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Introduction

The magnitude of tree mortality occurring in a tropical 
forest can determine its community dynamics, where 
periods of low mortality (background) promote gap 
phase replacement and a disturbance event resulting in 
high mortality can trigger a reset of the community 
followed by colonization of pioneer species. Much of the 

published research on tropical tree mortality has focused 
on background mortality, which is pragmatic consid-
ering that tropical forest plot networks, a main source 
of forest dynamics data, are not well suited to sample 
spatially aggregated disturbances (Fisher et  al. 2008, 
Chambers et al. 2013). Catastrophic wind disturbances 
(i.e., events with greater than 5% mortality as defined by 
Lugo and Scatena 1996) in tropical forests have largely 
focused on hurricane-prone areas (Brokaw and Grear 
1991, Lugo and Scatena 1996, Curran et  al. 2008). 
However, the role of non-hurricane catastrophic wind 
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disturbance within tropical forests is increasingly recog-
nized to alter both species composition (Chambers et al. 
2009b, Marra et al. 2014) and create sudden losses of live 
biomass (Negrón-Juárez et  al. 2010), which will 
decompose and be returned to the atmosphere as carbon 
emissions. In the Amazon basin in particular, wind 
storms can create blowdowns with spatial extents in 
excess of 30 km2 (Nelson et al. 1994). Amazonian blow-
downs are thought to emanate from two meteorological 
mechanisms: downbursts from convective systems and 
squall line storms (Garstang et al. 1998). A recent display 
of the widespread mass mortality induced by a squall line 
storm was seen in 2005, where approximately 500 million 
trees were estimated to have died (Negrón-Juárez et al. 
2010). Yet not all trees die within a Neotropical 
blowdown, and the identities of which trees are killed has 
remained an open question until now. The individual 
variation in biomass of adult trees can span orders of 
magnitude, so understanding which trees die is of especial 
importance for reducing the large uncertainties regarding 
disturbance and its role in the Amazon’s large contri-
bution to global land–atmosphere carbon exchange 
(Davidson et al. 2012).

Previous research to quantify tropical forest blow-
downs has mostly focused on identifying the shape of size 
frequency distributions of blowdowns (Fisher et al. 2008, 
Chambers et  al. 2009a, 2013, Kellner and Asner 2009, 
Asner 2013). However, no studies to date have quantified 
how mortality rates vary between trees within tropical 
forest blowdowns and how this differential mortality will 
affect estimates of landscape-scale carbon losses. On the 
contrary, because this was unknown, previous efforts to 
estimate mortality and necromass from wind disturbance 
events have had to model mortality as a random uniform 
process (e.g., Negrón-Juárez et  al. 2010). Accurately 
quantifying the effects of episodic wind disturbances on 
community and ecosystem dynamics requires information 
not only on the size–frequency distribution of blow-
downs, but also on tree mortality rates within blowdowns 
in relation to the properties of individual trees (e.g., their 
size and functional traits, such as wood density) and the 
physical environment (e.g., topographic position). A key 
concern related to differential mortality (i.e., non-random 
or selective mortality) is that large trees contain dispro-
portionate amounts of forest biomass (Clark and Clark 
1996). Therefore, if large trees suffer disproportionately 
high mortality during blowdowns, ignoring differential 
mortality will lead to underestimation of carbon lost to 
the atmosphere from the disturbance.

There are several reasons to expect differential tree mor-
tality (i.e., dependence of mortality probability on 
microsite or individual tree properties) in large blowdowns 
in the tropics. First, background (non-catastrophic) tree 
mortality rates in tropical forests depend on the charac-
teristics of individual trees, such as high wood density 
(Chao et al. 2009, Kraft et al. 2010) and, less consistently, 
large size (Clark and Clark 1996, Laurance et  al. 2000, 
Thomas et al. 2013). Second, fire, drought, and hurricanes 

have all been shown to cause differential mortality (Barlow 
et al. 2003, Nepstad et al. 2007, Curran et al. 2008). Third, 
studies of wind disturbance in temperate forests have 
found that increasing tree size (Rich et al. 2007), low wood 
density (Canham et al. 2001, Rich et al. 2007), and higher 
topographic position (Sinton et al. 2000) promote prob-
ability of death. Finally, tree mortality from wind distur-
bance has a high potential for spatial autocorrelation 
because the probability of a tree dying is not independent 
from its neighbor’s fate. A large windthrown tree may 
directly kill or damage neighbors as it falls, or indirectly 
affects the probability of neighboring tree mortality due 
to increased wind exposure. Consequently, accurately pre-
dicting landscape mortality will likely require accounting 
for spatial autocorrelation.

In this study, we consider three questions: (1) How 
much do landscape and tree structural characteristics 
predispose a tree to die in an Amazon blowdown? 
(2)  Does quantifying spatial autocorrelation alter the 
estimated degree of differential mortality? (3) How does 
incorporation of individual tree-based differential 
mortality and spatial autocorrelation alter necromass 
estimation across a forest blowdown landscape?

