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SI Appendix

Appendix 1: Data Sources, Calculations, and Simulations

This appendix describes the forest inventory data used to parameterize the PPA, and how

these data were used to generate observed 100-year dynamics and observed successional

status of tree species. It then describes the PPA model simulations, the calculations

performed on the results of these simulations, and the calculation, for each species, of the

metrics *ˆ
jZ  and jH ,20 .

Data sources. Three different forest inventory data sets were used: FIA pre-1999, FIA

post-1999, and FHM. All three data sets were collected by the USDA Forest Service and

were publicly available at the time the data were downloaded.

The USDA Forest Inventory and Analysis (FIA) data has been collected for

several decades (see (1, 2), and appendices in (3)). The design and implementation of the

inventory was changed in 1999. We used one FIA data set from before 1999 (hereafter

pre-1999), and one from after 1999 (hereafter post-1999). In both cases the inventory

consisted of tree-level and plot-level data taken from a large network of permanent

sample plots distributed across the US. The pre-1999 FIA data contained measurements

from two surveys separated by an average of ~12 years (the remeasurement interval

varied among the three states, and varied alightly among plots within a state: average

survey dates for the three states were: Mn 1978 - 1990; Mi 1980 - 1993; Wi 1983 - 1996).

Therefore, in the pre-1999 FIA the changes in diameter at breast height (dbh) of

individual trees, or the mortality of individual trees, could be observed. Accordingly, we

used the pre-1999 data to parameterize the growth and mortality parameters of the PPA
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(see Appendix 2). The post-1999 data at the time of our analysis did not yet include

remeasurement data, but, unlike the pre-1999 FIA data, did include observations of

height for individual trees, along with their dbh. Accordingly, we used the post-1999 FIA

data to parameterize the height allometry component of the PPA: height allometry is

defined here as the function that predicts the height of a tree from its dbh (see Appendix

2).

For both data sets, we selected all plots within the three states MI, MN and WI.

From the pre-1999 data we discarded plots which had been harvested between the two

survey intervals, and any plots that were not remeasured. We grouped the remaining

plots, according to the FIA physiographic class (hereafter, ‘soil type’), into five groups:

xeric, xero-mesic, mesic, hydro-mesic, and hydric (pre-1999 physiographic codes 3, 4, 5,

6, 7 respectively). There were relatively few xeric plots, so these were not included in the

analysis. In the pre-1999 data at the tree level, we discarded trees that had a recorded dbh

of zero at the time of the first survey: these were either saplings that had dbh below 1

inch at the first survey (‘ingrowth’ trees) or larger trees that grew sufficiently during the

survey interval to be included in the variable radius plot sampling (‘ongrowth’ trees).

Within the remaining data for each soil type, we extracted the eight species with the

largest number of individuals in the data.  The identity of these eight species varied

among soil types. Within each soil type, we discarded all data from species other than

these eight. The resulting sample sizes, for each soil and model component, are shown in

Table S1.1.

Due to changes in the FIA soil classification scheme, we could not stratify the

pre-1999 (growth and mortality) and post-1999 (height allometry) data into the same soil
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types. Therefore, we used the xeric/xero-mesic post-1999 FIA data to parameterize the

height allometry on xero-mesic soils; the post-1999 mesic data for the height allometry

on mesic soils; and the post-1999 hydro-mesic/hydric data for the height allometry on

both hydro-mesic and hydric soils. The sample sizes for height allometry, on each soil,

are given in Table S1.1.

The USDA Forest Health Monitoring (FHM) data is similar in form to the FIA,

but includes a larger suite of measurements relevant to issues of forest health (1, 2). The

FHM design changed in 1999, when it was subsumed by the FIA. The pre-1999 FHM

data provided, for trees with dbh > 5 inches (12.7 cm), two measures of crown projection

diameter (see Appendix 2). The FHM dataset is much smaller than the FIA, so we used

the same data for crown allometry to parameterize crown-dh allometry on all soil types.

From the pre-1999 FHM data, we extracted all available dbh and crown radius data from

the three US Lake States (MI, MN, and WI) for the species of interest on each soil type.

Calculation of Observations. For comparison with PPA model predictions we

calculated the observed 100-year dynamics of stand basal-area, 100-year dynamics of

basal area within each of two successional guilds, and the diameter size distribution of

100-year old stands; the observed successional status of each species on each soil; the

100-year dynamics of the basal area of each species on each soil, and the species

composition in 100-year-old stands on each soil (Figs. 1, S1 – S3).

