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Abstract

Ecologists have limited understanding of how geographic variation in forest biomass arises from
differences in growth and mortality at continental to global scales. Using forest inventories from
across North America, we partitioned continental-scale variation in biomass growth and mortality
rates of 49 tree species groups into (1) species-independent spatial effects and (2) inherent differ-
ences in demographic performance among species. Spatial factors that were separable from species
composition explained 83% and 51% of the respective variation in growth and mortality. Moder-
ate additional variation in mortality (26%) was attributable to differences in species composition.
Age-dependent biomass models showed that variation in forest biomass can be explained primar-
ily by spatial gradients in growth that were unrelated to species composition. Species-dependent
patterns of mortality explained additional variation in biomass, with forests supporting less bio-
mass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or
to biotic disturbances (e.g. Abies balsamea).
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INTRODUCTION

Forests contain 45% of global terrestrial carbon stores
(Bonan 2008), and each year absorb about 25% of the carbon
emitted to the atmosphere through the burning of fossil fuels
(Pan et al. 2011a). Despite the present and future importance
of forest carbon, changes in the global terrestrial carbon sink
remain the largest uncertainty in predictive models of the
Earth’s coupled carbon–climate system (Friedlingstein et al.
2006). The biomass of living trees represents a large share of
all vegetation carbon, and is also the precursor to a substan-
tial fraction of soil carbon. Processes that regulate forest bio-
mass at broad spatial and temporal scales therefore have a
major influence on global terrestrial carbon cycling.
Annual biomass accumulation (or loss) is the net result of

forest growth (defined here as aboveground woody biomass
production per unit area) and mortality. Global variation in
forest productivity has been mapped with both ground-based
and remote sensing data, and ecologists have successfully
developed predictive models that relate productivity to under-
lying environmental drivers (Leith 1975; Yuan et al. 2007).
Our knowledge of broad-scale patterns in forest mortality is
less well developed, but is advancing. In recent years, ecolo-
gists have quantified continental and global patterns in mor-
tality and disturbance (Stephenson & van Mantgem 2005;
Lines et al. 2010), and have begun defining the causal rela-
tionships underlying spatial variation in mortality (Stephenson
et al. 2011). At present though, the available data present an

unclear picture of how climate-related variation in mortality
affects global terrestrial carbon balance (Smith et al. 2013).
Spatial variation in forest biomass can provide valuable

insights into carbon storage under global change. A key ques-
tion concerns the degree to which forest biomass is regulated
by differences in growth vs. mortality across space. Both of
these processes can be affected by spatial variation in environ-
mental conditions, such as climate and soil, as well as by the
species composition of a particular area through interspecific
variation in demographic performance. Species turnover
across space and time could be particularly important if shifts
in tree species composition influence ecosystem responses to
environmental change. For example, climate warming is pro-
jected to induce physiological increases in the productivity of
New Zealand forests, but many of these growth increases
could be offset if slow-growing lowland species track their cli-
mate niche and migrate into cooler montane forests (Coomes
et al. 2014). A multi-decadal drought in Ghana has produced
shifts in species composition that have in turn increased forest
biomass, in strong contrast to the biomass losses that often
follow drought events in the short term (Fauset et al. 2012).
These examples suggest that tree species turnover can have
important regional effects on forest biomass.
To quantify demographic controls over forest biomass at

broad scales, we must disentangle the influence of species
composition on growth and mortality from that of inherent
spatial and environmental variation, then evaluate the degree
to which each source of variation affects forest biomass.
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Addressing this issue empirically requires demographic data
across suitably broad spatial and compositional gradients, as
well as analytical methods that can isolate the effects of differ-
ent sources of demographic variation on forest biomass. Here,
we integrate data from forest inventory plot networks span-
ning the United States and Canada to estimate continental
variation in demographic performance from repeat censuses
of over 4.9 million individual trees. These data cover most of
the spatial extent and species composition of temperate and
boreal forests across North America. We statistically partition
continental-scale variation in both growth and mortality of 49
tree species groups into three components: (1) spatial effects,
which describe common gradients in demographic perfor-
mance across space for all species; (2) species effects, which
describe consistent differences in performance among species
groups; and (3) residual effects, which capture idiosyncratic
variation in species group performance in different locations.
Finally, we quantify how geographic variation in forest bio-
mass across North America depends on the above three types
of demographic effects for both growth and mortality.

