  

We first treat the four models with a single random variable (ε): Models-M&A, -
M, -A, and -LN. Let Dik be the measurement for leaf trait-i and species-k in the 
GLOPNET data; and let P(Dik|µi(LMAk),σ2

i) be the lognormal probability density for leaf 
trait-i, where the function µi(LMAk) is the mean for species-k, and σ2

i is the variance of 
the logarithm of trait-i. In our notation, µ(LMA) is the expectation on the linear (non-log) 
scale; i.e., µ(LMA) = exp(µlog + σ2/2). If data are area-normalized then µi(LMAk) is 

 + LMAk for Model-M&A,  for Model-A, LMAk for Model-M, and
for Model-LN. If data are mass-normalized then µi(LMAk) is 

/LMAk +  for Model-M&A, /LMAk for Model-A,  for Model-M, and

 for Model-LN. The log-likelihood function for trait-i in the above four 

models is: .  

The log-likelihood function for Model-C is given by the convolution of two 
lognormal random variables: 

 

 = ln 0
Dik PA y |µAi LMAk( ),σ Ai

2( )PM Dik − y |µMi LMAk( ),σMi
2( )dy∫

#

$
%

&

'
(

k=1

Q

∑  

 
where PA(·) is the lognormal density for the amount of trait-i that is associated with area, 
and PM(·) is the lognormal density for the amount associated with mass. If data are area-
normalized then µAi(LMAk) is  and µMi(LMAk) is LMAk. If data are mass-
normalized then µAi(LMAk) is /LMAk and µMi(LMAk) is . 

All of the above models were fit using R software (20). Maximum likelihood 
estimates were obtained with the “mle2” function in the “bbmle” package (21), and 
confidence intervals were estimated from the second derivatives of the likelihood surface 
by specifying the “quadratic” method in the “confint” function. 
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Random Data Sets 
To illustrate how normalization induces correlations among traits, we generated 
simulated data using Models-C, -M, and -A. For each model, we produced a null data set 
(no functional correlations) containing area- and mass-normalized values of Amax, 
Rdark, N and P. For each null data set, values of XMi and XAi were produced by 
combining (i) randomly generated values of εMik and/or εAik (depending on the model) 
using the maximum likelihood estimates for their variances, (ii) maximum likelihood 
estimates for  and/or  (depending on the model), and (iii) the actual LMA and LL 
values reported in GLOPNET. The null data sets lacked functional correlations among 
Amax, Rdark, N and P (or between these four traits and LMA or LL) because the values 
of εMik and εAik for any two traits within the same species were statistically independent. 
Thus, leaves in the null model with the same (or similar) LMA had statistically 
independent values of Amax, Rdark, N and P. 
 
Partitioning Traits into Area- and Mass-Fractions 
For Models-M&A and -C, we estimated the species-distribution of the fraction of each 
leaf trait-i that is associated with leaf area (pAi); i.e., the “area-proportional” fraction, as 
defined in this paper. These species distributions quantify, for each trait-i, the fraction of 
species whose area-associated fraction lies in a given interval a ≤ pAi < b, where 0 ≤ a < b 
≤ 1. For Model-M&A, the area-associated fraction for trait-i and species-k is 
 
pAik = Areak /(Areak  + Massk ) = /(  + LMAk ), 
 
and for Model-C it is 
 
pAik = Areak εAik/(Areak εAik + Massk εMik) = εAik/( εAik + LMAk εMik). 
 
To account for parameter value uncertainty in the calculation of pAik, we approximated 
the sampling distribution of each model’s parameters as multivariate normal with mean 
given by the MLEs and variance-covariance matrix estimated from the second derivatives 
of the likelihood function. The parameter vectors needed to calculate pAik are ( , ) 
and ( ) for Models-M&A and -C, respectively. For Model-M&A, we took 
1000 random draws from the multivariate normal parameter distribution. For each of 
these 1000 parameter sets, we generated a pAik value for each GLOPNET species-k using 
the species’ reported LMA value. We then estimated the distribution of pAi (mean and 
percentiles) by pooling all pAi values. For example, for N, there were 1.957×106 pAi 
values (1000 values for each of 1,957 N values reported in GLOPNET). For Model-C, we 
followed a similar procedure, but also accounted for interspecific variation in the mass- 
and area-associated trait fractions. As with Model-M&A, we took 1000 random draws 
from the multivariate normal parameter distribution of Model-C to create 1000 sets of 
parameters. For each of these 1000 parameter sets, we generated a pAik value for each 
GLOPNET species-k by combining each species’ LMA value reported in GLOPNET 
with a random draw of εAik and εMik (one value of each random variable for each LMA 
value). We then calculated the distribution of pAi across species for trait-i by combining 
all random draws for all species and all 1000 parameter sets.  
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In addition to the above procedure described for Model-C, we also applied the 
Model-M&A procedure to Model-C (by ignoring interspecific variation, ε), which 
yielded qualitatively similar results. The species distributions from Model-M&A are 
summarized in Table S1. The species distributions from Model-C are summarized in the 
main text and in Fig. 2 (full analysis, including ε), and also in Table S1 (ignoring ε). The 
species distributions from both models are formally equivalent to posterior distributions 
assuming non-informative priors.  
 
AIC Tests 
We evaluated the models against one another using the AIC criterion and test. 
Comparisons of Model-C with Model-A or Model-M allowed us to determine if a trait’s 
mass- or area-proportional fraction was statistically significant (see below). 

 
Posterior probability of Models-M and -A  
If we assume that Models-A and -M are the only possible models, and that each has prior 
probability equal to 0.5, then the posterior probability of Model-M is 1/[1+exp(ΔL)], 
where ΔL is the log-likelihood of Model-A evaluated at its maximum likelihood 
parameter estimates minus the corresponding quantity for Model-M. The above 
expression can alternatively be expressed as LM/(LM + LA), where LM and LA, are, 
respectively, the maximum likelihoods of Model-M and Model-A.  
 
SOM Text 
Effects of normalization on covariances 
In this SOM section, we show how mass-normalization affects the covariances of area-
proportional traits. [In the SOM section below titled “Understanding the normalization-
independent LES,” we analyze how both mass- and area-normalization affect the 
correlations and slopes between trait pairs in general (not necessarily area-proportional 
proportional traits).] Consider two traits, i and j, that are purely proportional to area (see 
explanation above in the “Methods / Models” section). By definition, if traits i and j are 
area-proportional, then the area-normalized traits, XAik and XAjk, are statistically 
independent of Massk and Areak; i.e., the covariances between the traits and mass or area 
are zero. We do not assume that the covariance between XAik and XAjk, Cov(XAik, XAjk), is 
zero. It is convenient to take logarithms (of any base), which preserves the independence 
assumptions: Cov(logXAik, logAreak) = 0, Cov(logXAik, logMassk) = 0, and 
Cov(logXAik, logXAjk) not necessarily equal to zero. We require three identities to quantify 
the effect of normalization on these covariances. Let z1, z2 and z3 be three random 
variables. Then: 
 
(i) Cov(z1 − z3, z2 − z3) = Cov(z1, z2) − Cov(z2, z3) − Cov(z1, z3) + Var(z3) 
(ii) Cov(z1 − z3, z3) = Cov(z1, z3) − Var(z3) 
(iii) Cov(z1, z2 − z3) = Cov(z1, z3) − Cov(z2, z3) 
 
where Cov(·) and Var(·) are, respectively, the covariance and variance between the 
variables in parentheses. An area-normalized trait is converted to a mass-normalized trait 
as XMik = XAik/LMAk; or, in log-space: logXMik = logXAik − logLMAk. So, by identiy (i): 
 



Cov(logXMik, logXMjk) = Cov(logXAik − logLMAk, logXAjk − logLMAk) = 
Cov(logXAik, logXAjk) − Cov(logXAik, logLMAk) − Cov(logXAjk, logLMAk) + 
Var(logLMAk). 
 
Because logLMAk = logMassk − logAreak, by identity (iii): 
 
Cov(logXAik, logLMAk) = Cov(logXAik, logMassk) − Cov(logXAik, logAreak) = 0 
 
where the two covariances on the right-hand-side of the expression above are zero, by 
definition, because traits-i and-j are assumed to be purely area-proportional. Combining 
the previous two expressions gives the covariance between two area-proportional traits 
that are expressed as mass-normalized values: 
 
Cov(logXMik, logXMjk) = Cov(logXAik, logXAjk) + Var(logLMAk). 
 