Most of these calculations were based on asjb ,,  (m2 ha-1), defined as the average

basal area of species j in stands of soil type s and age class a:
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where the set ),,( asjS  contains all trees i of species j, in stands of soil type s and age

class a; dbhi is the diameter at breast height (cm) of tree i at the time of the second

survey; )(iw is the ‘area expansion factor (ha-1) of tree i (i.e., the inverse of the area on

which i is sampled; see appendices in (3)); and ),( asN  is the number of inventory plots

with soil type s and age class a. A list of the ),( asN  values is given in Table  S1.2. The

factor 1/10000 converts basal area from cm2 to m2.

We also calculated astotb ,, , the average stand basal area (i.e., basal area of all

species combined) on soil s in age class a:
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where ),( asN  is the number of inventory plots with soil type s and age class a; and the

set ),( asQall  contains all trees i in plots with soil type s and age class a.

Age class in the above calculations is based on the ‘stand age’ reported in the FIA

data for each plot. The FIA defines stand age as the average age of canopy trees. For

comparison between model simulation and observations, we used this same definition of

stand age in the model simulations (see below). This index of stand age should typically

underestimate the time since the last stand-replacing disturbance (or the time since re-

forestation). However, this bias should have little impact on our results, because we

restricted our analysis to stand ages < 100 years. However, for chronosequences

calculated over longer periods (multiple centuries), we would expect the FIA stand age to
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approach an equilibrium value, such that the FIA age would become much smaller than

the true chronological age of the stand.

Values of asjb ,,  were calculated for each of the eight most common species on

each of the four soil types, for 11 age classes (0-110 years old) in 10-year increments.

Plotting asjb ,,  vs. age class reveals a chronosequence of the average dynamics of the basal

area of species j in stands with soil type s. These plots are shown for selected species in

Figure S3. Importantly, the chronosequences are calculated by averaging together all data

within a large region: it is therefore possible that the chronosequences represent a sum of

separate signals from different kinds of environments (within the broad soil type

classifications used by the FIA). Also, it is important to bear in mind that the

chronosequences are calculated from a single survey taken at one time, by comparing

stands of different ages.  This ‘space-for-time’ substitution approach (4) implicitly

assumes that the dynamics have remained constant over time, so that older plots at a

given time are informative about the future state of younger plots. This stationarity

assumption is probably invalid for the Lake States (see discussion in main text), which

can lead to mismatches between predicted and observed dynamics, even if the model

correctly captures the current dynamics.

Observed Successional Status. We define the observed successional status of each

species j on each soil s from the Spearman Rank correlation between asjb ,,  (S1.1) and age

class a. Species with a positive coefficient were assigned an observed successional status

of late; and species with a negative coefficient were assigned an observed successional

status of early. We also assigned a statistical significance to the early or late
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classification for each species, according to whether the Spearman Rank correlation was

significant at P < 0.05.

Observed Basal Area vs. Stand Age. Given asjb ,,  for each species j in stands with soil

type s and age class a, and the successional status of each species on each soil, we

calculated asearlyb ,,  , defined as the basal area of all early-successional species combined

in stands with soil type s and age class a; and likewise for aslateb ,, . This was done by

simply summing asjb ,,  for all species (among the eight most common) observed to be

early-successional, and then for all species observed to be late-successional:

∑
∈

=
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where the set ),( searlyJ  contains all species j that are observed to be early successional

on soil s, and similarly for ),( slateJ ; and asC ,  is the correction factor (S1.4; see below)

for soil s and stand age a.

Correction Factor for Observed Basal Area. The above calculations for observed basal

area consider only the eight most common species on each soil. Unlike our PPA analyses,

where these species comprise the entire forest community, these species comprise only

part of the FIA data. Therefore, relative to the above calculations (S1.3), the PPA should

predict too much basal area, on average, for these species. To account for this bias we

calculated
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where the set ),(8 asQ  contains all trees i of the eight most common species in plots with

soil type s and age class a; and the set ),( asQall  contains all trees i of all species in plots

with soil type s and age class a.

Observed Species Composition of 100-Year-Old Stands. For comparison with the PPA

predictions, we define the observed species composition of 100-year-old stands as 100,,sjb

for the eight most common species on soil type s. To compare predictions and

observations on an equal basis, the observed 100,,sjb  values were adjusted with the

correction factor (S1.4): 100,,,100,, sjassj bCb → .