METHODS

Forest inventory data

We estimated continental variation in forest growth, mortality
and biomass from networks of forest inventory plots across
the United States and Canada. Data for the United States
were obtained from 121 521 plots in the Forest Inventory and
Analysis (FIA) program that had been re-measured after a
5.3 � 1.8 (mean � SD) year interval. These plots collectively
included 3 479 132 trees > 2.54 cm DBH. Plots spanned 46 of
the 48 conterminous states (excluding New Mexico and
Wyoming, where plots had not yet been re-measured), as well
as Alaska, Puerto Rico and the US Virgin Islands. Data for
Canada were obtained from individual government agencies
in 8 of the 10 provinces (excluding Alberta and Prince
Edward Island). Across Canada, 18 973 plots collectively
included 1 431 906 individual trees. Plot size, minimum DBH
(range 1–9 cm) and re-measurement intervals (8.5 � 3.5 years)
all varied among provinces.
We divided the inventory plots into four regions by political

jurisdiction (conterminous states plus US territories, Canada
plus Alaska) and longitude (east or west of 97 °W). We then
applied a k-means clustering procedure within each region to
aggregate plots into a set of 150 total groups, hereafter
referred to as clusters (Fig. 1). The plot clusters averaged
54 9 103 km2 in size, and were created so that each contained
a suitably large sample of trees for estimating mean demo-
graphic performance across a broad landscape. We chose this
number of clusters such that each cluster represented a rela-
tively distinct set of environmental conditions, there was high
beta diversity among clusters and cluster size approximated
the resolution of global vegetation models (Appendix D pro-
vides a detailed rationale for the number of clusters, as well
as a sensitivity analysis that shows our main results were
robust when plots were aggregated into more or fewer clus-
ters). All statistical modelling was subsequently performed at
the cluster level rather than for individual plots or trees.

For each cluster (c), we calculated the mean biomass
(B\obs[

c;s ; Mg�ha�1), relative abundance by biomass (Ac,s; unit-
less), growth (G\obs[

c;s ; Mg ha�1 year�1) and biomass mortal-
ity (M\obs[

c;s ; year�1) for each of 24 softwood and 25
hardwood species groups (s) defined by the FIA program
(O’Connell et al. 2013; see Appendix A for detailed data pro-
cessing procedures). Most (26 of 49) of the species groups
effectively represented a single species (> 90% of individuals
in the group being one species), but others comprised multiple
species that were geographically or taxonomically related and
shared similar functional characteristics. To ease readability,
we hereafter use the term ‘species’ in referring to these 49
groups (e.g. species composition, species effects).
We also estimated an annual harvest rate (HSPAT; year

�1)
for each cluster. For clusters in the eastern United States, we
used the FIA data to calculate harvest rate as the biomass of
trees that were harvested between censuses divided by the bio-
mass of all trees initially alive and by the number of years
between censuses. Plots in the western United States and in
Canada did not generally contain tree-level data on harvest-
ing. For these regions, we estimated the annual harvest rate
from reported state- or province-level timber yields relative to
the estimated growing stock (Canadian Council of Forest
Ministers 2005, Smith et al. 2009).

Partitioning variation in demographic rates

Variation in community-level growth or mortality can arise
through different combinations of species and spatial effects on
demographic performance. We distinguish four cases, depicted
conceptually in Fig. 2. In the first case, we expect that species
performance does not change across clusters, and that commu-
nity-level growth or mortality is determined only by the relative
abundance of species with different demographic rates
(Fig 2a). Conversely, species might have nearly equal perfor-
mance in clusters where they co-occur, with their demographic
rates increasing in concert along latent environmental gradients
(Fig. 2b). Even without identifying the particular environmen-
tal factors that define these gradients, this pattern can be dis-
cerned by estimating spatial effects that describe consistent
changes in the performance of all species present in a given
cluster. Combining the previous two cases, species may
respond not only to environmental gradients in a common
manner, but also have intrinsic differences in performance
(Fig. 2c). Finally, species may respond to environmental condi-
tions individualistically (Fig. 2d). Species’ performances would
be only weakly correlated with one another in this last case,
implying strong species 9 environment interactions in their
demographic rates.
None of these cases imply anything about how species com-

position is itself controlled by environmental conditions. We
are not attempting to explain why particular species are found
in a given location, or how they might perform outside of
their current range. Rather, we seek to tease out the relative
importance of environmental conditions and species composi-
tion in determining variation in forest growth and mortality
(and hence biomass) across North America.
To discriminate between the four cases described above, we

constructed hierarchical Bayesian models that predict species
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growth and mortality in each cluster from a combination of
species and spatial effects. We predicted the growth (G\pred[

c;s ;
Mg ha�1 year�1) and mortality (M\pred[

c;s ; year�1) rates of
species s in cluster c as:

G\pred[
c;s ¼ Ac;s � exp g0 þ gc þ gs þ gc�sÞð ð1Þ

M\pred[
c;s ¼ logit�1 m0 þmc þms þmc�sÞð

where Ac,s, the relative abundance of the species in that clus-
ter, scales growth for differences in species’ abundance among
clusters (i.e. the biomass growth of a species is proportional
to its share of the occupied growing space). The parameters of
the models included: (1) global constants (g0, m0) that repre-
sent the performance of a typical (or mean) species in a typi-
cal environment (cluster); (2) spatial effects (gc, mc for each
cluster c) that represent how the performance of a typical spe-
cies would vary among clusters with different environmental
conditions; (3) species effects (gs, ms for each species s) that
represent how the performance of each species would vary
from others in a typical cluster and (4) residual effects (gc�s,
mc�s for each species 9 cluster combination) that capture indi-
vidualistic variation in species performance in each cluster.
For both the growth and mortality models, spatial effects,
species effects and residual effects for each species were all
modelled as normally distributed random effects. We designed
these demographic models to closely fit raw observations so
that the models could effectively partition observed variation
among different effects. The relative magnitudes of species,
spatial and residual effects thus determined which of the cases
in Fig. 2 best describe species-level performance: (1) large spe-
cies effects, zero spatial or residual effects; (2) small species
effects, large spatial effects, zero residual effects; (3) large spe-
cies and spatial effects, zero residual effects; (4) large species,
spatial, and residual effects.

We estimated the posterior distribution of all model param-
eters using Bayesian methods. Observed growth and mortality
for each species 9 cluster combination were modelled as nor-
mal and beta-distributed random variables, respectively, with
expected values given by the predicted rates in eqn 1. Further
technical details on model specification and fitting can be
found in Appendix B. Species that were absent from a given
cluster (i.e. Ac,s = 0) had no effect on model fitting nor on the
estimation of cluster-level performance described in the fol-
lowing section.
We implemented the demographic models using the Stan

modelling language and software (Stan Development Team
2014). We obtained posterior samples from six MCMC chains
and confirmed that these chains all converged to a well-mixed
distribution of posterior parameter values. We verified that
model parameters were identifiable by generating new pseudo-
data using the hierarchical parameter distributions, then con-
firming that our estimation procedure could successfully
recover known underlying parameter values (see Appendix C).
All parameters were summarised by their posterior mean for
subsequent analyses.

How demographic variation controls forest biomass

We next used the statistical models of demographic perfor-
mance to isolate how species and spatial effects on growth
and mortality each correlated with cluster-level variation in
forest biomass. We did this by using the parameters for spe-
cies-level performance to construct a series of reduced models
that estimated growth and mortality at the level of each indi-
vidual cluster (Table 1); we then evaluated the goodness of fit
of simple regressions between each model of cluster-level per-
formance and forest biomass. The cluster-level demographic

Aboveground
Biomass (Mg/ha)

<50
70

100
140
200
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Figure 1 Map of the geographic distribution of individual forest plots (grey) and 150 plot clusters (coloured circles) across North America. Plots were

aggregated into clusters using a k-means clustering algorithm that minimised the sum of the distance between each plot and the centre of the nearest

cluster. We then calculated mean cluster-level biomass, growth and mortality for each of the 49 species groups defined by the Forest Inventory and

Analysis program. We used a combination of plot data and state- or province-level reporting to estimate an annual harvest rate for each cluster.
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models all used the same set of parameter estimates defined
above, but each reduced model omitted the influence of one
or more sources of variability by setting the relevant random-
effect parameters to zero.
Fig. 2 provides a convenient way to visualise this procedure.