Also, by identity (ii): 
 
Cov(logXMik, logLMAk) = Cov(logXAik − logLMAk, logLMAk) = 
Cov(logXAik, logLMAk) − Var(logLMAk) = −Var(logLMAk). 
 
Finally, by identity (iii): 
 
Cov(logLLk, logXMjk) = Cov(logLLk, logXAjk − logLMAk) = 
Cov(logLLk, logXAjk) − Cov(logLLk, logLMAk). 
 
Cov(logLLk, logLMAk) is approximately proportional to Var(LMAk), because the slope 
of an OLS linear regression of logLLk on logLMAk is close to one (1.1+0.1; see Table 
S2). 
 
So, to summarize, what happens to the covariance between area-proportional traits if they 
are normalized by mass instead of area? The covariance between the logarithms of mass-
normalized values of two area-proportional traits, i and j, across all species is: 
COV(logXMik, logXMjk) = COV(logXAik, logXAjk) + VAR(logLMAk), where COV(·) is 
covariance and VAR(·) is variance. Thus, mass normalization of area-proportional traits 
induces positive covariance equal to the variance of logLMAk. The induced covariance in 
(2) is large because LMAk ranges from 14 to 1509 g m−2 in GLOPNET. Additionally, 
mass-normalization of an area-proportional trait induces covariance between it and 
logLMAk equal to −VAR(logLMAk), and between it and logLLk equal to 
−COV(logLLk, logLMAk), which is approximately proportional to −VAR(logLMAk). 
 
Estimates of model parameters obtained from mass- vs. area-normalized data  
Because GLOPNET reports values that are normalized by area (XAik) or mass (XMik), but 
not the values of area and mass themselves (Xik), we fit the XAik and XMik forms of 
Models-M&A, -C, -M, -A, and -LN. Although the Xik, XAik, and XMik model forms are all 
mathematically identical, they are not expected to yield identical results when applied to 
GLOPNET because XAik and XMik are not inter-converted exactly with LMAk in this data 



set. Nevertheless, fits to area- and mass-normalized data produced very similar results 
and so we only report the former in the main text.  
  
Posterior probabilities of mass- vs. area-proportionality  
The difference between the maximum log-likelihoods, ΔL, for Models-A and -M (using 
results from fitting models to area-normalized data) was 435.5 for N, 613.4 for P, 58.9 for 
Rdark, and 270.2 for Amax (log-likelihoods in Table S1). Thus, assuming equal prior 
probabilities of Models-M and -A, the posterior probability of the hypothesis that the data 
are proportional to mass, 1/[1+exp(ΔL)], is always less than 10−25.  
 
Estimates from Models-M&A, -C, -M, -A, and -LN 
Table S1 contains maximum likelihood estimates and 95% confidence limits for model 
parameters using area-normalized and mass-normalized data. As noted above, analyses 
using mass-normalized data and area-normalized yield nearly identical values. 
 
Fraction of each trait that is associated with mass vs. area  
As explained in Methods, we accounted for parameter uncertainty and the distribution of 
LMA values in GLOPNET when estimating the fraction of each trait associated with (or 
“proportional to”) area (pA). We obtained similar results whether we calculated pA from 
Model-M&A (Table S1), Model-C ignoring interspecific variation (Table S1), or Model-
C accounting for interspecific variation (Fig. 2). Here, we focus on results from Model-C, 
unless otherwise noted. Estimated distributions of pA show that almost all Amax and P is 
associated with area whether we ignore interspecific variation (Table S1) or account for it 
(Fig. 2). Although N and Rdark have greater mass-proportional fractions than Amax and 
P, the majority of species have more than 50% of N and Rdark associated with area (Fig. 
2). Similarly, if we ignore interspecific variation, then the majority of N and Rdark are 
associated with area (Table S1). AIC values (Table S1) show that Model-C is much better 
than Model-A (which is much better than Model-M) for Amax, Rdark, and N (AIC 
difference > 25), indicating a mass-associated component that, while small, is clearly 
statistically significant (p<0.001). In contrast, Models-A and -C have similar AICs for P 
(AIC difference < 5). In summary, Amax, Rdark, N and P are all primarily associated 
with area, but all but P have a clearly statistically significant mass component.  
 
Model-LN parameter estimates 
Table S1 contains maximum likelihood parameter estimates and confidence limits for 
Model-LN. As explained in Methods, the residuals shown in Fig. 4C, Fig. S4, and Fig. S5 
may be obtained from either the area- or mass-normalized forms of Model-LN, or from 
an OLS regression of either Equation 1 or 2 in the main text. 
 
Predictions from the random data sets generated for Models-A, -M, and -C, assuming no 
functional correlations among Amax, Rdark, N and P  
Figure S1 is the area-normalized counterpart of Figure 1 in the main text. The left three 
columns of Fig. S1 show the area-normalized LES from GLOPNET. The right three 
columns show area-normalized predictions from null Model-A. Recall that area-
normalized traits are statistically independent from each other in null Model-A. The 
correlations in the area-normalized GLOPNET data (which are weak compared to the 
correlations in the mass-normalized GLOPNET data) are due to normalization-



independent correlations (see next section) and the minor proportion of traits that is 
distributed proportional to mass, as determined by our analysis described above. Area-
normalization of the minor mass-proportional trait fractions induces weak correlation for 
the same reason that mass-normalization of the dominant area-proportional trait fractions 
induces strong correlation. 

Figure S2 shows predictions from null Model-C: mass-normalized in the left three 
panels and area-normalized in the right three panels. These are similar to the predictions 
of null Model-A, because traits are distributed primarily proportional to area (i.e., for 
each trait, null Model-C preserves the higher degree of area- than mass-proportionality 
estimated from the GLOPNET data, while eliminating functional correlations among 
traits). Thus, the mass-normalized predictions from null Model-C are similar to the 
observed mass-normalized LES (left side of main-text Fig. 1) and to the mass-normalized 
predictions from null Model-A (right side of main-text Fig. 1). Null Model-C also 
predicts some of the correlation structure in the observed area-normalized LES (Fig. S1, 
left side; e.g., the relationships between N and LL, and between N and LMA) because 
area-normalization of the minor mass-proportional trait fractions induces weak 
correlation (again, for the same reason that mass-normalization of the dominant area-
proportional trait fractions induces strong correlation). 

Figure S3 shows predictions from null Model-M: mass-normalized in the left 
three panels and area-normalized in the right three panels. Model-M predicts no 
correlations among mass-normalized values and strong correlations among area-
normalized values, which is unlike the pattern in the data (Fig. 1 and Fig. S1). 
 
Understanding the normalization-independent LES 
Model-LN (or, equivalently, Equations 1-2 in the main text) predicts that the variance-
covariance matrix of the logarithms of Amax, Rdark, N, and P would be the same within 
any group of species with the same LMA, no matter what the value of the LMA. That is, 
within any group of species with the same LMA, a scatter plot of the logarithms of 
Amax, Rdark, N, and P would reveal a normalization-independent LES that is 
statistically identical to the one shown by the scatter in figs. S4-S5 (the residuals from the 
log-scale version of Model-LN; or, equivalently, from main-text Equations 1-2). 
However, Model-LN also predicts that a constant-LMA group’s centroid (mean of the 
logarithms of Amax, Rdark, N, and P) will move as a function of logLMA along the 
black lines (arrows) in figs. S4-S5. Consider a pair of area-normalized traits XAi and XAj. 
For a constant-LMA group of species, the centroid of an ellipse representing the 
normalization-independent scatter in traits i and j would be located at the point 
(Ii + SAi log10LMA, Ij + SAj log10LMA) (see log-scale version of Model-LN, defined 
above; or, equivalently, Equation 1 in the main text, with SAi = Si). If log10LMA is mean-
centered (as in Fig. S4 and Fig. S5), then the centroid would be located at 
(SAi Δlog10LMA, SAj Δlog10LMA), where Δlog10LMA is log10LMA minus the mean 
log10LMA across all species. Similarly, the corresponding centroid for a pair of mass-
normalized traits (Equation 2 in the main text) would be located at the point 
(Ii + SMi log10LMA, Ij + SMj log10LMA), with SMi = (SAi – 1); or, for mean-centered 
log10LMA, at the point (SMi Δlog10LMA, SMj Δlog10LMA). 
 Because the maximum likelihood parameter estimate for SAi for Model-LN are 
relatively close to zero for Amax, Rdark, N and P, the centroid will not move much along 
the axes for these traits as log10LMA changes if data are area-normalized (estimates in 



Table S1). However, the movement will be larger if the data are mass-normalized 
because SMi, which equals SAi – 1, is relatively close to −1. This explains why the area-
normalized LES (Fig. S1) looks more like the normalization-independent LES (Fig. S4 
and Fig. S5) than does the mass-normalized LES (Fig. 1). 