Methods

Study site

Using 30-m spatial resolution Landsat Thematic 
Mapper imagery, we located a blowdown that occurred 
in late 2009 in the Peruvian Amazon (4.389°  S, 
73.602°  W), roughly 100  km south of Iquitos in the 
department of Loreto. The vegetation is terra firme 
forest and receives approximately 3,100 mm rainfall per 
year (Sombroek 2001). In this study area, elevation 
ranged from 130  to 160  m, where higher elevation 
strongly corresponds to hilltop topographic positions, 
intermediate elevations correspond to slopes and lesser 
ridgelines, and the lower elevations correspond with 
depressions and valleys.

Blowdown identification and satellite image analyses

Landsat 5 Thematic Mapper (TM) acquisitions with 
scene identifiers “LT50060632009245CUB00” (2 September 
2008) and “LT50060632009341CUB00” (7 December 2009) 
were used to assess the pre- and post-disturbance landscape, 
respectively. The images were atmospherically corrected 
using the ENVI fast line-of-sight atmospheric analysis of 
hypercubes (FLAASH; Exelis Visual Information Solutions, 
Boulder, Colorado, USA) prior to analysis. Chambers et al. 
(2007) demonstrated that forest wind disturbance can be 
detected and quantified from Landsat images due to a sig-
nificant increase in dead woody material or non-
photosynthetic vegetation (NPV) in the images, and the 
change in NPV can be used as a metric of disturbance 
intensity. Multiple endmember spectral mixture analysis 
(MESMA; Roberts et al. 1998), a variant of linear spectral 
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unmixing, was used to estimate the pre- and post-disturbance 
NPV fraction of the blowdown landscape. For the unmixing, 
we used three endmembers: NPV, green vegetation (GV), 
and shade. Soil, which is often used as a fourth endmember 
in forested landscapes, was not used as an endmember 
because while blowdown events produce a high fraction of 
windthrown trees, relatively little soil is visible from above. 
Constrained reference endmember selection (Roberts et al. 
1998) was used to derive spectral libraries of the target end-
members from the post-disturbance images. Shade normali-
zation was applied to produce an image of just the fraction 
of NPV, and the fraction of GV for each pixel. The pre-
disturbance fraction of NPV was then subtracted from the 
post-disturbance fraction of NPV to yield the change in 
NPV, ΔNPV, image (Chambers et al. 2007, Negrón-Juárez 
et al. 2010, 2011, Marra et al. 2014). A very similar imple-
mentation of the ΔNPV method has been demonstrated to 
be sensitive to subpixel-scale clustered treefalls composed 
of as few as six trees (Negrón-Juárez et al. 2011).

To generate landscape topographic variables, we 
downscaled the AST14DEM digital elevation model 
(DEM) (data available online) from 30-  to 10-m spatial 
resolution through cubic-convolution.10 Elevation and 
ΔNPV values were extracted for plot units from the 3-ha 

transect and the ΔNPV calibration plots (see Methods: 
Blowdown identification and satellite image analyses). 
Image analysis was performed with ENVI and the VIPER 
Tools ENVI plugin (available online).11

Field data collection

Three intersecting transects, consisting of 103 
30  ×  10  m contiguous plots (3.1-ha total area), were 
installed inside and outside the blowdown affected area 
(Fig. 1; hereafter called “transect data”). Disturbed and 
non-disturbed plots were chosen to have comparable 
topographic characteristics. Elevation ranged between 
132  and 164  m across the entire transect, with mean 
elevation of 144  m in the undisturbed portion of the 
transect and 152 m in the disturbed portion. Disturbance 
within individual plots ranged from no disturbance-
induced tree mortality to near complete tree mortality. 
Diameter at breast height (DBH, 1.3 m) was measured 
on all live and dead individuals greater than 10  cm 

Fig. 1.  2009 blowdown study location roughly 100 km south of Iquitos, Perú in the department of Loreto. The top middle panel 
shows the post-disturbance Landsat 5 TM (RGB : Bands 5,4,3) with yellow dotted line indicating the position of transect plots. The 
top right panel shows the variation in disturbance intensity indicated by different categories of ΔNPV (increase in exposed wood 
detected by pre- and post-disturbance Landsat images). The bottom panel shows a photo from near the center of the blowdown, 
taken <1 yr after the disturbance event.

10 https://lpdaac.usgs.gov/dataset_discovery/aster/aster_
products_table/ast14dem

11 �www.vipertools.org

https://lpdaac.usgs.gov/dataset_discovery/aster/aster_products_table/ast14dem
https://lpdaac.usgs.gov/dataset_discovery/aster/aster_products_table/ast14dem
http://www.vipertools.org
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DBH. Diameters of some dead, fallen trees were 
measured above 1.3  m from the base (breast height) 
because their boles were made inaccessible by other 
windthrown trees.