Our full demographic models generated predictions that
resembled Fig. 2d, and could nearly perfectly explain varia-
tion in cluster-level growth and mortality. By replacing the
estimated residual effects with zeros, the full models are
reduced to the case shown in Fig. 2c (i.e. perfect correlation
in species performance across space). If species 9 environ-
ment interactions in demographic rates are unimportant, then
we would expect the cluster-level demographic rates predicted
in Fig. 2c to explain just as much variation in forest biomass
as those in Fig. 2d. Following similar logic, we can test the
importance of species or spatial effects to variation in biomass
by setting the appropriate terms to zero to obtain the patterns
in Fig. 2a or 2b. We can then assess how much our ability to
predict cluster-level biomass from demographic performance
is degraded by each simplification of the full demographic
model.
It is important to recall that spatial and species effects were

estimated only once, so that the simpler models were each
obtained from the full models by dropping specific terms. For
example, our predictions for mortality with spatial effects only
(MSPAT, depicted in Fig. 2b) were obtained using parameter

estimates from the full model but with the non-spatial terms
set to zero (i.e. m0 and mc estimated using eqn 1, and
ms = mc∙s = 0). If instead one were re-estimate a model with
spatial effects (m0 and mc for the MSPAT model) while ignor-
ing species composition, the resulting model would implicitly
include differences in species composition among clusters,
rather than controlling for species composition as our analysis
does.

Modelling forest biomass from demography

We sought to estimate the relative importance of different
demographic effects (e.g. spatial and species effects on growth
and mortality) for explaining variation in forest biomass. To
do this, we incorporated the cluster-level demographic models
in Table 1 into a simple model that predicted biomass (B;
Mg ha�1) as a function of growth (G; Mg ha�1 year�1), mor-
tality (M; year�1), harvest removals (H; year�1) and mean for-
est age (T, year):

B ¼ G

MþH
� 1� e� MþHð Þ�T
� �

ð2Þ

Equation 2 specifies that, within each cluster, biomass
increases monotonically with mean forest age towards an
asymptote calculated as the ratio of annual increment to
loss rate (G/(M + H)). The loss rate determines how quickly
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Figure 2 Hypothetical scenarios for how species composition and/or environmental conditions may explain variation in forest growth or mortality across

space. The x-axis represents a latent environmental gradient (i.e. related to unmeasured physical factors) affecting species-level demographic performance.

The dashed coloured lines represent the performance of individual species across this gradient, and the thick solid lines represent community-level

performance averaged across the species present in a given location. (a) Performance varies among species, but individual species (where they occur) are

unaffected by environmental conditions; community-level performance is determined only by species composition. (b) All species have approximately equal

performance in a given environment; community-level performance is largely determined by the environment and does not strongly depend on species

composition. (c) Performance varies among species, but each species responds to environmental conditions in a common manner; community-level

performance depends on both species composition and the environment. (d) Species responses to environmental conditions are only weakly correlated with

one another (due to species 9 environment interactions); community-level performance depends on how individual species perform in a particular

environment. The figure illustrates hypothetical scenarios based on the artificial data that were generated from a simple additive model where the ratios of

the standard deviations for species, environment and interaction terms were (a) 1 : 0 : 0; (b) 1 : 4 : 0; (c) 1 : 1 : 0; (d) 2 : 2 : 1.
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biomass accumulates, with a cluster supporting half of its
maximum biomass at a mean age of T = ln(2)/(M + H). By
using the different formulations for growth and mortality in
Table 1 with this model, we can evaluate how well each
demographic effect explains variation in biomass while con-
trolling for differences in age and harvest rate among clus-
ters.
Similar model formulations have been used for modelling

vegetation biomass based on the difference between input and
loss rates elsewhere (Olson 1963; Kucharik et al. 2000; Fisher
et al. 2008; Smith et al. 2013). The differential equation form
of this model only strictly applies at the stand level, and so
eqn 2 is not appropriate for predicting dynamic changes in
cluster biomass. We do not expect this limitation to affect
comparisons of different growth and mortality effects, and we
use eqn 2 in a purely heuristic way to predict forest biomass
from cluster-level estimates of G, M, H and T. (To verify that
results were robust, Appendix E presents an alternative, multi-
ple regression approach for predicting biomass from different
growth, mortality, harvest and age effects; this modelling
approach produced very similar conclusions to those derived
from eqn 2.)
We used Pan et al.’s (2011b) forest age map to estimate

the mean age of each cluster (spatially averaged across the
minimum convex polygon enclosing its plots). We then used
eqn 2 to predict cluster-level biomass with each combination
of the growth and mortality models in Table 1. By compar-
ing the fit of models with spatial, species and residual
effects incorporated into G and M, we quantified the contri-
bution of each type of effect to predicting observed bio-
mass. We also considered three formulations for harvest
removals: a version where harvest rates were estimated for
each cluster separately (HSPAT), a version where the global
mean harvest rate was used (HCONST = 1.03% per year)