Figures S4-S5 show how mass-normalization strongly alters the normalization-
independent LES, whereas area-normalization mildly changes it. These figures generalize 
the information in Fig. 4 of the main text to other combinations of traits. In the figures, 
the blue ellipses are isodensity ellipses obtained from the variance-covariance matrix of 
the residuals from main-text Equations 1 or 2 for each pair of traits. These ellipses are 
estimated to contain 95% of species in GLOPNET. The red ellipses are the corresponding 
quantities for the raw GLOPNET data expressed as log10-trait minus log10-trait mean. We 
express the raw data as mean-centered values in log10-space so that they are centered on 
the same mean as the normalization-independent residuals (0, 0). Thus, each blue ellipse 
shows the pattern of scatter predicted for a group of species with the same log10LMA. 
The blue ellipse in the center of each graph in Fig. S5 corresponds to the mean 
log10LMA. The two flanking blue ellipses in Fig. S5 correspond to the mean plus/minus 
two standard deviations of log10LMA. Graphs on the left hand side are for area-
normalized data. Graphs on the right hand side are for mass-normalized data. The three 
blue ellipses in each graph in Fig. S5 are arrayed along the lines given by the above 
formulae for centroid locations. Note the large distance between centroids of the blue 
ellipses if data are mass-normalized (because SMi is close to −1 for Amax, Rdark, N and 
P), but the small distances if data are area-normalized (because SAi is close to zero). 

Again, the red ellipses in figs. S4-S5 show the 95% isodensity ellipse for the 
log10-transformed, normalized GLOPNET data for a given pair of traits. These red 
ellipses nearly encompass the three blue ellipses in each graph in Fig. S5 because the data 
contain the full range of values of logLMA. One can also think of changes in logLMA as 
stretching the central blue ellipse into the red ellipse along the lines given by the 
formulae above for centroid locations. A key point is that most of the structure in the 
mass-normalized LES reflects variation in LMA, rather than correlations between trait 
values (normalized or not) among leaves with similar LMA. 

In summary, normalization stretches the centroids of the different constant-LMA 
groups along the black lines shown in Fig. S4, approximately from one arrowhead to the 
other, and thus alters the normalization-independent correlations. The greater alteration 
induced by mass-normalization (compared to area-normalization) is reflected in empirical 
estimates of S (see main-text Equations 1-2), which are closer to zero than to one (Table 
S1). The lines are typically aligned along the long axis of the mass-normalized red 
ellipses, because LMA-induced covariance dominates the mass-normalized LES. 

We now present additional details that provide further insights into the 
normalization-independent LES described by Equations 1-2 in main text and Model-LN. 
As explained above, the blue ellipses in Fig. S4 show the pattern of interspecific scatter 
expected around the trait means for a group of species with the same LMA (no matter 
what the LMA). If we were to plot the actual values of two log-transformed traits a and b 
expected within a constant-LMA group in Fig. S4, instead of the residuals around the 
means for the group, then the blue ellipse would still have the same shape and size, but its 
centroid (mean) would no longer be at (0, 0). Instead the center of the blue ellipse would 
be at the point (SaΔlog10LMA, SbΔlog10LMA) if area-normalized and 



[(Sa − 1)Δlog10LMA, (Sb − 1)Δlog10LMA] if mass-normalized, where Δlog10LMA is the 
logarithm of the group’s LMA minus the mean of log10LMA across all species. The 
centroids of blue ellipses for different constant-LMA groups will be arranged along a line 
shown by the black line in each panel of Fig. S4. The flanking blue ellipses in Fig. S5, for 
example, are for constant-LMA groups with Δlog10LMA = ±2σLMA, where σLMA is the 
observed standard deviation of log10LMA. The slope of the black line in each panel in 
Fig. S4 and Fig. S5 is (Sa− 1)/(Sb − 1) for mass-normalized traits and Sa/Sb for area-
normalized traits. The distance between the arrowheads on each line encompasses the 
centroids of constant-LMA groups containing 95% of log10LMA values (i.e., Δlog10LMA 
= ±2σLMA). The formulae for the inter-arrowhead distance is: 
 
4σ LMA Sa −1( )2 + Sb −1( )2  
 
for mass-normalized traits and: 
 
4σ LMA Sa

2 + Sb
2

 
 
for area-normalized traits.

 

 
The correlation predicted by Model-LN between two log-transformed traits (a and 

b) is: 
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if data are mass-normalized, and: 
 

CorrelationArea =
SAaSAbσ LMA

2 +Covab
SAa
2 σ LMA

2 +Vara( ) SAb2 σ LMA
2 +Varb( )

 

 
if data are area-normalized, where SAa and SAb correspond to Si in Equations 1-2 in the 
main text for traits-a and -b; Covab, Vara and Varb are the covariances and variances of 
the residuals from Equations 1-2 in main text for traits-a and -b; and σ2

LMA is the variance 
of log10LMA. In contrast the normalization-independent correlation is:  
 

  
If the traits are purely proportional to area (SAa=SAb=0), then: 
 

CorrelationInd =
Covab
VaraVarb
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σ LMA
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which approaches one as σ2

LMA becomes large and:  
 

CorrelationArea =
Covab
VaraVarb

= CorrelationInd  

 
Thus, if traits are proportional to area, mass-normalization stretches the data towards a 
correlation of one, whereas area-normalization reveals the correlations of the 
normalization-independent LES. The differences between CorrelationMass and 
CorrelationInd are shown in Table S4. 
 The preceding analysis of correlations is easily extended to an analysis of OLS 
regression slopes. The OLS slope of log-transformed trait-b as a function of log-
transformed trait-a is: 
 

OLS slopearea − normalized = SAaSAbσ LMA
2 +Covab

SAa
2 σ LMA

2 +Vara
 

 
if the data are area-normalized, 
 

OLS slopemass − normalized = (1− SAa )(1− SAb )σ LMA
2 +Covab

(1− SAa )
2σ LMA

2 +Vara
 

 
if the data are mass-normalized, and 
 

OLS slopesize− independent =Covab
Vara

 

 
if the regression involves normalization-independent residuals. Three examples illustrate 
the significance of these formulae: 
(1) Trait-a is Amax or P, so that SAa is approximately zero in GLOPNET. Then the slope 
for area-normalization is similar to the normalization-independent slope (identical if SAa 
= 0), and the mass-normalized slope is: 
 
(1− SAb )σ LMA

2 +Covab
σ LMA
2 +Vara

 

 
which will tend toward 1 as the LMA variance increases, assuming that SAb is small (as it 
is for most traits in GLOPNET). 
 
(2) Trait-a is N or Rdark, and trait-b is Amax or P. Because SA for Amax and P is 
approximately zero in GLOPNET, the, the area-normalized slope is approximately: 



 
Covab
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which is less than the normalization-independent slope. The mass-normalized slope is 
approximately: 
 
(1− SAa )σ LMA

2 +Covab
(1− SAa )

2σ LMA
2 +Vara

 

 
which will tend toward 1as the LMA increases, assuming SAb is small (as it is for most 
traits in GLOPNET). 
 
(3) Trait-a is N or Rdark and trait-b is N or Rdark. In this case SAa and SAb are small but 
significantly greater than zero, so the area-normalized slope is the basic formula: 
 
SAaSAbσ LMA

2 +Covab
SAa
2 σ LMA

2 +Vara
 

 
which could be larger or smaller than the normalization-independent slope depending on 
the parameter values. The mass normalized slope is again the basic formula: 
 
(1− SAa )(1− SAb )σ LMA

2 +Covab
(1− SAa )

2σ LMA
2 +Vara

 

 
which will tend toward 1 as the LMA variance increases, assuming SAa and SAb are small. 
 