Observed Diameter Distribution. The average density of trees in dbh class d in plots

with soil type s and stand age class a is
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where the set ),,( adsQall  contains all trees i in dbh class d on plots with soil type s and

stand age class a. We calculated adsv ,,  for d = 1, 2, 3, … 15 where d = 1 means 0 < dbhi <

4 cm, d = 2 means 4 ≤  dbhi < 8 cm, and so on.

PPA Simulations. The special case of the PPA considered in this paper includes seven

species-specific parameters (GD, GL, μD, μL,φ , α, and β) for each of the eight most
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common species on each soil type. We define θ as the vector of 7 × 8 = 56 species-

specific parameters on a given soil type. We used numerical methods in a Bayesian

framework to generate, for each soil type, a large sample of vectors θ from p(θ | X), the

joint probability distribution of θs given the data, X (Appendix 2). To propagate

uncertainty in θ through the PPA simulations of forest dynamics, we drew one θ at

random for each of 50 PPA simulations on each soil type. We did not propagate

uncertainty in the fecundity parameter F (which is not species-specific in the special case

of the PPA considered in this paper), because the procedure we used to estimate F

returned a single value per soil type (Appendix 2). Thus, each of the 50 PPA simulations

per soil type had different values for the elements of θ but the same value for F.

The PPA simulations generated a set of predicted basal areas )(
,,,

pred
kasjb  for species j,

soil type s, stand age class a, and simulation k (1, 2, 3 … 50). The simulations also

generated a set of predicted densities )(
,,,

pred
kadsv  for soil type s, dbh class d, stand age class a,

and simulation k. From these sets of predictions, we calculated means and intervals for

the model predictions. For example, the mean of )(
11,1,

pred
adsv ==  is

∑ ∑
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where the set Q(s, d=1, a=11, k) contains all model cohorts i (see below) from simulation

k, soil type s, dbh class 1, and stand age class 11. To obtain 68% intervals for a given

prediction, we calculated the range of the central 34 values from the 50 simulations.

Using this approach, we calculated from the simulations the predicted means and

central 68% intervals for the same metrics that we extracted from the data (e.g., stand

basal area vs. stand age; basal area vs. stand age for the early- and late-successional
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guilds; dbh-class distribution in 100-year-old stands; basal area vs. stand age for

particular species). For consistency with the FIA (see above), we defined stand age in the

PPA simulations as the average age of canopy trees: at each iteration of each PPA

simulation, we calculated stand age as the average age of the trees in the canopy. Because

FIA data do not include trees with dbh < 2.54 cm, we did not include these trees in the

PPA stand-age calculations.

Initial Condition for Cohorts. Just as we drew a random parameter vector θ for each

PPA simulation to propagate uncertainty in the species-specific parameters (see above),

we also assigned the initial condition of each simulation at random from the regional pool

of young FIA plots in order to propagate uncertainty in the state of young stands (which

reflects processes such as seed dispersal, germination, seedling survivorship, and how

these interact with different types of disturbance). Specifically, the procedure to

determine the initial condition for each of the 50 PPA simulations on soil type s was as

follows: (i) create an empty stand for the PPA model; (ii) draw a plot q at random from

the young (stand age < 20 years) pre-1999 FIA data on soil type s; (iii) add to the initial

condition a cohort i (see below) for each tree i in plot q; (iv) repeat steps ii-iii, sampling

with replacement, until 50 plots have been added; (v) divide the spatial density, )(iw , of

each cohort i by 50. Thus, for each of the 50 simulations, the initial condition was the

sum of 50 young plots, drawn at random from the appropriate soil type.

We simulated the dynamics of tree cohorts (defined by species identity and dbh)

rather than individual trees. This is computationally much more efficient than simulating

each individual, but leads to identical results in the large-population limit (and nearly the
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same results for even modest-sized populations; see (5)). Each cohort was initialized with

the species identity, dbh and spatial density of the corresponding tree in the FIA data

(steps ii-iii above).

The average initial condition reflects the average condition in young FIA plots on

a given soil type; but, around this average, there was stochastic variation in the initial

condition among the 50 simulations per soil type, as a result of the random selection of

the particular plots entering into the initial condition. And, because the sampling of plots

for the initial condition was done randomly from all across the region, it is possible that,

in reality, no single young stand would have a species composition and structure very

close to the average initial condition in the PPA simulations.