Approximately 95% of live trees were identified to 
species, and no attempt was made to identify dead trees. 
Dominant families in the transect plot were Lecythidaceae, 
Euphorbiaceae, Sapotaceae, Myristicaceae, and Fabaceae 
(Appendix S1: Table S4). Wood density was sampled for 
one live individual of each species using a gas powered 
drill (Tanaka TED-270PFR) by collecting all wood chips 
produced by drilling into the tree from the cambium to 
the pith with an 18 mm wide ship auger bit. The hole’s 
volume produced by drilling was measured with vernier 
calipers, and the mass of the oven dried wood shavings 
was divided by the hole volume to determine wood 
density (Francis 1994). These wood density values were 
compared with matching species (when available) that 
had replicated values from the Global Wood Density 
Database (Chave et al. 2009, Zanne et al. 2009) to ensure 
the method was comparable to previously published 
measurements (Appendix S1: Fig. S11). Wood density 
samples were also collected via chainsaw for all dead 
individuals. Dead wood samples were submerged for 3 d 
to approximate their pre-death green volume, after which 
the volume was determined using the water balance sub-
mersion method. Samples were then oven-dried and 
weighed.

A separate but closely located set of 30 20 × 20 m plots 
(hereafter referred to as the “ΔNPV calibration plots”) was 
installed in the same blowdown to calibrate the remote 

sensing-derived disturbance intensity metric (ΔNPV) to 
tree mortality. Unlike the transect plots, each calibration 
plot was installed so its center would be as close as possible 
to the corresponding post-disturbance Landsat 5 TM pixel 
(Fig. 2, inset). Each tree greater than 10 cm DBH with its 
base in the plot was counted and categorized as live or 
dead. Because our aim was to quantify blowdown mor-
tality, we only counted dead trees that were snapped or 
windthrown. Snapped but resprouted trees, as well as live 
trees that were partially uprooted, were counted as being 
alive despite being likely to die within a few years. Thus, 
the ΔNPV metric in this study only describes immediate 
post-disturbance mortality and does not incorporate 
delayed tree mortality resulting from the disturbance.

Modeling tree mortality rates

Overview of mortality models.—We briefly introduce 
four different models used to quantify how both 
differential mortality from the blowdown event and 
spatial autocorrelation affect estimates of landscape 
necromass produced by the blowdown. Details of each 
model are presented in the subsequent sections. Model 
1 predicted the overall fraction of tree mortality within 
a pixel by regressing the overall fraction of tree 
mortality solely against the pixel’s ΔNPV (Chambers 
et  al. 2007). Model 2 predicted individual tree-level 
probability of death from the blowdown event by 
fitting a logistic regression of mortality probability as a 
function of tree size and wood density within each of 
six categories of disturbance intensity (ΔNPV). Model 

Fig. 2.  The fraction of observed adult tree mortality vs. the change in pre- and post-disturbance non-photosynthetic disturbance 
(ΔNPV) with regressions through the origin (Model 1). The dotted and dashed lines represent the 95% credible interval for the 
calibration plots (green squares) and transect plots (solid blue circles). Calibration plots were carefully located to be centered on the 
Landsat pixels, while transect plots crossed multiple pixels.



DIFFERENTIAL AMAZON TREE MORTALITY FROM WINDOctober 2016 � 2229

3 was similar to Model 2, but treated ΔNPV as a 
continuous variable in addition to topographic 
position, tree size, and wood density. Model 4 was 
similar to Model 3, but also accounted for spatial 
autocorrelation. Model 1 was fit twice, once using the 
transect data (also used to fit Models 2–4), but also fit 
with the ΔNPV calibration plot data to generate an 
estimate of the ΔNPV–mortality relationship with 
reduced uncertainty in the ΔNPV predictor (see Fig. 2, 
inset). Models 1–4 were fit to the transect data in a 
Bayesian modeling framework using either Markov 
chain Monte Carlo (MCMC; for Models 1–3) or nested 
Laplace approximation (for Model 4) to estimate the 
model parameters. The joint posterior distribution of 
parameters for each model was then used to simulate 
the landscape necromass produced by the blowdown 
while propagating model uncertainty.

Model 1: Pixel-scale mortality depends on ΔNPV.—
Following Chambers et  al. (2007), tree mortality from 
the blowdown was estimated from ΔNPV for each pixel 
using a simple linear regression,  

No intercept term was used to ensure that the predicted 
tree mortality was zero when ΔNPV = 0, as we were only 
trying to capture mortality related to disturbance (and 
thus ΔNPV) rather than background mortality. Forcing 

the relationship through the origin was also necessary to 
reduce bias in the lower portion of the ΔNPV and to 
constrain the over-prediction of necromass (see Methods: 
Landscape simulation of blowdown necromass). For 
purposes of comparison of the relationship with an 
intercept, the model fit with intercept is included in 
Appendix S1: Fig. S12. As explained previously, the 
model was fit separately to each of two different datasets: 
the transect data and the ΔNPV calibration plots. Each 
ΔNPV calibration plot was spatially located at the center 
of a Landsat pixel, whereas the transect plots intercepted 
one to four Landsat pixels (Fig. 2, inset). The lack of a 
one-to-one correspondence between a transect plot and 
a Landsat pixel is expected to increase uncertainty in the 
explanatory variable (ΔNPV); we explore the implica-
tions of this uncertainty in Discussion: Differential tree 
mortality resulting from catastrophic wind disturbance. 
The posterior distribution of the slope and standard 
deviation were obtained using MCMC methods imple-
mented in the R package FilzbachR (Lyutsarev and 
Purves 2013).