and a version that did not explicitly account for harvest
losses (HZERO = 0% per year). Together, these yielded a set
of 5 growth 9 5 mortality 9 3 harvesting = 75 biomass
models. We fit a simple linear regression between log-
observed and log-predicted biomass for each of these mod-
els to correct for potential biases in the biomass estimates
from eqn 2, and compared the resulting R2 and AIC values
across models. Each of the 75 biomass models had three
fitted parameters (regression slope and intercept, plus resid-
ual error) regardless of which effects were included in G,
M, and H.
The importance of spatial, species and residual effects on

growth and mortality, as well as spatial variation in harvest
rate, was estimated from the sum of the Akaike weights
(Σxi) associated with each variant of G, M and H. These
weights measure the evidence for each particular demo-
graphic effect (CONST, SPEC, SPAT, BOTH and FULL
versions of G and M; ZERO, CONST and SPAT versions of
H) belonging in the best model within the set (Burnham &
Anderson 2002).

Environmental correlates of spatial variation

To aid in interpreting spatial gradients in growth and mor-
tality, we performed simple regressions between our esti-
mated spatial effects models (GSPAT, MSPAT) and a basic set
of climatic and edaphic variables. Climatic variables included
mean annual temperature and precipitation from the World-
Clim database (Hijmans et al. 2005). Edaphic variables
included the sand, silt and clay content of the topsoil layer
from the Unified North American Soil Map (Liu et al.
2013). All environmental variables were spatially averaged
across the minimum convex polygons that enclosed each
cluster’s plots.

Table 1 Formulae and interpretations for simplified models of cluster-level forest growth and mortality

Model labels

Random effects

set to zero Formulae Interpretation

GCONST/MCONST All GNULL ¼ exp g0ð Þ

MNULL ¼ logit�1 m0ð Þ

There is no spatial variation in growth/mortality.

This is a trivial case, but provides a

basis of comparison for the other models

GSPEC/MSPEC Spatial, residuals GSPEC ¼
X

s
As � exp g0 þ gsð Þð Þ

MSPEC ¼
X

s
As � logit�1 m0 þmsð Þ� �

There is variation in growth/mortality among species,

but species performance is constant across clusters (Fig. 2a)

GSPAT/MSPAT Species, residuals GSPAT ¼ exp g0 þ gcð Þ

MSPAT ¼ logit�1 m0 þmcð Þ

There is variation in growth/mortality among spatial

clusters, but not among co-occurring species (Fig. 2b)

GBOTH/MBOTH Residuals GBOTH ¼
X

s
As�exp g0 þ gc þ gsð Þð Þ

MBOTH ¼
X

s
As � logit�1 m0 þmc þmsð Þ� �

There is variation among both clusters and species.

Species share a common response to latent

environmental factors (Fig. 2c)

GFULL/MFULL None GFULL ¼
X

s
As � exp g0 þ gc þ gs þ gc�sð Þð Þ

MFULL ¼
X

s
As � logit�1 m0 þmc þms þmc�sð Þ� �

Saturated model that approximates the observed

growth/mortality data. Species can respond to

latent environmental factors in an individualistic

manner (Fig. 2d)
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RESULTS

Partitioning components of demographic variation

Growth of different species varied in concert across space
(Fig. 3), and this species-independent growth variation was
strongly correlated with forest biomass. Specifically, spatial effects
accounted for 83% of the variation in forest growth across North
America (Table 2), and explained considerable variation in forest
biomass in each of four sub-continental regions (R2 = 48–78%;
Fig. 4c). By contrast, spatial mortality effects explained 51% of
all variation in mortality across North America, but were an
inconsistent predictor of forest biomass (R2 = 0.01–0.48 within
regions; R2 = 0.18 continent wide; Fig. 4d).
We detected little variation in growth among different species

when controlling for spatial effects (Fig. 3). Systematic differ-
ences in the growth of different species (i.e. species effects)
explained little variation in forest biomass on their own, and
produced no improvement when added to the biomass model
that included spatial growth effects (Fig. 4a,e). Conversely, spe-
cies variation in mortality appeared to be an important compo-
nent of forest demography (Fig. 3). When species mortality
effects were considered alongside spatial effects, they explained
26% more variation in mortality (Table 2) and yielded stronger
and more consistent relationships with forest biomass than spa-
tial mortality effects alone (R2 = 0.36 vs. 0.18 continent wide;
R2 = 0.15–0.38 within regions; Fig. 4f).
Idiosyncratic patterns of variation in species performance

(i.e. residual variation after accounting for the main spatial
and species effects) explained 14% of variation in growth and
17% of variation in mortality (Table 2). However, these full
demographic models did not improve overall relationships
with observed biomass across North America (continent wide
R2 = 0.49 for growth, 0.32 for mortality; Fig. 3g,h).