Implementation of PPA Simulations. The PPA is described in detail in (5). Each

simulation consisted of a number of iterations, beginning with the initial condition, and

ending when the stand age (defined above) reached 100 years. Each iteration consisted of

three steps, explained in detail below: (i) calculate *Z ; (ii) apply growth and mortality to

each cohort; and (iii) add new cohorts through reproduction.

Calculate *Z . Reference (5) describes in detail the procedure for calculating *Z

for the flat-top model assumed in this present work. *Z  calculations for more general

cases of the PPA (e.g., curved crowns with species-specific shapes) are described in

reference (6). The flat-top *Z can be calculated as follows: (i) calculate the total crown

area of the tallest cohort i: 2)()( ijdbhiw φπ , where j is the species identity of cohort i; (ii)

calculate the crown area of the next tallest cohort, and add this area to the previously
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calculated area; (iii) repeat step ii until the total crown area exceeds the ground area; (iv)

*Z  is the height of the trees in the last cohort added.

Apply growth and mortality to each cohort. Given the value for *Z , the following

transformations are applied to each cohort i (the subscripts j indicates the species to

which i belongs):

→)(iw )()1( , iwjLμ−   if height of cohort i ≥ *Z

)()1( , iwjDμ−     if height of cohort i < *Z   (mortality) (S1.7)

→idbh jLi Gdbh ,+   if height cohort of i ≥ *Z

jDi Gdbh ,+         if height cohort of i < *Z .   (growth) (S1.8)

After these transformations, a new height and crown area is assigned to each cohort i

according to the new value for idbh , and according to the allometric parameters jα , jβ

and jφ for species j of cohort i.

Add new cohorts through reproduction. New recruits (i.e., cohorts i with dbhi = 0)

are added at each iteration. One new cohort is added per species per iteration. The spatial

density )(iw  for the new cohort of species j reflects the representation of  j in the canopy

(understory trees are assumed to be incapable of reproduction in this special case of the

PPA: see (7, 8)). Here a choice must be made regarding the spatial scale over which to

measure this representation. Does recruitment depend primarily on the average

representation within the stand itself, or over the landscape? In the simulations presented
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in this paper, we used the average taken over all plots on the correct soil type within the

region. Crucially, however, reproduction has very little effect – in the sense that the

results are extremely similar even if all reproduction is set to zero – on the predictions for

stand basal area vs. stand age, the dynamics of succession, and the species composition of

old stands. Reproduction does have an important signature on the predicted diameter

distribution of old plots, because the densities within the smaller size classes depend on

the rate of arrival, and subsequent growth and mortality, of small trees. Therefore, the

diameter distributions in Figure S1 should be viewed with some caution, given the choice

to use reproduction dependent on the regional average species composition of the canopy.

Given an average regional canopy representation (m2 ha-1) for species j of jA , the

new cohort of species j created in each iteration is assigned a density jFAiw =)(  and

0=idbh . In subsequent iterations, these cohorts are treated like any other, according to

eqns. S1.7-S1.8.

Metrics for Successional Performance:  H20 and *Ẑ . In addition to implementing

simulations of the PPA, we used the PPA parameters to calculate, for each species on

each soil, metrics for early- and late-successional performance, and for different

components of late-successional performance. The metric for early-successional

performance is H20,j, the height of a 20-year-old tree of species j that has never been

shaded. The metric for late-successional performance is *ˆ
jZ , the height of canopy closure

(Z*) in an equilibrium monoculture of species j. In the special case of the PPA considered

here, in which the understory environments of all closed-canopy forests on a given soil

type are considered identical (i.e., GD, j and μD, j are assumed constant for species j on a
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given soil type), the late-successional dominant is the species j with the largest value of

*ˆ
jZ  (7).

From the sample of parameter vectors θ on each soil type, we selected 1000 at

random, denoted θk for k = 1, 2, 3 ... 1000.  For each k, we calculated four metrics for

each species j:

kj
kjLkjkj GH ,]20[ ,,,,,20

βα= (S1.9)

kjkj
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where kjunderstoryY ,,  and kjcanopyY ,,  are the understory and canopy components, respectively

of late-successional performance ( *
,

ˆ
kjZ ).