Model 2: Individual-tree mortality depends on tree size 
and wood density within ΔNPV classes.—Model 2 

assumed that the probability of mortality (PM) for an 
individual tree depended on tree size (DBH) and wood 
density (WD) as, 

 where β0 is the intercept term. The model was fit as a 
generalized linear mixed model (GLMM) with intercept 
and slope parameters treated as random effects that varied 
across six groups of transect plots partitioned by ΔNPV 
class (<0, 0–0.04, 0.041–0.15, 0.151–0.4, 0.41–0.7, and 
>0.71, with higher values indicating greater disturbance 
severity). The ranges of the ΔNPV groups were set to more 
evenly distribute observations of live and dead trees. 
Including elevation did not improve fit in Model 2, likely 
because elevation was correlated with ΔNPV (r = 0.468; 
Appendix S1: Fig. S10). The GLMM was fit using the 
Gibbs sampling MCMC package, JAGS (version 3.4.0) in 
conjunction with the R package, rjags (Plummer 2014).

Model 3: Individual-tree mortality depends on ΔNPV, 
elevation, tree size, and wood density.—Model 3 assumed 
that the probability of mortality (PM) for an individual 
tree depended on DBH and WD, as well as a transect 
plot’s ΔNPV and topographic position (elevation), 
according to a logistic function generalized linear model 
(GLM), 

where β0 is the intercept, and ELEV is elevation. Eq. 3 
was fit using the R package FilzbachR. Model 
selection  (i.e., inclusion/exclusion of certain interaction 
terms) is explained in Methods: Model selection and 
assessment.

Model 4: Individual-tree mortality with spatial dependence.—
As explained in the introduction, tree mortality within a 
blowdown is an inherently spatial process, because the 
survival of an individual tree partially depends on whether 
its neighbors have been killed. To account for this spatial 
dependence, we used the stochastic partial differential 
equation GLM in the INLA package for R (Rue et  al. 
2009, Lindgren et al. 2011, Beguin et al. 2012). In this model 
(hereafter “spatial GLM”), a spatial random effect (SRE; 
constrained to have a mean of 0) is  used to model a 
continuous random spatial process. The SRE term is as an 
additive model term (for each spatial location) that accounts 
for spatial  dependence between observations, with the 
value of the SRE term varying among the spatial locations in 
a spatially autocorrelated manner (Beguin et al. 2012). The 
degree and scale of autocorrelation is not prescribed but 
rather is determined by the structure of the data as part of 
the model fitting procedure. Model 4 has the same form as 

(1)%mortality=β×ΔNPV+ϵ.

(2)PM =
1

1+e
−(β0+β1×DBH+β2×WD)

,

(3)Pm =
1

1+e
−(β0+β1×ΔNPV+β2×DBH+β3×WD+β4×ELEV+β5×ΔNPV×DBH+β6×ΔNPV×WD)

,
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Model 3, but with the SRE term included to account for 
spatially autocorrelated variation in mortality, 

In addition to sharing a common form with Model 3, 
this model form was confirmed by a formal selection 
procedure.

Model selection and assessment

For the first three models, the selection of covariate 
combinations was guided by Akaike’s information cri-
teria, whereas the deviance information criteria 
(Spiegelhalter et al. 2002) was used for the spatial GLM. 
To compare the performance of the different models, we 
calculated two goodness-of-fit indices for each model: 
the ratio of predicted to observed necromass in the 
transect plots and the coefficient of determination (R2) 
where R2 = 1 – (sum of squaresResidual)/(sum of squares-

Total). R2 was calculated for individual trees and indi-
vidual transect plots. The pixel ΔNPV of 27% of the 
landscape encompassing the blowdown, and 15.5% of 
the transect subplots were <0 (Appendix S1: Fig. S8). 
Negative ΔNPV occurs when pixels in the post-
disturbance image exhibit less NPV than the corre-
sponding pixels in the pre-disturbance image. The linear 
pixel-scale ΔNPV model (Model 1) predicts negative 
necromass when ΔNPV is negative. Therefore, for pur-
poses of comparison across all models, only trees in 
pixels with positive ΔNPV were used to calculate R2 for 
individual trees or by plot. Spatial autocorrelation in 
individual tree model residuals (which would indicate a 
model’s failure to capture spatial dependence patterns 
in mortality) was assessed with Moran’s I using the cor-
relog function in the pgirmess R package (Giraudoux 
2014). Residuals were considered to be spatially autocor-
related if Moran’s I was significantly different from zero 
(P < 0.05).