When should mass-normalized, area-normalized, or normalization-independent values be 
used? 
The appropriateness of normalized data or normalization-independent values (residuals 
from Equations 1 or 2 in Main Text) depends on the application. Normalization-
independent values should be used to quantify interspecific trait relationships while 
controlling for LMA (equivalent to quantifying relationships among species that share the 
same LMA), because relationships between mass-normalized traits or between area-
normalized traits are affected by hidden changes in LMA. Mass-normalized traits may be 
appropriate for (1) calculating the amount of time required for a leaf to return through 
photosynthesis the amount of carbon required for its construction (but see Cost Model 
analysis of annualized construction costs below); or (2) expressions of nutrient 
investment tradeoffs, such as N/mass required to make a leaf of a particular LMA or LL. 
Additionally, instantaneous carbon gain for a light-saturated plant can be estimated by 
multiplying Amax/mass by total leaf mass. Area-normalized quantities are useful for 
understanding gas exchange and nutrient investment for a given area of light-intercepting 
leaf surface. For some applications, either mass- or area-normalized traits will yield the 
same results. For example, either mass- or area-normalized quantities can be used to 



estimate ecosystem nutrient stocks: N per m2 ground area is equal to N/mass multiplied 
by total leaf mass per m2 ground area, or N/area multiplied by total leaf area per m2 
ground area. 
 For analyses of interspecific trait relationships, area-normalized (as opposed to 
mass-normalized) traits will typically yield results closer to the normalization-
independent analysis (Table S2, SOM section entitled “Pairwise trait relationships….”). 
In contrast, for intraspecific analyses across contrasting light environments, mass-
normalized traits are probably to be preferred, because per-unit-mass trait values remain 
roughly constant as LMA decreases from sun to shade (13, 16-18).  
 Although mass-normalized quantities may be appropriate for some economic 
(cost-benefit) analyses, we emphasize that leaf mass may not always be an appropriate 
index for construction costs, depending on the contrasts in question. In many contexts LL 
should be considered in economic analyses, because the cost of an object declines (in 
some sense) with its longevity. Does Amax/mass or Amax/area provide the better 
benefit-cost ratio when costs are annualized? In other words, is a leaf’s mass or its area a 
better measure of its annualized cost? A leaf’s annualized carbon construction cost is 
proportional to mass/LL. Because LL and LMA are roughly proportional to each other 
(OLS slope of logLL on logLMA is 1.11 0.05 s.e.), mass/LL is roughly proportional to 
mass/LMA, which is equal to area. This rough analysis suggests that when comparing 
across species, Amax/area, not Amax/mass, is a better benefit-cost ratio when costs are 
annualized. To evaluate this question quantitatively, we tested the alternative hypotheses 
that mass/LL is proportional to mass or area by considering two alternative models that 
are analogous to Model-M and Model-A above: 
 
(Cost-model-M) MasskLLk

−1 =CMMasskεMk  
which reduces to: , and: 
 
(Cost-model-A) MasskLLk

−1 =CAAreakεAk  
which reduces to:  
 
where the subscript k refers to species identity; CM and CA are mass and area 
proportionality constants, respectively; and εMk and εAk are species specific, unitless, unit-
mean lognormal random variables that represent interspecific variation in per-unit-mass 
and per-unit-area construction costs, respectively. For Cost-model-M, Dik is  and 
µi(LMAk) is CM. For Cost-model-A, Dik is again  and µi(LMAk) is CA . The 
posterior probabilities of Cost-models-M and -A are calculated as above for Models-M 
and -A: the posterior probability of Cost-model-M is 1/[1+exp(ΔL)], where ΔL is the log-
likelihood of Cost-model-A evaluated at its maximum likelihood parameter estimates 
minus the corresponding quantity for Cost-model-M. The difference between the 
maximum log-likelihoods, ΔL, for Cost-models-A and -M is 305.9, and so, assuming 
equal prior probabilities, the posterior probability of the hypothesis that mass/LL is 
proportional to mass instead of area (1/[1+exp(ΔL)) is less than 10−133. Thus, Amax/area 
is a much better benefit-cost ratio for a leaf’s annual carbon budget than Amax/mass.  
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Statistics for the major axis (MA) regression slopes in Figure 4 of the main text  
A test of homogeneity of slopes indicates that the major axis slopes of the 5 colored 
LMA-bins in Fig. 4A are (i) not significantly different from one another (p-value = 0.487, 
Likelihood ratio statistic = 3.438, df = 4); (ii) not significantly different from the pooled-
data (black line) slope of 0.458 in Fig. 4C (p-value = 0.619, Likelihood ratio statistic = 
3.529, df = 5); and (iii) significantly more shallow than the all-data (black line) slope of 
0.621 in Fig. 4A (p-value < 0.00001, Likelihood ratio statistic = 71.15, df = 5). Similarly, 
the major axis slopes of the 5 bins in Fig. 4B are (i) not significantly different from one 
another (p-value = .135, Likelihood ratio statistic = 7.025, df = 4); (ii) not significantly 
different from the all-data (black line) slope of 0.458 in Fig. 4C (p-value = 0.179, 
Likelihood ratio statistic = 7.606, df = 5); and (iii) significantly more shallow than the all-
data (black line) slope of 0.555 in Fig. 4B (p-value < 0.00001, Likelihood ratio statistic = 
35.97, df = 5). The above tests were performed with the “sma” function in the SMATR 
package in R (22).   
 
Pairwise trait relationships in the area- and mass-normalized LES and the normalization-
independent LES  
All regression statistics and other statistics characterizing bivariate trait relationships 
using area- or mass-normalized data or the normalization-independent LES values were 
calculated using the statistics package R (20). Table S2 contains the full Table of all 
statistics characterizing the pairwise relationships. Ordinary least squares (OLS) 
regressions characterizing mass-, area- and normalization-independent pairwise 
relationships were fit and their slopes compared to one another using a linear model 
(function “lm” in R). Similarly, major axis (MA) and standardized major axis (SMA) 
regressions were fit and their slopes compared to one another using the likelihood ratio 
statistic using the “sma” function in the “smatr” package for R (22). Here, as in the main 
text, the normalization-independent LES is defined as the residuals from the Model-LN 
fits to log10-transformed trait data.  

Here we evaluate whether significant differences exist in the slope of bivariate 
trait relationships calculated using log10-transformed area- or mass-normalized data or 
normalization-independent values. After a brief summary of the results of these slopes 
comparison tests for relationships of particular interest, we present slopes comparison 
results for OLS and SMA regression for all pairwise relationships between traits LL, N, 
P, Rdark and Amax. Unless otherwise noted, all slope comparisons discussed here in the 
summary, between the mass- and area-normalized and normalization-independent LES, 
are from ordinary least squares (OLS) regression. The trait relationships here are labeled 
as “Y vs. X,” where Y is the dependent variable and X is the independent variable.  

For N vs. P, the mass-normalized slope is significantly steeper than both the 
normalization-independent and the area-normalized slope, and the normalization-
independent slope is not significantly different from the area-normalized slope. Using 
standardized major axis regression (SMA), the well-discussed mass-normalized slope of 
2/3 (15) is significantly steeper than the normalization-independent slope of 0.59, 
meaning that across the global flora, leaves accrue proportionately less N for a given 
level of P than would be expected from metabolic scaling theory.  

The normalization-independent spectrum indicates that a robust relationship exists 
between Amax and N, and the slope of this relationship is intermediate between those 



predicted from the area- and mass-normalized LES. For Amax vs P, the mass-normalized 
slope is significantly steeper than both the area-normalized and normalization-
independent slopes, which are not significantly different from one another. The same is 
true for Amax vs Rdark, Rdark vs N, and Rdark vs P. Therefore, the area-normalized 
slope is an excellent statistical approximation of the normalization-independent 
relationships between Amax and P or Rdark; and Rdark vs N or P.  