Demographic controls of forest biomass variation

Our age-dependent model (eqn 2) showed that spatial varia-
tion in growth was the most important factor for predicting

biomass, but that species variation in mortality rates
contributed to differences in biomass as well. Six biomass
models had a DAIC < 10, with each explaining 72–73% of the
variance in log biomass. The growth model that included spa-
tial but not species variation (GSPAT) was in each of the six
top-performing models, and was unambiguously supported
over other growth formulations (Σxi = 0.997; Table 2). Across
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Figure 3 Trends in species- and cluster-level performance across gradients in growth and mortality defined by estimated spatial effects. (a) The growth

trends of most species (coloured lines) converged around a common log-linear relationship with estimated spatial growth effects, suggesting that growth

variation among species was relatively weak and that species tended to respond to environmental conditions in a common manner. This pattern reflected

greater variation in estimated spatial effects than in species or residual effects (barplot inset). Because species effects on growth were relatively weak,

cluster-level growth (circles) was strongly correlated with spatial effects. (b) Species-level mortality rates tended to increase with estimated spatial mortality

effects, but unlike growth, there was large variation among species (i.e. different elevations for species-level trend lines). For mortality, variation in species

effects was larger than that in spatial or residual effects (inset), producing a weaker correlation between spatial effects and cluster-level mortality (circles).

In each panel, the error bar at the bottom right shows the average root mean square error (RMSE) around the species-level trends.

Table 2 Comparison of the goodness of fit and model selection evidence

for individual components of growth and mortality, and differences in

harvest intensity, in models predicting variation in forest biomass across

North America

Process Effects included

R2 for

demographic

rate*

DR2 for

biomass†

Sum of

Akaike

weights‡

Growth None (GCONST) – – < 0.001

Species (GSPEC) 0.01 �0.03 < 0.001

Spatial (GSPAT) 0.83 0.62 0.997

Species and spatial

(GBOTH)

0.86 0.58 < 0.001

All (GFULL) 1.00 0.60 0.003

Mortality None (MCONST) – – < 0.001

Species (MSPEC) 0.10 0.04 0.906

Spatial (MSPAT) 0.51 0.01 < 0.001

Species and spatial

(MBOTH)

0.77 0.07 0.069

All (MFULL) 0.94 0.07 0.025

Harvesting None (HZERO) – – 0.953

Mean (HCONST) – �0.01 0.047

Spatial (HSPAT) – �0.04 < 0.001

*Variance in growth or mortality that is explained by a given formulation

of the demographic models.

†Mean difference in log-biomass variance explained compared to the

‘None’ version of each demographic model. The mean is calculated across

all combinations of models for the other demographic processes.

‡Sum of Akaike weights (Σxi) for biomass models that include the given

demographic model. This metric reflects the weight of evidence for each

formulation being included in the best biomass model within the set, and

is interpreted as a measure of relative importance within each demo-

graphic process.
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the full set of models, spatial variation in growth increased
the average variance explained by DR2 = 0.62 compared to
models with a constant growth term. Three different formula-
tions of mortality were represented in the top models (MSPEC,
MBOTH, MFULL, with Σxi = 0.906 for MSPEC; Table 2), all of
which included differences among species. There was only a
small chance that spatial or residual mortality effects also
helped in predicting biomass. The average increase in variance
explained by these mortality terms ranged from DR2 = 0.04 to
0.07 compared to a constant mortality rate. Constant and

zero harvest rates were each included in three of the top six
models (Σxi = 0.953 for HZERO). Spatial variation in harvest
intensity marginally weakened the fit to biomass (Table 2).
The age-dependent biomass model whose raw predictions best
fit the biomass data contained the terms GSPAT, MSPEC and
HCONST, and had a root mean square error (RMSE) of
30.0 Mg/ha (Appendix F).
Supplementary analyses showed that the amount of vari-

ance explained by individual effects could vary somewhat
when plots were aggregated into different numbers of clusters
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Figure 4 Relationships between forest biomass, growth and mortality across North America. Circles represent individual plot clusters. Solid lines represent
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mortality–biomass relationships (h), while ignoring species variation (d) produced weaker relationships everywhere but in the western United States.