Landscape simulation of blowdown necromass

We used results from the four statistical models with 
a simple simulation model to compare the estimated 
total landscape-scale necromass generated by the 
blowdown. For each model, we combined the esti-
mated parameters (and uncertainties) with ΔNPV and 
ASTER DEM values to simulate necromass in 
30 × 30 m pixels across a 500.5-ha area (5,561 pixels) 
that includes the blowdown. In each pixel, we simu-
lated the mortality (or survivorship) of 50 trees, which 
was the mean number of trees present in a pixel area 
as estimated from the non-disturbed transect plots 
(ΔNPV  <  0). The DBH and WD of the 50 trees per 
pixel were chosen at random from trees inventoried in 
the non-disturbed transect plots. The aboveground 

biomass of each tree was estimated from its DBH and 
wood density using an allometric equation (Eq. 2.1 
from Chave et al. 2005). For Model 1, the estimated 

mortality fraction of each pixel was drawn from a 
normal distribution with a mean of the pixel ΔNPV 
multiplied by the slope β, with standard deviation σ, 
being drawn from the posterior distribution of the 
model fit. For Models 2–4, the posterior distributions 
from the model fits were used to parameterize the prob-
ability of death functions (Eqs.  2–4) for each indi-
vidual tree in the simulated landscape. The spatial 
GLM (Model 4) indicated that the spatial random 
effect increased with disturbance intensity (Appendix 
S1: Fig. S2), so the simulation required predictions of 
SRE across the landscape, which were obtained by 
fitting the SRE as a third degree polynomial predicted 
from the ΔNPV (see Appendix S1: Fig. S2 for details). 
To propagate model uncertainty, 1,000 sets of 
parameter values were drawn from each model’s joint 
posterior distribution and used for each of 1,000 simu-
lations to generate a distribution of landscape nec-
romass predictions for each model. For Model 4, each 
of the 1,000 parameter sets included a random draw 
from the sampling distribution of the polynomial SRE 
model fit to ΔNPV (Appendix S1: Fig. S2).

Results

Overview

The probability of individual tree mortality in the 
blowdown increased with both tree size and elevation, 
while it decreased with wood density (Fig. 3). The choice 
of model as assessed by goodness of fit had a large impact 
on simulated landscape necromass. The linear ΔNPV 
model (Model 1), which did not include differential tree 
mortality, most underpredicted the amount of necromass 
in the transect data (Table 2), while the spatial GLM 
(Model 4), which included differential tree mortality and 
accounted for spatial autocorrelation in mortality, most 
closely predicted the observed necromass in the transect 
data.

Plot-based tree mortality estimates

The plot-based model predicting the fraction of mor-
tality linearly from ΔNPV using the transect inventory 
data (Model 1) yielded a slope of 0.776 with 
ϵ∼N(μ=0.04,σ2 =0.032) and R2 = 0.632. When fit with 
the calibration plots, the slope was estimated to be 1.156 
with ϵ∼N(μ=0.05,σ2 =0.039) and R2  =  0.845 (Fig.  2). 
Both ΔNPV slope estimates are similar to prior studies 
(slope of 0.996 in Chambers et al. 2007, 1.03 in Negrón-
Juárez et al. 2010).

(4)Pm =
1

1+ e
−(β0+β1×ΔNPV+β2×DBH+β3×WD+β4×ELEV+β5×ΔNPV×DBH+β6×ΔNPV×WD+SRE)

.
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Differential tree mortality models

Models 2–4 all indicated that tree mortality was non-
random, with large trees, low wood density trees, and 
trees at higher elevations being the most likely to die 
(Fig. 3). When probability of mortality was determined 
with the spatial model, the largest tree in the field data 
(98.7  cm) was predicted to be up to five times more 
likely to have died than the trees with minimum 
diameter measured in this study (10 cm DBH) at high 
ΔNPV (Fig.  4). Trees with the lowest wood density 
(~0.18 g/cm3) were up to four times more likely to die 
than trees with the highest wood density (~1.1 g/cm3) 
at high levels of disturbance intensity. Model 2, the 
ΔNPV-partitioned GLMM, generally showed the effect 
size of DBH to increase with higher levels ΔNPV 
(Appendix S1: Table S2). The interaction between 
DBH and ΔNPV shows that large diameter trees are 
even more likely to die when disturbance intensity is 
high (Table  1, Figs.  3A and 4A). The interaction 
between WD and ΔNPV suggests that the effect of 
wood density towards promoting survival is stronger 
as disturbance intensity increases (Table 1, Figs. 3B and 
4B; Appendix S1: Figs. S4 and S6). Large trees with 
low wood density (i.e., high DBH : WD ratio) are the 
most prone to die, even in the lower quarter of the 
ΔNPV spectrum (Fig. 3D).

Spatial vs. non-spatial GLM

The spatial GLM was the only model of those tested 
that reduced spatial autocorrelation, as measured by 
Moran’s I, to a non-significant (P > 0.05) level across all 
tested distance classes (30–1,450  m; Appendix S1: Fig. 
S1). The coefficient estimates for the covariates in the 
spatial GLM and the non-spatial version were similar 
(Table 1), but 95% credible intervals were narrower for 
the non-spatial GLM, as expected when spatial autocor-
relation is ignored (Lichstein et al. 2002). The probability 
of mortality of individual trees was generally overpre-
dicted by the non-spatial individual tree-based models 
(Models 2 and 3; Table 2; Appendix S1: Fig. S9).