The above calculations produced 1000 values for each of the four metrics, for

each of the eight species on each soil type. From these values, we extracted the mean, and

central 68% intervals. Thus, like the PPA model simulations described above, the

calculation of the early- and late-successional metrics included a propagation of

parameter uncertainty.
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Appendix 2: Parameter Estimation

The special case of the PPA model considered in this paper requires, for each soil type, a

single fecundity parameter F and seven species-specific parameters for each of the eight

most common species j (Table S2.1). Thus, the model requires 7 × 8 = 56 species-

specific parameters (the vector θ) for each soil type. We used the Metropolis-Hastings

Markov chain Monte Carlo (MCMC) algorithm in a Bayesian context to generate

samples from p(θ | X), the posterior distribution of θ given the data X (1, 2). We used a

separate procedure to estimate F for each soil type (see below).

The posterior density, p(θ | X), is proportional to the product of the likelihood and

the prior (3): p(θ | X) ∝  p(X | θ) × p(θ), where p(X | θ) is the likelihood of the inventory

dataset (see Appendix 1, DATA SOURCES) conditional on a particular value of θ, and

p(θ) is the prior probability density of θ. We used uniform priors on a finite range (Table

S2.1), so that p(θ) = C, where C is a constant. This choice of prior is completely

noninformative on the scale of θ. With uniform priors, p(θ | X) ∝  p(X | θ); i.e., the

analysis depends only on the likelihood. Given the large sample sizes in our analysis, the

posterior means should be similar to the maximum likelihood estimates (3).

For convenience, we work with the log-likelihood, ≡)|( θX  log[p(X | θ)], which

includes terms for growth, mortality, height allometry, and crown allometry:

)|( θX  = ),|(),,,|( DLDL μμXσσGGX mortalityGDGLgrowth +

),|(),,|( crowncrownheightheight σXσβαX ++ (S2.1)

where growthX  is the inventory data for growth (for a particular soil type), and similarly

for mortalityX , heightX  and crownX ; and LG  is the vector of jLG ,  parameters over all species j

included in the estimation, and similarly for understory growth ( DG ), canopy and
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understory mortality ( DL μμ , ), height allometry (α, β) and crown allometry ( ). The σ

terms are vectors of species-specific parameters describing unexplained variation in

growth, height, and crown radius (see below). Each term in eq. S2.1 is described in the

next section, along with details of the data sources and data selection criteria.

Growth. The special case of the PPA considered here requires two growth parameters for

each species j: annual diameter at breast height (dbh) growth rates jLG ,  and jDG ,  for

canopy and understory trees, respectively.  To estimate these parameters from FIA data,

we assumed that individual dbh growth rates are normally distributed with means jLG ,

and jDG ,  and standard deviations jL,σ and jD ,σ  for canopy and understory trees,

respectively. The parameters jL,σ and jD ,σ  describe the magnitude of the unexplained

variation in growth. We assume that the growth rates exhibited by the individual trees

within any group are independent. Under these assumptions we have

),,,|( GDGLgrowth σσGGX DL  =

{ }∑∑
∈=

Δ−+Δ
jgrowthi

jGDjDiijGLjLii
j

GDNPGDNP
,

),|()1(),|(ln ,,,,

8

1 X
σσ (S2.2)

where iDΔ  is the observed annual dbh growth rate for tree i (see below);

),|( ,, jGLjLi GDN σΔ  is the normal probability density for iDΔ  with mean jLG ,  and

standard deviation jGL,σ ; and iP  is the probability that tree i was in the canopy at the start

of the time interval over which growth was measured. Eq. S2.2 sums over the eight most

common species j on a given soil type.
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If the FIA had provided observations of crown class (trees in the understory vs.

canopy) for the time of the first survey (the initial plot measurement), we could have

assigned 1=iP  or 0=iP  for each tree i (assuming no errors in FIA crown-class

assignments). However, crown class was only given for the time of the second survey

(the plot remeasurement), and more importantly, was not given at all for trees that died

(see below), necessitating the probabilistic approach in eq. S2.2.