© 2016 John Wiley & Sons Ltd/CNRS

420 M. C. Vanderwel et al. Letter



(Appendix D). For instance, spatial growth effects showed the
largest sensitivity to cluster size, with the average increase in
log-biomass variance explained ranging from 0.68 to 0.51
when 50 or 500 clusters were created respectively. Despite this
variability, the main patterns described above were robust
across a wide range of cluster sizes.

Environmental predictors of spatial demographic effects

In both western and eastern Canada (plus Alaska), growth
was most strongly related to mean annual temperature
(R2 = 0.50, 0.34 respectively; Appendix G), likely reflecting the
effect of shorter growing seasons. Mortality rates in Canada
were related to the silt content of the topsoil (R2 = 0.32 in
west, 0.29 in east), but these spatial mortality effects did not
have clear relationships with biomass, as noted previously
(Fig. 4d). Both spatial growth and mortality effects in the
western United States were related to mean annual precipita-
tion (R2 = 0.54, 0.28 respectively), and in turn had important
effects on forest biomass (Fig. 4c,d). In the eastern United
States, spatial effects on growth were related to the silt content
of the topsoil (R2 = 0.49), which was highest in the fertile val-
leys of the Ohio and Mississippi rivers. Mortality effects in
this region were positively related to mean annual temperature
(R2 = 0.49), reflecting an apparent trend for trees to exhibit
higher mortality rates towards their southern range limits.

DISCUSSION

Global and continental-scale studies have documented that for-
est biomass varies along gradients in temperature and precipi-
tation (Keith et al. 2009; Larjavaara & Muller-Landau 2012;
Liu et al. 2014), being particularly high in areas with a cool
and moist climate such as the Pacific Northwest. However, we
have a weaker understanding of how this broad-scale variation
in forest biomass arises from underlying demographic pro-
cesses (Pan et al. 2013). Using demographic observations from
continental networks of forest plots, we have estimated the
contributions of both spatial- and species-related variation in
growth and mortality to forest biomass. Our results show that,
at a broad scale, forest biomass across North America appears
to be related primarily to environmental controls over growth,
and secondarily to variation in mortality rates arising from
both local environmental conditions and species composition.
These findings provide novel insights for understanding the
demographic processes that determine continental-scale varia-
tion in forest biomass.
Forest biomass is known to be strongly related to productiv-

ity in boreal and temperate forests (Keeling & Phillips 2007).
Spatial variation (independent of changes in species composi-
tion) accounted for the overwhelming share of variation in for-
est growth across North America, and explained more than half
of the variation in forest biomass. This spatial growth variation
mapped well onto environmental factors that limit growth
within different parts of North America: temperature in Cana-
dian forests where growing seasons are short, precipitation in
the semi-arid western United States and soil texture in the east-
ern United States, where neither precipitation nor temperature
are a strong limiting factor. These results support empirical and

mechanistic models that have been used to predict vegetation
productivity based on Liebig’s law of the minimum (Leith 1975;
Yuan et al. 2007). Moreover, our findings indicate that inherent
spatial variation in growth is a major control over forest bio-
mass across North America.
We detected remarkably little variation in growth among

different species after accounting for spatial effects, however.
While biomass growth certainly differs among forest types in
North America (Gower et al. 1997; Jenkins et al. 2001), at
broad scales species composition appears not to be an impor-
tant predictor of growth after controlling for intrinsic differ-
ences in environmental conditions. This can be explained by
at least two considerations. First, interspecific variation in
productivity in a given area tends to be smaller than
intraspecific variation across environmental gradients (Reich
et al. 1997; Hudiburg et al. 2009). This was indeed the case,
as our hierarchical models showed that spatial effects on
growth were stronger than the corresponding species effects
(Fig. 3a). Second, species tend to be more abundant on soil
types or topographic positions on which they exhibit their
best performance (Canham et al. 2006; Zhang et al. 2014).
Interspecific differences in growth are therefore expected to be
lower across a heterogeneous landscape than they are at indi-
vidual sites because species occur more often in sites where
they grow well. Averaging performance across many individ-
ual plots that make up a cluster likely masks site-level differ-
ences among species that produce variation in species
composition within a given landscape (Whittaker 1956). As
such, our findings concerning the demographic controls over
forest biomass at broad scales (among landscapes) do not
imply anything about their importance at finer scales (among
sites within a landscape, or in different microenvironments).
A combination of spatial and species differences in mortality