Goodness of fit of model necromass predictions

When comparing cumulative predicted necromass 
from the different models, the linear ΔNPV model (Model 
1) most underpredicted the necromass (59.3% pre-
dicted : observed), while the non-spatial GLM (Model 3) 
most over predicted necromass (111.2%; Table 2). The 
spatial GLM (Model 4) predicted 91.2% of the observed 
necromass, and the ΔNPV-partitioned GLMM (Model 
2) predicted 111.1% (Table 2). The linear ΔNPV model 
(Model 1) performed best at predicting necromass when 
R2 was calculated by individual tree, while the Spatial 

Fig. 3.  Estimated probability of mortality from a catastrophic wind disturbance of a tree with median tree characteristics, as 
predicted by the spatial logistic regression model with the SRE (Model 4). Shaded regions represent 95% confidence interval as 
calculated by the Delta Method (Jackson 2011). The median tree characteristics were 17.3 cm DBH, 0.64 wood density, and 149 m 
elevation.
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GLM (Model 4) performed best when R2 was calculated 
by plot (Table 2).

Landscape necromass estimation from simulation 
modeling

The linear ΔNPV model (Model 1) that used the 
transect data rather than the calibration data predicted 
the least necromass across the landscape (Fig.  5). 

Compared to this model, the ΔNPV-partitioned GLMM 
(Model 2), the spatial GLM (Model 4), and the 
non-spatial GLM (Model 3) models predicted 67.9%, 
51%, and 93.6% more necromass, respectively (Appendix 
S1: Table S3). The linear ΔNPV model (Model 1) param-
eterized from the ΔNPV calibration plots predicted 
31.5% more landscape-level necromass than the same 
model parameterized from the transect data. The uncer-
tainty of cumulative landscape necromass estimates 

Fig. 4.  The ratio of estimated mortality probabilities between small and large (2.5 and 97.5% quantiles of the transect data, 
respectively) for (A) tree diameter, (B) wood density, and (C) elevation as a function of disturbance intensity, illustrating the 
interaction between disturbance intensity and tree/site characteristics. Large and small values were: 55 and 10.3 cm DBH; 0.97 and 
0.33 wood density; and 162 and 134 m elevation. The model used was the spatial GLM (Model 4). The dashed line indicates no 
difference in the mortality probability.

Table 1.  β coefficients for fixed effects in a non-spatial generalized linear model (GLM; Model 3) and a spatial GLM (Model 4). 

Non-spatial GLM Spatial GLM

Effect 2.5% 50.0% 97.5% 2.5% 50.0% 97.5%

Intercept −15.784 −12.907 −9.626 −20.503 −11.617 −2.762
ΔNPV 0.882 3.404 6.029 −1.564 2.021 5.648
DBH −0.006 0.010 0.025 −0.007 0.012 0.031
WD −1.597 −0.446 0.789 −2.097 −0.633 0.824
Elevation 0.050 0.071 0.091 −0.001 0.059 0.118
ΔNPV : DBH 0.067 0.123 0.183 0.050 0.110 0.176
ΔNPV : WD −7.931 −4.272 −0.688 −7.494 −3.401 0.595

Notes: 2.5, 50, and 97.5% Bayesian credible intervals are presented. Abbreviations are ΔNPV, difference in non-photosynthetic 
vegetation before and after disturbance event; DBH, diameter at breast height (cm); WD, wood density (g oven dry/cm3 green 
volume); Elevation (m); ΔNPV : DBH, ΔNPV interaction with diameter; ΔNPV : WD, ΔNPV interaction with wood density.
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varied considerably among the different models (Fig. 5; 
Appendix S1: Table S3). The ΔNPV-partitioned GLMM 
(Model 2) and the spatial GLM allocated considerably 
less necromass into pixels with negative ΔNPV than the 
other models (Appendix S1: Table S1).

Discussion

Differential tree mortality resulting from catastrophic 
wind disturbance

We found that tree structural attributes that enhance 
survival during catastrophic wind disturbance in the 
Peruvian Amazon are different than attributes com-
monly cited to promote survival during periods of back-
ground mortality. For example, large Neotropical 
canopy emergent trees have been observed to exhibit 
approximately half the annual mortality of the landscape 
average (Thomas et al. 2013), while other observations 
have suggested increasing diameter to be an inconsistent 
predictor of death under background mortality condi-
tions (Chao et al. 2008). In contrast, we observed drasti-
cally higher probabilities of mortality for large trees from 
a catastrophic wind disturbance event. This contrast in 
predictive mortality of a trait highlights the importance 
of differentiating periods of background mortality from 
episodes of catastrophic mortality. Similarly, increased 
mortality has been reported for large trees near edges 
from fragmented forests in the central Amazon (Laurance 
et al. 2000), where increased exposure to wind has been 
suggested to be one of the root causes. This contrast in 
size effects between background and episodic mortality 
is not unique to wind disturbance, as a recent study also 
found a size mediated increase in mortality rates for large 
trees exposed to drought (Bennett et  al. 2015). Forest 

simulators and ecosystem models may produce more 
accurate mortality predictions if different trait-based 
mortality algorithms are implemented to decide which 
trees die under background mortality vs. during a cata-
strophic disturbance event. As in Neotropical forests, 
blowdowns are also well documented in northern tem-
perate forests (Canham and Loucks 1984), where the size 
dependent effect upon tree mortality has also been 
observed from storm windthrow events in the Adirondack 
mountains of New York, USA (Canham et al. 2001), a 
236,000-ha blowdown in the southern boreal forests of 
Minnesota, USA (Rich et al. 2007), and in tree mortality 
from tornado impacted forests in the Eastern USA 
(Peterson 2007). In our study, the probability of small 
tree mortality only increased at very high values of ΔNPV 
(Fig.  3A), which suggests that wind disturbance only 
affects small trees if disturbance is severe enough to kill 
many large trees. This has also been observed in the 
central Amazon during periods of elevated wind distur-
bance (Toledo et  al. 2012), as well as in other studies 
covering periods of background levels of mortality (Clark 
and Clark 1991, Chao et al. 2009).