For all relationships between a trait and LL, the mass-normalized and 
normalization-independent slopes are negative, the mass-normalized slope significantly 
more steeply so for N, Amax and Rdark. The area-normalized slopes of both the P vs LL 
and Rdark vs LL relationships are not significantly different from zero and are 
significantly different from either the normalization-independent or mass-normalized 
slopes. The area-normalized slope of N vs LL is slightly significantly greater than zero. 
The area-normalized slope of Amax vs LL is negative, and the magnitude of the 
normalization-independent slope is intermediate between those of the area- and mass-
normalized negative slopes.  

Below we present slopes comparisons results between the area- and mass-
normalized and normalization-independent LES from both OLS and SMA regressions. 
The slopes in question are printed in Table S2 and are also printed in the relevant text 
here with the 95% confidence limits in parentheses. Detailed results of slopes comparison 
tests beyond those presented here available upon request. 
 
Y = N, X = P:  

SMA: The mass- (0.663 (0.638, 0.689)) and area-normalized (0.705 (0.664, 
0.748)) SMA slopes are marginally not significantly different form one another (test 
statistic = 2.908, p = 0.089). Both the area- (test statistic = 3.87e-05, p = 16.934) and 
mass-normalized (test statistic = 0.001, p = 10.2) SMA slopes, however, are significantly 
different from the normalization-independent SMA slope (0.594 (0.561, 0.628)).  

OLS: Area- (0.404 (0.362, 0.446)) and mass-normalized (0.566 (0.541, 0.591)) 
OLS slopes are significantly different from one another (df = 2193, t = 6.995, p = 3.5e-
12). The normalization-independent OLS slope (0.376 (0.342, 0.409)) is not significantly 
different from the area-normalized slope (t = -1.032, p = 0.302). The normalization-
independent slope is, however, significantly different from the mass-normalized slope (t 
= 8.193, p = 4.28e-16). The mass-normalized slope is significantly steeper than both the 
area-normalized slope and the normalization-independent slope.  

MA: The area-normalized, mass-normalized and normalization-independent MA 
slopes are all significantly different form one another. The area- and mass-normalized 
slopes are both significantly steeper than the normalization-independent slope. 
  
Y = A, X = N: 
 SMA: The area-normalized SMA slope (1.221 (1.14, 1.308)) is significantly 
different from the mass-normalized slope (1.71 (1.625, 1.799)) (test statistic = 59.1, p = 
1.47e-14). Both the area- (test statistic = 22.36751, p = 2.2515e-06) and mass-normalized 
(test statistic = 6.167, p = 0.013) SMA slopes are significantly different from the 
normalization-independent SMA slope (1.538 (1.439, 1.644)). 
 OLS: The mass-normalized OLS slope (1.245 (1.158, 1.332)) is significantly 
different from the area-normalized slope (0.454 (0.37, 0.538)) (df = 2109, t = 13.149, p < 



< 2e-16). The normalization-independent OLS slope (0.679 (0.577, 0.781)) is 
significantly different from the area-normalized slope (t = 3.213, p = 0.001). The mass-
normalized OLS slope is significantly different from the normalization-independent slope 
(t = 8.229, p = 3.25e-16). The normalization-independent OLS slope is intermediate 
between the mass-normalized slope (the steepest slope) and the area-normalized slope 
(most shallow).  
 
Y = A, X = P: 
 SMA: The area-normalized SMA slope (0.73 (0.638, 0.834))is significantly 
different from the mass-normalized SMA slope (1.016 (0.897, 1.152)) (test statistic = 
12.5, p = 0.0004). The area-normalized SMA slope is not significantly different from the 
normalization-independent SMA slope (0.738 (0.645, 0.845)) (test statistic = 0.014, p = 
0.905). The mass-normalized SMA slope is significantly different from the 
normalization-independent slope (test statistic = 11.6, p = 0.0007). 
 OLS: The mass-normalized OLS slope (0.421 (0.293, 0.548)) is significantly 
different from the area-normalized slope (0.154 (0.056, 0.253)) (t = 3.42, p = 0.0007). 
The normalization-independent OLS slope (0.14 (0.04, 0.24)) is not significantly 
different from the area-normalized slope (df = 615, t = -0.182, p = 0.856). The mass-
normalized OLS slope is significantly different from the normalization-independent slope 
(t = 3.57, p = 0.0004). The mass-normalized slope is significantly steeper than both the 
area-normalized and normalization-independent OLS slopes.  
 
Y = A, X = Rd: 
 SMA: The area-normalized SMA slope (0.93 (0.832, 1.038)) is significantly 
different from the mass-normalized SMA slope (1.177 (1.088, 1.274)) (test statistic = 
11.6, p = 0.0007). The area-normalized SMA slope is not significantly different from the 
normalization-independent SMA slope (0.986 (0.884, 1.099)) (test statistic = 0.551, p = 
0.457). The mass-normalized SMA slope is significantly different from the 
normalization-independent slope (test statistic = 6.692, p = 0.010).  
 OLS: The mass-normalized OLS slope (0.901 (0.808, 0.994)) is significantly 
different from the area-normalized OLS slope (0.401 (0.298, 0.504)) (df = 771, t = 7.162, 
p = 1.86e-12). The normalization-independent OLS slope (0.45 (0.342, 0.558)) is not 
significantly different from area-normalized OLS slope (t = 0.611, p = 0.541). The mass-
normalized slope is significantly different from the normalization-independent OLS slope 
(t =6.225 , p = 7.89e-10). The mass-normalized slope is significantly steeper than both 
the normalization-independent and area-normalized OLS slopes.  
 
Y = Rd, X = P: 
 SMA: The area-normalized SMA slope (0.93 (0.832, 1.038)) is not significantly 
different from the mass-normalized slope (1.177 (1.088, 1.274)) (test stat = 2.07, p = 
0.150). The area-normalized SMA slope is not significantly different from the 
normalization-independent slope (0.986 (0.884, 1.099)) (test stat = 0.09, p = 0.765), nor 
is the mass-normalized SMA slope significantly different from the normalization-
independent slope (test stat = 2.90, p = 0.09).  
 OLS: The area-normalized OLS slope (0.402 (0.246, 0.558)) is not significantly 
different from the mass-normalized slope (0.563 (0.385, 0.742)) (t = 1.382, p = 0.168). 



The normalization-independent slope (0.313 (0.155, 0.47)) is not significantly different 
form the area-normalized slope (t = -0.783, p = .437). The mass-normalized OLS slope is 
significantly steeper than the normalization-independent slope (t = 2.128, p = 0.035).  
 
Y = Rd, X = N:  
 SMA: The area-normalized SMA slope (1.129 (1.023, 1.246)) is significantly 
different from both the mass-normalized (1.431 (1.32, 1.552)) (test stat = 13.3, p = 
0.0002) and normalization-independent (1.371 (1.233, 1.524)) (test stat = 6.9, p =0.009) 
SMA slopes. The mass-normalized slope is not significantly different from the 
normalization-independent slope (test stat = 0.403, p = 0.525).  
 OLS: The area- (0.654 (0.542, 0.765)) and mass-normalized (1.063 (0.947, 
1.179)) OLS slopes are significantly different (t = 5.03, p = 6.14e-07) from one another. 
The area-normalized slope is not significantly different from the normalization-
independent slope (0.655 (0.509, 0.801)) (t = 0.015, p = 0.988). The mass-normalized 
slope is significantly different from the normalization-independent slope (t = 4.32, p = 
1.73e-05). The mass-normalized OLS slope is significantly steeper than both the area-
normalized and normalization-independent OLS slopes.  
 
Y = N, X = LL:  
 SMA: There is no significant difference between any combination of the area-
normalized (0.425 (0.394, 0.458)), mass-normalized (-0.444 (-0.47, -0.42)) and 
normalization-independent (-0.45 (-0.484, -0.419)) SMA slopes.  
 OLS: The area-normalized OLS slope (0.086 (0.054, 0.118)) is significantly 
different from both the mass-normalized slope (-0.3 (-0.325, -0.275)) (t = -19.7, p < 2e-
16) and the normalization-independent slope (-0.159 (-0.191, -0.127)) (t = -10.5, p < 2e-
16). The mass-normalized slope is significantly different from the normalization-
independent slope (t = -6.6, p = 1.62e-09). The mass-normalized slope is significantly 
more steeply negative than the normalization-independent slope, and the area-normalized 
slope is positive.  
 