To calculate iP , we used FIA crown-class data reported for the second survey to

calculate iP  for each species j, conditional on the prediction of canopy status (in or out of

the canopy) given by the model structure and parameter values in reference (4) applied to

the second survey. [Note that ref 4 employed two different parameter estimation schemes

for the crown shape parameters, from which we employed the ‘single axis fit’ parameters

here].  That is, we applied the model from (4) to generate a value of *Z  for each plot q at

the time of the second survey, and then assigned a predicted canopy status )( pred
iU  for the

time of the second survey (1= canopy, 0 = understory) to each tree i in q ( )( pred
iU = 1 if

tree i is taller than *Z , and 0 otherwise). We then compared the observed canopy status

)(obs
iU  of the trees in q at the time of the second survey with the predictions )( pred

iU  to

give the conditional probability:

tiP,  = j,1γ if  1)(
, =pred
tiU

j,0γ if  0)(
, =pred
tiU (S2.3)

where t refers to the time of the survey (1 = first survey; 2 = second survey), and

]1[
]1and1[

)(
2,

)(
2,

)(
2,
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= pred
i

pred
i
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i
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UUS
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where S[] denotes the number of trees i that match the criteria contained in []. Typical

values of j,1γ  and j,0γ  were 0.90 and 0.20 respectively, showing that the model and

parameter values from (4) gave quite accurate predictions of canopy status for individual

trees. Nonetheless, we found that the error rates (i.e., 0.10 and 0.20) were sufficient to

produce substantial differences in the estimates for the PPA parameters, compared to the

estimates given by treating the canopy status predictions as perfect (i.e., assuming j,1γ  =

1 and j,0γ  = 0). Note that, unlike the analysis in (4), the special case of the PPA presented

in the main text used a simplified ‘flat-top’ canopy model (where crowns are flat discs

with radius proportional to stem diameter); the parameters for this flat-top model (see

HEIGHT ALLOMETRY and CROWN ALLOMETRY, below) were estimated

separately from those in (4). Thus, the model and parameter estimates from (4) were used

only to generate the conditional probability for canopy status in eq. S2.2.

 Data sources and selection criteria. The inventory data growthX were taken from

remeasured FIA plots in the Lake States for which the second survey occurred in the mid

1990s; i.e., prior to 1999, when the design of the FIA was changed (5, 6). Plots placed in

plantation forests were not included. The pre-1999 data give, for each tree i, dbh from the

first and second surveys: 1,iD  and 2,iD . From these values, we calculated an average

annual dbh growth rate for i:

iiii tDDD /][ 1,2, −=Δ (S2.5)
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where it  is the time between the two surveys for tree i (average value 12.2-12.5 years,

depending on soil type).

The set jgrowth,X  (i.e., the trees i included in the growth likelihood for species j)

included only those trees i of species j satisfying the following criteria: i belongs to a plot

in MI, WI, or MN on the relevant soil type (referred to as ‘physiographic class’ in the

FIA) that was not harvested between the two surveys; and i was recorded as being alive at

both surveys.

Mortality. The special case of the PPA considered here requires two mortality

parameters for each species j: jL,μ  and jD,μ , which are annual mortality probabilities for

trees in the canopy and understory, respectively.  During an interval of t years, trees of

species j that begin the interval as canopy and understory trees, respectively, of species j

die with probabilities t
jL )1(1 ,μ−−  and t

jD )1(1 ,μ−− .  We assume that mortality events

suffered by the trees within any group are independent, such that

),|( DL μμXmortality  =

[ ]{

[ ]}ii

jmort

ii

t
jLi

t
jDii

i

t
jLi

t
jDii

j

PPM

PPM
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))1(1())1(1)(1(ln
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8

1 ,

μμ

μμ
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−−+−−−∑∑
∈= X (S2.6)

where iM = 1 if tree i was observed to have died during the remeasurement interval, and

0 otherwise; and iP  is the probability that tree i was in the canopy at the start of the time

interval, as explained for GROWTH above. Eq. S2.6 sums over the eight most common

species j on a given soil type.
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Data sources and selection criteria.  The selection criteria for jmort ,X  were the

same as those for jgrowth,X  (see above), except that jmort ,X  included trees that were alive

or dead (from non-harvest causes) at the time of the second survey, whereas jgrowth,X

only included trees that survived the remeasurement interval.

Height Allometry. The special case of the PPA considered here requires two height-dbh

allometric parameters, αj and βj, for each species j. To estimate these parameters from

FIA data, we assumed, based on visual inspection of the data, that the standard deviation

of individual height increases linearly with mean predicted height. Thus, the log-

likelihood for the height data is:

),,|( heightheight σβαX D  = { }∑∑
∈= jheighti

jheightjjii
j

dbhhN
,

),,,|(ln ,

8

1 X
σβα (S2.7)

where N(·) is the normal probability density for tree i with observed height hi (m) and

diameter dbhi (cm), with mean zi = j
ij dbh βα and standard deviation ijheight z,σ .