Wood density has often been cited as a predictor of 
background tree mortality in tropical forests (Chao et al. 
2008), explaining ~31% of the interspecific variation in 
tree mortality rates across a network of large forest 
inventory plots (Kraft et al. 2010). Unlike tree size, wood 
density likely promotes survival through both periods of 
background and catastrophic mortality as wood density 
is highly correlated with strength (Niklas 1992), which is 
important because branch-fall is a major source of 
damage for understory and sub-canopy trees (Clark and 
Clark 1991). Tree diameter, wood density, elevation, and 
disturbance intensity interacted to alter the probability 
of mortality within a blowdown. For example, the 

Table 2.  Goodness of fit between model necromass predictions and observed necromass from transect plot data. 

Model General description Spatial Traits Question R
2
tree

R
2
plot

Pred.
Obs.

Linear ΔNPV- calibration 
data (1)

Predicts fraction of adult tree 
mortality from blowdown; fit 
with ΔNPV calibration plot 
data.

no no baseline 0.45 0.57 0.88

Linear ΔNPV- transect 
data (1)

Predicts fraction of adult tree 
mortality from blowdown; fit 
with transect plot data.

no no baseline 0.38 0.47 0.59

ΔNPV partitioned GLMM 
(2)

Hierarchical model that predicts 
individual mortality using 
DBH and WD; partitioned by 
disturbance intensity using 
ΔNPV (binned).

no yes Q1 0.21 0.54 1.11

Non-spatial GLM (3) Predicts individual mortality 
using ΔNPV (continuous), 
DBH, WD, and elevation.

no yes Q1 0.29 0.55 1.11

Spatial GLM (4) Same as non-spatial GLM, but 
accounts for spatial depend-
ence between observations.

yes yes Q2 & Q3 0.34 0.58 0.91

Notes: The model number is listed in parentheses. Traits included diameter at breast height (DBH) and wood density (WD). Q1–3 
are reference questions from last paragraph of introduction.
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difference in probability of death between low and high 
wood density trees is not as large as differences in 
mortality due to size or elevation (Figs.  3 and 4), yet 
when wood density is coupled with tree size, the differ-
ences in probability of death are at their most extreme 
(Fig. 3D; Appendix S1: Fig. S5), in that large trees with 
low wood density are especially likely to die in a wind 
disturbance.

For this blowdown, individual trees at higher elevation 
were more prone to die (Table  1, Figs.  3 and 4). The 
blowdown epicenter was located on a ridge, so this ele-
vation effect on mortality may not be translatable to 
wind disturbances with epicenters on floodplains or 
depressions. Yet in a study from the central Amazon, 
approximately one quarter of the variation in tree mor-
tality across a time interval with multiple wind storms 
could be attributed to variation in topography and soil 
fertility (Toledo et al. 2011). Potentially this could be due 
to increased exposure to high wind speeds on ridges that 
remove large individuals (Everham and Brokaw 1996), 
enhanced drought stress on ridges (Silva et al. 2013), or 
some combination of the two factors.

At very high levels of disturbance intensity, individual 
differences in diameter and elevation position become 
less important in differentiating which trees will die 
(Fig.  4). This may be explained by two interrelated 
causes: (1) as disturbance intensity increases and the 

fraction of trees that die approaches 1, mortality (by defi-
nition) becomes less discriminating, and (2) as distur-
bance intensity increases, each tree is under greater risk 
of being crushed or damaged by a neighboring tree. We 
cite two results to support the second claim. First, the 
SRE term of the spatial GLM, which captures the 
influence of neighboring trees on an individual’s proba-
bility of mortality, increased the probability of mortality 
when ΔNPV > 0.065 and plateaued when ΔNPV > 0.3 
(Appendix S1: Fig. S2). Second, we found the difference 
in probability of mortality between high and low WD 
trees increased with ΔNPV (Fig. 4), which is consistent 
with the idea that high WD should promote survival from 
damage caused by falling neighbors.

Our estimated landscape necromass is most likely an 
underestimate of the actual longer-term necromass pro-
duced by the blowdown because only the number of trees 
killed within one year of the blowdown is estimated, 
while more died in the years following. Second, linear 
modeling of the ΔNPV metric is not robust to detecting 
treefall events composed of fewer than six trees (Negrón-
Juárez et al. 2011), so many smaller treefall events were 
undetected. Finally, coarse woody debris that results 
from mechanisms other than tree mortality, including 
crown breakage and branchfall, likely represent a sig-
nificant contribution to the true necromass pool created 
in the blowdown. For example, Palace et al. (2008) found 

Fig. 5.  Total estimated tree mortality (left column) and corresponding necromass (right column) from the simulated landscape 
using four different models. For Model 1, the dark line represents the simulation from the model fit from the transect data and the 
dotted line represents the simulation generated from the model fit with the calibration data. For all other models, only the transect 
data was used. Solid vertical lines represent the 50% quantile, while dotted lines represent the 2.5 and 97.5%.
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that coarse necromass was underestimated by 45% when 
only derived from tree mortality rates.