explained significant additional variation in forest biomass. Spa-
tial environmental effects on mortality were most important in
the western and eastern United States (Fig. 3d), where mortality
was related to climatic gradients in precipitation and tempera-
ture respectively. Water deficit acts as a major control over forest
mortality and biomass in the western United States, both at pre-
sent and in projections of future climate change (Van Mantgem
et al. 2009; Jiang et al. 2013). In the eastern United States, geo-
graphic mortality patterns have been previously related to mean
annual temperature (Lines et al. 2010). These temperature-
related patterns appear to determine the southern range limits of
several different forest types (Vanderwel et al. 2013).
Relationships between mortality and forest biomass were

strengthened when species variation was considered in addi-
tion to spatial effects. For example, in eastern Canada, mor-
tality rates were positively related to the abundance of spruce
(Picea spp.) and balsam fir (Abies balsamea) – not because
these species tend to occur in climatically unfavourable north-
ern forests, but rather because they have high mortality rates
as hosts of the spruce budworm (Choristoneura fumiferana), a
major biotic disturbance agent in eastern boreal forests. In
western forests of both Canada and the United States, mortal-
ity increased with the relative abundance of cottonwood and
aspen (Populus spp.), and decreased with that of Douglas fir
(Pseudotsuga menziesii). Although both are considered to be
early successional species groups, Douglas fir has adaptations
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for crown maintenance and fire resistance that allow it to sur-
vive for over a thousand years (Ishii & Ford 2002). By con-
trast, western aspen is much more susceptible to competition
and tends to accumulate pathogens over time, leading to rapid
deterioration as stands reach about 120 years in age (Mueg-
gler 1989). A more general understanding of species mortality
effects proved elusive, however, as they appeared to be unre-
lated to either wood density or shade tolerance (Appendix H).
Compared with growth, tree mortality is less directly related

to resource acquisition and its environmental controls, and
more strongly influenced by species-specific strategies for cop-
ing with pests, pathogens and natural disturbances. As a
result (and in contrast to our findings for growth), species dif-
ferences explained appreciable variance in mortality rates.
Much of this variation among species arises from the multi-
tude of factors that may threaten a tree’s survival, including
competition, windstorms, drought, fire, insects and disease.
Tree species exhibit a range of adaptations to such processes,
and in turn these can lead to striking differences in the mor-
tality responses of co-occurring species (Canham et al. 2001;
Mueller et al. 2005). Variation in mortality determines the
composition and development of forests disturbed by wind or
fire (Papaik & Canham 2006; Seidl et al. 2014), and has been
identified as the dominant process governing long-term forest
succession in the US Lake States region (Purves et al. 2008).
Large-scale mortality events can have dramatic impacts
ecosystem dynamics, as evidenced by recent bark beetle out-
breaks in western North America (Edburg et al. 2012), by
drought-induced shifts from forest to pinyon-juniper wood-
land in the southwestern United States (Allen & Breshears
1998), and by the loss of a foundation species (eastern Hem-
lock, Tsuga canadensis) from Appalachian forests (Ford &
Vose 2007). Our results further demonstrate that these inter-
specific differences in mortality rates are an important factor
regulating variation in forest biomass across North America.

CONCLUSIONS

Our results provide valuable insights into how dynamic vegeta-
tion models (DVMs) may be refined to more accurately predict
the live carbon balance of terrestrial ecosystems. Current DVMs
typically represent global plant functional diversity with ~ 10
broadly defined plant functional types (PFTs). However,
roughly the same amount of functional trait variation occurs
among species within these PFTs as occurs among PFTs (Kattge
et al. 2011). We show not only that there is considerable inter-
specific variation in mortality rates that cannot be explained by
spatial environmental gradients, but also that this species-level
variation has significant consequences for forest biomass, an
important store of terrestrial carbon. Across current DVMs,
uncertainty in future changes in carbon residence time (primarily
a function of tree mortality rates) is the largest source of uncer-
tainty in predicted carbon storage (Friend et al. 2013). While
there has been recent progress in understanding drought-
induced mortality (McDowell et al. 2013), mechanisms underly-
ing species variation in tree mortality remain poorly understood
in general. New modelling frameworks that appropriately cap-
ture species differences in mortality and biomass turnover could
help in predicting future changes in terrestrial carbon storage.
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