Data sources and selection criteria. The dataset jheight ,X  included only those trees

i of species j satisfying these three criteria: i is from the post-1999 FIA data (which,

unlike the pre-1999 FIA, includes individual height measurements, but currently lacks

remeasurement data for most of the U.S.) from MI, WI, or MN with plots placed in

plantation forests discarded. i is a live tree with a measured height; i belongs to a plot

with the relevant soil type that did not include any trees classified as harvested.

Crown Allometry. The special case of the PPA considered here assumes crown radius to

be proportional to dbh and the crown to be a flat disc. Thus, crown allometry requires
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only one parameter, the coefficient of proportionality jφ . For parameter estimation, we

assume a normal distribution of unexplained variation in the crown radius of trees of a

given dbh, with mean zero and standard deviation jcrown,σ . Thus, the log-likelihood for

the crown radius data is

),|( crowncrown σX  = { }∑∑
∈= jcrowni

jcrowniji
j

dbhrN
,

),,|(ln ,

8

1 X
σφ (S2.8)

where ir  is the observed crown radius (m) for tree i (see below), dbhi is the dbh (cm) for

tree i, and ),,|( , jcrowniji dbhrN σφ  is the normal probability density of ir  with mean

jj dbhφ  and standard deviation jcrown,σ .

For each tree with crown diameter information (trees over 5 inches dbh in the pre-

1999 FHM data: see reference 4), we calculated a value for observed crown radius ir  (m)

from 1,icdia (the maximum crown diameter) and 2,icdia (crown diameter measured at 90º

to 1,icdia ).  We first calculated observed crown area ia  (m2) assuming an elliptical shape:

)2/)(2/( 2,1, iii cdiacdiaa π= (S2.9)

and then calculated ir  (m) as )/( πia . Thus, ir  is the radius of a circle with the same

area as the ellipse defined by 1,icdia and 2,icdia .

Data sources and selection criteria. The dataset jcrown,X  included trees i of

species j satisfying the following criteria: i is from the pre-1999 FHM from MI, WI, or

MN with plots from plantation forests discarded; i has species identity j; i belongs to a

plot with the relevant soil type that was not harvested between the two survey dates; cdia1

and cdia2 were available for i.
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Parameter Ranges and Reparameterization. We allowed wide ranges on each

parameter, encompassing all reasonable values (see Table S2.1). To speed convergence

of the MCMC algorithm, we reparameterized the growth and mortality parameters as

follows. We reparameterized mortality as

jLjL ,, /1 μρ =

jDjD ,, /1 μρ = (S2.10)

and estimated values for jL,ρ  and jD,ρ  rather than jL,μ  and jD,μ , for each species j. For

both growth and mortality, we estimated understory rates as a function of canopy rates:

jLjjD ,,, ρρ ρΩ=

jLjGjD GG ,,, Ω= (S2.11)

 where 0 < j,ρΩ < 1 and 0 < jG ,Ω < 1. Thus, for each species j, we estimated four growth

and mortality parameters (as in the original parameterization): jL,ρ , j,ρΩ , jLG , , and

jG ,Ω . We reparameterized height allometry as

jdbhheight j
βα )20/(20= , (S2.12)

where j
jj

βαα 2020 ≡ , and we estimated 20
jα rather than αj. We emphasize that the

reparameterizations were employed for convenience only. Preliminary analyses without

these reparameterizations yielded similar results.

MCMC Sampling. We used the Metropolis-Hastings MCMC algorithm to sample from

the joint posterior distribution of the parameters (1, 2). The definition of the Metropolis-
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Hastings MCMC algorithm leaves a great deal of freedom in the definition of (for

example) the functional forms and the proposal distributions used to alter parameter

values, and the choice of how many parameter values to alter at each MCMC step. These

choices can have important effects on the efficiency and stability of the algorithm. For

this analysis we used a custom algorithm that we have found useful in a variety of

parameter estimation problems (e.g., 4, 7, 8). We have found that this algorithm, which

conforms to the requirements for the Metropolis-Hastings MCMC algorithm to converge

to the correct posterior distribution, is robust to the problem of local (non-global) maxima

and converges quickly. In this algorithm, at each MCM step, changes are proposed to

randomly selected parameters, where the number of parameters to be changed varies

from one to the total number of parameters.  Proposal distributions for each parameter