Implications of spatial autocorrelation for estimating 
mortality effects and landscape-scale necromass

Landscape necromass simulations using the spatial 
GLM predicted 51% more necromass than the linear 
ΔNPV model with random-mortality fit using the transect 
data, yet only 15% more necromass than the random 
mortality linear ΔNPV fit using the calibration data. The 
difference in necromass estimates was a direct result of 
the difference in the slope parameters between the linear 
regression models, where the slope of the transect fit 
(0.78) was lower than the calibration plot fit (1.16). This 
discrepancy was likely the result of the rectangular 
transect plots spanning multiple ΔNPV pixels (thereby 
introducing error in the explanatory variable and 
reducing its effect size; Lichstein et al. 2014), whereas the 
square calibration plots were located within the center of 
a single pixel. The ΔNPV error induced by crossing mul-
tiple pixels in the transect data is likely what caused the 
reduced slope in the ΔNPV–mortality relationship fit 
with the transect data (Fig.  2.). It is likely this mis-
alignment also served to reduce the effect size of the 
ΔNPV term in the differential mortality models and 
reduced their overall ability to explain variation in mor-
tality between individuals.

The clarity of the linear mortality–ΔNPV relationship 
was also obscured by the study region’s occasional 
complex topography. Slopes in excess of 45° (30-m scale) 
are not uncommon in the study region, producing a 
complex pattern of illumination and shading on top of the 
canopy, which in turn affects ΔNPV estimates. Two of the 
three largest model residuals in the relationship from the 
ΔNPV calibration plots were from areas where the field 
measured sub-plot slope was in excess of 35°. Despite the 
complex topography, the estimated slopes of the linear 
mortality–ΔNPV relationships are fairly consistent with 
what has been estimated from studies in other tropical 
forest landscapes (Negrón-Juárez et al. 2010, 2011).

Whereas the overall heterogeneity of disturbed forest 
patches across the blowdown was captured by mapping 
ΔNPV, addressing spatial dependence between pixels and 
between individual tree-level observations was crucial to 
constraining the predictions for a tree’s probability of 
death. The coefficients for DBH, wood density and ele-
vation in the non-spatial and spatial GLMs were gen-
erally similar (Table 1), yet the inclusion of the spatial 
random effect in the spatial GLM better constrained the 
estimation of necromass in the lower range of the ΔNPV 
spectrum. For example, the simulated average necromass 
per killed tree was similar between both the non-spatial 
and the spatial GLMs (Appendix S1: Fig. S7), yet the 
non-spatial GLM simulation of landscape disturbance 
estimated 26% more tree death and >27% more nec-
romass than the spatial GLM. This discrepancy was due 
to the non-spatial GLM estimating more necromass in 

the lower ΔNPV range of pixels (Appendix S1: Table S1 
and Fig. S9), whereas the SRE of the spatial GLM 
increased survival when ΔNPV was under 0.065, and 
increased mortality when ΔNPV was higher (Appendix 
S1: Figs. S2 and S3).

It was essential that in scaling up necromass predictions 
from the plot to the landscape level that mortality was 
not overpredicted in the lower portion of the disturbance 
intensity spectrum because the majority of pixels in the 
landscape encompassing the blowdown have low ΔNPV 
values (Appendix S1: Fig. S8). Because the spatial GLM 
model’s residuals were not spatially autocorrelated, had 
the smallest error of predicted : observed necromass, did 
not overpredict mortality in the low ΔNPV pixels, and 
produced the highest R2 for predicted necromass by indi-
vidual plot, we suggest that the spatial GLM provides the 
best model to estimate landscape necromass.

Conclusions

We found that two factors, differential mortality and 
the spatial structure of mortality, acted independently to 
affect total necromass on the landscape. Simple relation-
ships relating tree mortality to disturbance metrics in 
tropical forests can oversimplify the complex processes 
that create important variation in tree mortality related 
to tree and landscape characteristics. We show evidence 
of differential mortality within a northwestern Amazon 
forest affected by a catastrophic wind disturbance event. 
While estimating landscape necromass with the linear 
ΔNPV relationship coupled with random mortality is by 
far the easiest to implement, we conservatively estimate 
that this method underpredicts total blowdown nec-
romass by 15–51% for the blowdown documented here. 
Probabilistic estimation of tree mortality is better 
approached when underlying spatial processes are 
included in models of tree mortality. Failure to account 
for spatial autocorrelation may produce undue confi-
dence in parameter estimates, of which even small differ-
ences can result in large estimation discrepancies when 
scaled to the landscape. Whereas tree death from wind 
disturbance and differential probability of death have 
sometimes been incorporated into local scale gap 
dynamic models, this has yet to be incorporated into 
larger regional scale forest carbon models. Incorporating 
differential mortality from wind disturbance is likely to 
augment estimates of forest biomass lost because of the 
strong predisposition of large trees to die.
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