Y = P, X = LL: 
 SMA: The area-normalized SMA slope (0.901 (0.785, 1.036)) is not significantly 
different from the mass-normalized SMA slope (-0.96 (-1.083, -0.851)). The area-
normalized SMA slope is significantly different from the normalization-independent 
slope (-1.144 (-1.304, -1.003)), and the mass-normalized SMA slope is marginally not 
significantly different from the normalization-independent slope (p = 0.053).  
 OLS: The area-normalized OLS slope (0.011 (-0.115, 0.137)) is significantly 
different from both the mass-normalized (-0.481 (-0.597, -0.365)) and normalization-
independent slopes (-0.384 (-0.534, -0.234)). The mass-normalized OLS slope is not 
significantly different from the normalization-independent OLS slope. The area-
normalized OLS slope is not significantly different from zero.  
 
Y = A, X = LL: 
 SMA: The area-normalized (-0.471 (-0.511, -0.434)), mass-normalized (-0.728 (-
0.765, -0.693)) and normalization-independent (-0.66 (-0.707, -0.616)) SMA slopes are 
all significantly different form one another.  



 OLS: The area-normalized OLS slope (-0.169 (-0.207, -0.13)) is significantly 
different from both the mass-normalized (-0.603 (-0.638, -0.567)) and normalization-
independent (-0.409 (-0.454, -0.363)) OLS slopes. The mass-normalized OLS slope is 
significantly different from the normalization-independent OLS slope. Mass-normalized, 
area-normalized and normalization-independent OLS slopes are all negative, and the 
normalization-independent slope is intermediate between the area- and mass-normalized 
slopes.  
 
Y = Rd, X = LL: 
 SMA: The area-normalized SMA slope (-0.47 (-0.538, -0.412)) is significantly 
different from both the mass-normalized (-0.6 (-0.653, -0.551)) and normalization-
independent (-0.627 (-0.703, -0.56)) SMA slopes, but the mass-normalized SMA slope is 
not significantly different from the normalization-independent SMA slope.  
 OLS: The area-normalized (-0.04 (-0.103, 0.023)), mass-normalized (-0.464 (-
0.515, -0.413)) and normalization-independent (-0.331 (-0.403, -0.26)) OLS slopes are all 
significantly different form one another. The area-normalized slope is not significantly 
different from zero, and the mass-normalized slope is significantly more steeply negative 
than the normalization-independent slope.  
  
Principal Component Analyses: comparing the area- and mass-normalized LES and the 
normalization-independent LES 
Wright et al. (2) used principal components analysis (PCA) to quantify multivariate 
relationships among the six GLOPNET traits: Amax, Rdark, N, P, LL, and LMA. The 
first principal component axis (PC1) explains 74% and 43%, respectively, of the variation 
in the mass- and area-normalized log-transformed data (2). The high percent variance 
explained by PC1 of the mass-normalized data, along with the apparently clear 
interpretation of this axis (leaves with high Amax, Rdark, N and P, and low LMA and LL 
at one end of the axis; leaves with the opposite properties at the other end), led to the 
notion of the Leaf Economics Spectrum, ranging from leaves with fast returns on 
investments to leaves with slow returns (2). However, as we have shown, the tight 
correlations between two mass-normalized traits, or between a mass-normalized trait and 
LMA or LL, largely reflect normalization-induced covariances (i.e., the correlation 
between LMA and itself; see SOM section above, “Effects of normalization on 
covariances”). These results imply that the high percent variance explained by PC1 of the 
mass-normalized LES is partially due to normalization-induced covariance. 

Here, we re-evaluate the multivariate trait relationships reported by Wright et al. 
(2). We performed PCA on the normalization-independent residuals from Model-LN (or, 
equivalently, from Equations 1-2 in the main text) to quantify normalization-independent 
multivariate trait relationships. We compare these results to PCAs of mass- and area-
normalized data. We focus on the following questions: How much variation is explained 
by PC1 of the normalization-independent LES relative to PC1 obtained from mass- and 
area-normalized data? What is the biological interpretation of PC1 of the normalization-
independent LES? 
 Table S3 reports PCAs for the following (all variables are log10-transformed): 

1. Mass- (Table S3a) and area-normalized (Table S3b) data for all six variables 
(LMA, LL, N, P, Rdark and Amax). These replicate PCAs reported in (2) and are 



reproduced here for convenience. Dividing each of the loadings reported in (2) by 
its component length yields the unit vector representation reported here. 

2. Mass- (Table S3c) and area-normalized (Table S3d) data for LL, N, P, Rdark and 
Amax, but with LMA excluded from the analysis. These PCAs were performed 
for direct comparison with the version of the normalization-independent PCA that 
excluded LMA (see below). 

3. Normalization-independent residuals for N, P, Rdark and Amax combined with 
each of the following: 

a. Residuals of LL from OLS regression on LMA (Table S3e; here, LL is 
treated exactly like N, P, Rdark, and Amax in the normalization-
independent LES). LMA is not included in this PCA, because it is by 
definition orthogonal to the residuals for the other five traits. 

b. LL values (not residuals) and LMA (Table S3f). 
c. LL residuals and LMA (Table S3g). As noted above, LMA is orthogonal 

to the residuals for the other five traits. This PCA is reported primarily for 
the heuristic purpose of clarifying the meaning of the normalization-
independent LES, and to show that our qualitative results do not depend 
on how we treat LL and LMA in PCA. 

All three of the normalization-independent PCAs we report are derived from mass-
normalized data for Amax, Rdark, N, and P. As noted elsewhere, the normalization-
independent LES is mathematically identical whether calculated from mass- or area-
normalized data for single leaves. However, the quantitative results obtained from mass- 
vs. area-normalized GLOPNET data differ slightly because mass- and area-normalized 
values are not inter-converted exactly using species mean LMA values reported in 
GLOPNET. The normalization-independent PCA obtained from area-normalized data 
(not reported) is quantitatively very similar to its mass-normalized counterpart reported 
here, with the area-normalized PC1 explaining slightly less variance than the mass-
normalized PC1. 

Removing LMA from the PCAs of mass- and area-normalized data has little 
effect on the explanatory power of PC1 (which still accounts for 75% of the total 
variance in the mass-normalized data and 47% of that of the area-normalized data) and 
also little effect on the loadings (compare Tables S3c-d to Tables S3a-b). The minimal 
effect on these PCAs of removing LMA suggests that multivariate associations in the 
mass- and area-normalized data do not depend on LMA per se and can be simply 
explained by three things: (i) the positive relationship between LL and LMA; (ii) 
normalization-induced correlations; and (iii) normalization-independent relationships.  

In the normalization-independent PCA with LL residuals and LMA excluded 
(Table S3e), PC1 explained 58% of the variance, which is intermediate between the 
variance explained by PC1 for the mass- and area-normalized data (either with or without 
LMA included; see Tables S3a-d). The loadings of each trait on this normalization-
independent PC1 (Table S3e) are similar to those for the mass-normalized PC1 (Tables 
S3a and S3c): Amax, Rdark, N and P have similar loadings to each other, and these 
loadings are opposite in sign to that for LL. When LL values (as opposed to residuals 
from regression on LMA) and LMA are included in the normalization-independent PCA 
(Table S3f), PC1 explains 44% of the variance in the data (similar to the area-normalized 
PCA, Table S3b), the PC1 loadings for all but LMA are similar to those in the mass-



normalized PCA (Table S3a), and PC2 (26% of variance) is primarily a LMA-LL axis. 
Finally, when LL residuals are included with LMA in the normalization-independent 
PCA (Table S3g), LMA has a loading of 0 on all PCs except for PC2 (where it has a 
loading of 1), and the other five traits have identical loadings as in the case where LMA 
is excluded (Table S3e). This third version of the normalization-independent PCA 
illustrates how LMA and LMA-independent variation can be treated separately. In this 
case, the LMA-independent PC1 explains 49% of the variation in the data (similar to the 
area-normalized PC1, Table S3b), and LMA explains 1/6 of the variation in the data (as it 
must, since it is orthogonal to the other five variables).  