(table S2.1) are tuned during an initial ‘burn-in’ period (in this case, 30,000 MCMC

steps) to achieve an approximate Metropolis-Hastings acceptance rate of 0.25. This

tuning is accomplished by iteratively adjusting the standard deviations of the normal

random variables that define the proposal distributions (table S2.1). The standard

deviations are fixed at the end of the burn-in period. We used different proposal

distributions for parameters bounded between 0 and infinity, and parameters bounded

between 0 and 1 (table S2.1), and we did not explicitly include any prior information in

the metropolis criterion. Thus we used non-informative priors with different forms for the

noninformative priors on each parameter (uniform over logarithm of values, uniform over

untransformed values, respectively: see reference 7). Following the burn-in period, we

recorded a posterior sample (i.e., the current values of all model parameters) every 100th

MCMC step for 30,000 steps. We saved these samples for error propagation in the
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calculation of analytical metrics (such as *ˆ
jZ ), and in model simulations (see Appendix

1).

Fecundity. The special case of the PPA used here requires only one reproductive

parameter, fecundity (F): the number of size-zero individuals produced per unit exposed

crown area per unit time (9-11). Unlike the other parameters in the PPA model, it is

problematic to estimate F directly from FIA (or FHM) data, because the FIA only

includes stems with dbh ≥ 1 inch (2.54 cm). Such trees can be seen appearing in the data

as they traverse the 1 inch threshold through growth (so-called ‘ingrowth’). But there are

few such saplings in the data, and more importantly, there could be a substantial time lag

between germination (when dbh = 0) and appearance in the FIA (when dbh ≥ 1 inch). To

estimate F properly, it would be necessary to know (or estimate) the representation of

each species in the canopy at the time of seed production, and the canopy status (canopy

vs. understory) of each ingrowth sapling during its previous history.  Given these

complications, we did not attempt to estimate F directly. Instead, we first reduced the

dimensionality of the problem by assuming that all species share the same value for F.

Then, for each soil type, we determined the value of F (while propagating uncertainty in

the other model parameters; see below) such that the average predicted density of trees

with dbh between 4-8 cm in 100-year old stands was equal to the density observed.

Specifically, we implemented 30 PPA simulations (prior to the 50 simulations described

in Appendix 1) to determine the value of F that would result in the observed density of 4-

8 cm dbh trees. In each of these simulations, we selected a value for F at random from a

uniform (0, 0.03) distribution, and assigned all other parameter values by drawing at
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random from the MCMC samples described above. We then plotted the 30 pairs of

predicted density of 4-8 cm dbh trees vs. F. Visual inspection of this plot suggested a

linear relationship, which we determined using linear regression separately for each soil

type. The regression yielded an estimated relationship between F and the predicted

density of 4-8 cm dbh trees, which we then used to solve for the F that would result in the

observed density.

Therefore, unlike all other parameters, F was estimated from the same data that

was used to compare model predictions with observations. This can be seen in the

comparison of predicted vs. observed size distributions in Figure S1, where the model

prediction for the density of trees with 4-8 cm dbh appears perfect: this match is a

necessary outcome of the way F was estimated. However, importantly, because F was

shared across species, F constituted only one parameter, compared to 7 × 8 = 56

parameters estimated from short-term data independent from the long-term data against

which model predictions were compared. Moreover: (i) the value of F was parameterized

to match only a single value, from a single kind of metric, rather than to maximize the

overall fit of observations to data – this was done deliberately to maximize the

independence of the other comparisons of predictions vs. observations, including the rest

of the size distribution; (ii) it is simple to show analytically that F is less important than

the other parameters in determining the outcome of interspecific competition (9); (iii) to

confirm the preceding result, we implemented an ensemble of 50 models simulations

with F set to zero. We found that the predictions for basal area vs. stand age and for

successional dynamics were almost completely insensitive to this change, showing that

these predictions are dominated by the growth and mortality of trees already in the initial
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condition (young plots). However, as expected, with F set to zero, the predictions for size

distributions were very poor, because trees in small size classes were predicted to be

absent; (iv) in contrast to PPA results obtained by assuming the same F for all species,

implementing simulations with the other PPA parameters set equal between species gave

poor predictions for basal area and very poor predictions for ecological succession and

the species composition of old stands.
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