In summary, as in the mass-normalized LES described by Wright et al. (2), the 
dominant axis of variation in all three versions of the normalization-independent LES 
reported here (Tables S3e-g) describes a spectrum from leaves with fast economic returns 
to leaves with slow returns. However, in the normalization-independent LES, this 
spectrum occurs at any given LMA, whereas in the mass-normalized LES described by 
Wright et al. (2), LMA varies along the dominant axis. Furthermore, our analyses are 
inconsistent with the conclusion of Wright et al. (2) that global trait variation can be 
accurately summarized by a single dominant axis of variation because (i) the 
normalization-independent PC1 is either orthogonal to LMA (Tables S3e and g) or nearly 
so (Table S3f), which implies either a separate LMA axis (PC2 in Table S3g) or a 
separate LMA-LL axis (PC2 in Table S3f); and (ii) the more modest percent variation 
explained by PC1 in the normalization-independent compared to the mass-normalized 
PCA (e.g., 58% in Table S3e compared to 75% in Table S3c) suggests that there are 
additional, important axes of variation that are altered by normalization-induced 
correlations. 
 
Comparisons of Models-LN and -C 
Models-C and -M&A have similar mathematical forms and similar parameter estimates. 
Here, we focus on comparing Models-LN and -C. Although Models-LN and -C have 
different functional forms, the two models, when fit to data, are quantitatively similar. 
This implies that the assumption that the data are lognormally distributed is, in practical 
terms, compatible with the assumption that Amax, Rdark, N and P can each be 
partitioned into two fractions, one proportional to mass and the other proportional to area. 
When evaluated at their maximum likelihood estimates, the two models have very similar 
predictions for each trait’s “LMA profile”, which shows how much new trait is added to a 
unit of leaf area for each 10 g/m2 increase in LMA, assuming the area-proportional 
component is contained in the first 10 g/m2 (Fig. S6). (LMA ranges in GLOPNET from 
roughly 10 g/m2 to 1500 g/m2.) Although none of our analyses make any explicit 
assumptions about the physical location of traits within leaves, it is nevertheless 
heuristically useful to think of an LMA profile as a depth profile giving the concentration 
of a trait as a function of depth beneath the leaf’s surface. Both models imply that traits 
are distributed approximately per unit area, because the LMA profiles drop so 
precipitously (Fig. S6). The primary difference is that Model-LN predicts a steep but 
smooth drop, while Model-C assumes a step function. 
  



 
 

Fig. S1. The area-normalized Leaf Economics Spectrum (left three columns) and area-
normalized predictions of null Model-A (right three columns). The plots are all log10-
log10, with means rescaled to (0,0).  
 



 
 
Fig. S2. Mass- (left three columns) and area-normalized (right three columns) predictions 
of null Model-C. The plots are all log10-log10, with means rescaled to (0,0). 
 
  



 
 
Fig. S3. Mass- (left three columns) and area-normalized (right three columns) predictions 
of null Model-M. The plots are all log10-log10, with means rescaled to (0,0). 



 
 



Fig. S4. Comparison of the normalization-independent LES (blue ellipses, which are the 
same whether data are area- or mass-normalized) with the area- and mass-normalized 
LESs (red ellipses in the“Area” and “Mass” columns, respectively). Scatter-plots show 
residuals from main-text Equations 1 and 2 for the logarithms of Amax, Rdark, N and P, 
and mean-centered values for the logarithms of LL and LMA. Area and Mass residuals 
differ slightly from each other because area- and mass-normalized traits are not always 
inter-converted exactly by species mean LMA in GLOPNET. Ellipses are 95% bivariate 
normal density contours derived from estimated covariance matrices. Red ellipses are 
estimated to encompass 95% of the mean-centered normalized trait data in log10-space 
(area-normalized data in left side of Fig. S1; mass-normalized data in left side of Fig. 1). 
Blue ellipses are derived from the estimated covariance matrices among residuals from 
main-text Equations 1 or 2, logLL, and logLMA. Differences between red and blue 
ellipses show effects of normalization, which are much stronger for mass- than for area-
normalization. Effects of area-normalization are relatively weak because traits are 
primarily area-proportional. If a trait were purely area-proportional (as Amax and P 
nearly are), then the area-normalized and normalization-independent relationships would 
be identical to each other (as is nearly the case for relationships involving Amax, P, and 
the non-normalized quantities LMA and LL). See also Fig. S5. 
 
 
 



 
 
 



Fig. S5. Same as Fig. S4, but with additional blue ellipses representing the normalization-
independent relationships at different LMA values. The bold blue ellipse in each panel is 
estimated to encompass 95% of the normalization-independent variation for a given pair 
of traits when evaluated at the mean logLMA (standardized to zero in the figure). The 
thin blue ellipses, which reflect the identical covariances indicated by the bold ellipses, 
show how the normalization-independent LES moves in bivariate trait space as LMA 
varies. The centroids of the thin blue ellipses (located at the arrow tips) indicate the 
centers of mass of the normalization-independent relationships for leaves with logLMA ± 
2 standard deviations from the mean logLMA. 
 



 
 
 
Fig. S6. LMA profiles (amount of area-normalized trait added to a leaf per 10 g m−2 
LMA) predicted by Model-LN (blue curve) and Model-C (red curve) for: A Amax; B 
Rdark; C N; and D P. The LMA profile for Model-LN is obtained by calculating the 
expected amount of area-normalized trait (XAik) added to a leaf for each 10 g m−2 of 
LMA. The area-normalized form of Model-LN is equivalent to main-text Equation 1 
transformed to the linear scale. The LMA profile for Model-C is obtained in analogous 
fashion, assuming that the area-associated trait amount is contained in the first 10 g m−2 
of LMA. We make this assumption here to facilitate comparison between Models-LN and 
-C, but none of our other analyses make any assumptions about the physical location of 
traits within leaves.  



Table S1. Results for all trait models (Model-M&A, -C -M, -A, and -LN) fit to area- and 
mass-normalized data, including estimates from Models -C and -M&A for pA, the 
fraction of each trait associated with leaf area (the fraction 1 – pA is associated with leaf 
mass). Statistics for pA reported here for Model-C ignore interspecific variation (εA and 
εM), and therefore differ slightly from the results in Fig. 2. The column definitions are: 

• trait = Amax, Rdark, N, or P 
• normalization = mass- or area-normalized data 
• model = M&A, C, M, A, or LN 
• n = number of observations analyzed (number of GLOPNET records for which a 

trait value and LMA were both reported) 
• npar = number of free parameters in model 
• loglik = log(likelihood) 
• AIC = 2*npar – 2*loglik 
• pA.mu = average pA from distribution that propagates parameter uncertainty and 

the distribution of LMA values from GLOPNET.  
• pA_xxx = quantile of pA species distribution. For example, pA _0.01 is the 1st 

percentile, and pA _0.5 is the 50th percentile. If pA _0.01 = 0.7, this means that 1% 
of the species have a pA value less than 0.7; or, equivalently, 99% of the species 
have a pA value greater than 0.7. 

• c1_mle = maximum likelihood estimate (MLE) for parameter c1, where c1 =  
for trait i in Models-M&A, -C, and -M, and c1 = K in Model-LN. c1_mle is 
reported as “NA” for Model-A. 

• c2_mle = MLE for parameter c2, where c2 =  for trait i in Models-M&A, -C, 
and -A, and c2 = S in Model-LN. c2_mle is reported as “NA” for Model-M. 

• sdlog1_mle = MLE for parameter sdlog1, where sdlog1 is the standard deviation 
of log(ε) in Models-M&A and -LN, and the standard deviation of log(εM) in 
Models-C, and -M. sdlog1_mle is reported as “NA” for Model-A. 

• sdlog2_mle = MLE for parameter sdlog2, where sdlog2 is the standard deviation 
of log(εA) in Models-C, and -A. sdlog2_mle is reported as “NA” for Models-
M&A, -LN, and -M. 

• Columns with suffixes _2.5 and _97.5 are the lower and upper 95% confidence 
limits for the named parameter. The value is “NA” if the parameter is not included 
in the model. 

 
Table S1 is available in a separate file , “Osnas_etal_Table_S1.xlsx”. 
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Table S2. Pairwise regression statistics for log10-transformed normalized data and 
normalization-independent quantities (residuals from main-text Equations 1 or 2) among 
six traits from the GLOPNET dataset: Amax, N, P, Rdark, LMA and LL. The Table 
reports slopes and intercepts (95% CIs in parentheses) for three different regressions for 
all possible pairwise trait combinations: Ordinary Least Squares (OLS), Standardized 
Major Axis (SMA), and Major Axis (MA). “r” is the Pearson correlation coefficient. 
“SMA p-value” is for the null hypothesis that the SMA slope equals one, and “OLS p-
value” is for the null hypothesis that the OLS slope equals zero. The covariance and 
sample size for each analysis are also reported. Row labels are independent variables (“X 
trait”), and column headings are dependent variables (“Y trait”). The terms 
“independent” and “dependent” are used here only in the statistical sense. We make no 
assumptions here about the direction of causality, and performed tests in both directions 
for a given pair. Column headings indicate if the X and Y variables were normalized by 
mass or area, except for LMA and LL (which were not normalized). Normalization-
independent analyses were performed with both mass- and area-normalized data by 
regressing logX and logY on logLMA, and then regressing the logY residuals on the 
logX residuals. As noted elsewhere, normalization-independent analyses are 
mathematically identical whether performed with mass- or area-normalized data, but the 
statistics differ slightly because mass- and area-normalized traits in GLOPNET are not 
inter-converted exactly via species mean LMA. Units (prior to log10 transformation) and 
the arithmetic mean and variance of the log10-transformed Y variables appear above each 
column. Statistics for the normalization-independent LES are reported here for the first 
time. Many of the other statistics were reported in (2) and are reproduced here for 
convenience. 
 
Table S2 is available in a separate file , “Osnas_etal_Table_S2.xlsx”. 
 



Table S3. Principal Component Analysis (PCA) for seven sets of log10-transformed trait 
values (Tables S3a-S3g). Normalization-independent PCAs (Tables S3e-g) were based on 
normalization-independent residuals obtained from mass-normalized data and main-text 
Equation 2; very similar results were obtained from area-normalized data and main-text 
Equation 1. Rows labeled by traits report the loadings for the trait on each principal 
component axis (“PC”). Note that the direction of each PC is arbitrary, so that the 
interpretation of a given PC would be unchanged if the signs of all loadings were 
reversed. The bottom row of each Table (“eig.”) reports the eigenvalues, which are the 
proportions of variance explained by each PC. The dataset used to construct each Table is 
described above each Table. 

Table S3a. Mass-normalized GLOPNET data, including LMA. 

Trait PCA Loadings (Unit Vector) 
PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 

LMA -0.413 0.202 0.740 0.406 0.128 -0.246 
LL -0.405 -0.416 -0.112 -0.324 0.722 -0.156 
N 0.434 -0.271 0.201 0.422 0.433 0.576 
P 0.372 -0.669 0.186 0.101 -0.224 -0.565 

Rdark 0.415 0.220 0.532 -0.691 0.134 0.011 
Amax 0.407 0.466 -0.287 0.251 0.455 -0.514 
eig. 0.746 0.129 0.050 0.036 0.034 0.006 

       

Table S3b. Area-normalized GLOPNET data, including LMA. 

Trait PCA Loadings (Unit Vector) 
PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 

LMA -0.405 0.484 0.359 -0.125 -0.108 0.668 
LL -0.144 0.689 -0.057 0.223 0.515 -0.431 
N -0.557 0.035 -0.029 0.283 -0.667 -0.403 
P -0.414 -0.185 -0.736 0.240 0.250 0.364 

Rdark -0.496 -0.206 0.030 -0.761 0.243 -0.271 
Amax -0.296 -0.462 0.569 0.467 0.396 0.000 
eig. 0.436 0.288 0.133 0.074 0.049 0.020 

  



       

Table S3c. Mass-normalized GLOPNET data, excluding LMA. 

Trait PCA Loadings (Unit Vector)  
PC 1 PC 2 PC 3 PC 4 PC 5  

LL 0.452 -0.374 -0.081 0.783 -0.192  
N -0.475 -0.338 0.304 0.313 0.686  
P -0.394 -0.721 -0.002 -0.243 -0.516  

Rdark -0.462 0.161 -0.832 0.260 0.010  
Amax -0.448 0.448 0.456 0.404 -0.476  
eig. 0.752 0.150 0.047 0.040 0.010  

       

Table S3d. Area-normalized GLOPNET data, excluding LMA. 

Trait PCA Loadings (Unit Vector)  
PC 1 PC 2 PC 3 PC 4 PC 5  

LL -0.057 0.798 0.433 0.011 0.414  
N 0.540 0.288 0.230 0.212 -0.727  
P 0.492 0.206 -0.661 0.393 0.352  

Rdark 0.544 -0.021 -0.012 -0.825 0.151  
Amax 0.410 -0.487 0.568 0.346 0.391  
eig. 0.473 0.259 0.124 0.086 0.057  

       
Table S3e. Normalization-independent residuals from main-text Equation 2 for N, P, 
Rdark, and Amax; and LMA-independent variation in LL obtained in the same manner 
(i.e., residuals from ordinary least squares regression of LL on LMA). 

Trait PCA Loadings (Unit Vector)  
PC 1 PC 2 PC 3 PC 4 PC 5  

LL 0.449 -0.436 0.319 -0.629 -0.333  
N -0.464 -0.352 0.607 -0.063 0.537  
P -0.412 -0.623 -0.158 0.347 -0.545  

Rdark -0.481 -0.019 -0.551 -0.671 0.117  
Amax -0.428 0.545 0.448 -0.171 -0.539  
eig. 0.584 0.190 0.096 0.077 0.052  

       
 
  



Table S3f: Normalization-independent residuals from main-text Equation 2 for N, P, Rdark, 
and Amax; and log10 values (not residuals) for LL and LMA. 

Trait PCA Loadings (Unit Vector) 
PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 

LL 0.353 -0.600 0.105 0.124 -0.253 0.651 
N -0.491 -0.240 0.177 0.520 0.613 0.156 
P -0.409 -0.350 0.558 -0.031 -0.503 -0.380 

Rdark -0.508 -0.105 -0.112 -0.746 0.119 0.385 
Amax -0.434 0.020 -0.655 0.366 -0.487 0.101 
LMA 0.140 -0.669 -0.452 -0.153 0.237 -0.499 
eig. 0.440 0.264 0.141 0.079 0.051 0.025 

      
 
 

Table S3g: Normalization-independent residuals from main-text Equation 2 for N, P, Rdark, 
and Amax; LMA-independent variation in LL (as in Table S3e); and log10 LMA values. 

Trait PCA Loadings (Unit Vector) 
PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 

LL 0.449 0.000 -0.436 -0.319 0.629 -0.333 
N -0.464 0.000 -0.352 -0.607 0.063 0.537 
P -0.412 0.000 -0.623 0.158 -0.347 -0.545 

Rdark -0.481 0.000 -0.019 0.551 0.671 0.117 
Amax -0.428 0.000 0.545 -0.448 0.171 -0.539 
LMA 0.000 1.000 0.000 0.000 0.000 0.000 
eig. 0.487 0.167 0.158 0.080 0.064 0.043 

 
 



Table S4. Pearson correlation coefficients (“r”) for pairs of log10-transformed traits 
expressed either as mass-normalized values or as normalization-independent residuals 
from main-text Equation 2. Mass-normalized trait correlations are larger than 
normalization-independent correlations for all pairwise relationships between N, P, Amax 
and Rdark. These larger correlations reflect “inflation” induced by mass-normalization of 
traits that are in fact primarily area-proportional (Fig. 2). The inflation of the correlation 
coefficient due to mass-normalization ranges from 11.5% for P vs. Rdark to 96.5% for P 
vs. Amax. n is the sample size for each correlation. 
 

 
X vs Y 

Mass-
normalized r 

Normalization-
independent r 

Inflation (% ) n 

N vs Amax  0.73 0.46 59.1 705 
N vs P  0.85 0.64 34.1 733 

N vs Rdark  0.74 0.53 40.3 267 
P vs Amax  0.41 0.21 96.5 207 
P vs Rdark  0.59 0.53 11.5 78 

Amax vs Rdark  0.77 0.5 53.0 259 
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