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Air temperatures in the Arctic have warmed nearly 3 °C since 
the mid-1960s and at a rate more than twice the global 
average since 20001. This warming has led to a myriad of 

changes to Arctic terrestrial ecosystems, including increasing pre-
cipitation2–4, widespread permafrost thaw5–9 and changes in surface 
water area10,11. Northern permafrost lands contain more lake area 
than any other region worldwide12, and changes in the aerial extent 
of water have the potential to accelerate or mitigate feedbacks to 
regional and global climate13–16. Changes in surface water area, for 
instance, affect land surface albedo and account for ~10% of recent 
albedo-induced changes in radiative forcing in the continuous per-
mafrost zone13. Permafrost thaw-induced changes in lake area also 
affect carbon cycling. Lake initiation and expansion increase car-
bon fluxes to the atmosphere because accelerated permafrost thaw 
beneath and around lakes unlocks previously frozen sediments for 
microbial decomposition17,18. Conversely, in drained lake basins, 
peat accumulation following vegetation regrowth and permafrost 
aggradation result in a net ecosystem carbon sink19. Models predict 
that with climate warming, permafrost thaw will result in greater 
lake expansion than drainage (a net increase in lake area) through-
out the early to mid-twenty-first century14,20, leading to a positive 
feedback to climate change13,15,20.

Surface water change has been documented in analyses across 
the Arctic10,21–23, with most studies showing surface water drain-
age in the discontinuous permafrost zone and both increasing and 
decreasing surface water trends in the continuous permafrost zone. 
These observations are fractured across space and time, however, 
with large portions of the permafrost zone unstudied. The limited 
spatial and temporal coverage of these site-level observations makes 
validating models difficult, especially since the direction of surface 
water change can vary by time period24 and spatial scale consid-
ered25. Here, we (1) use satellite-derived data to report a spatially 
comprehensive and temporally consistent analysis of surface water 
change across lake-rich regions of the northern discontinuous and 
continuous permafrost zones over the past two decades (2000–
2021), (2) identify the climate and landscape variables correlated 

with surface water change and (3) discuss the implications of sur-
face water change for climate feedbacks.

Surface water trends across lake-rich regions of the Arctic
We used the Moderate Resolution Imaging Spectroradiometer 
(MODIS) satellite-based superfine water index (SWI)26 to quantify 
surface water change across lake-rich regions of the Arctic over the 
past two decades (Fig. 1). SWI is a unitless water cover index that 
can track sub-pixel variations in surface water (SWI validation anal-
ysis in the Supplementary Information) and is positively correlated 
with percentage surface water cover26. In northern latitudes, a one 
unit increase in SWI is roughly equivalent to a 75% increase in sur-
face water cover (SWI and percentage surface water cover conver-
sion in the Supplementary Information).

Across the entire study region (areas of the northern discontinu-
ous and continuous permafrost zones with at least 5% lake cover 
percentage), there was a decline in surface water over the past two 
decades (mean pixel-wise SWI trend of −0.0009 yr−1), with 82% of 
12 km pixels showing a negative trend (Fig. 1). The mean trends for 
discontinuous and continuous permafrost and for areas with and 
without thermokarst wetlands and lakes were also negative (Fig. 2 and 
Table 1). However, there was high spatial variability, with a substantial 
fraction of 500 m pixels having positive trends within each thermo-
karst land cover type (Table 1). Thus, at the 500 m pixel scale, there is 
high variability in surface water change (including both increases and 
decreases), but the net change over larger scales (for example, 12 km 
pixels in Fig. 1 or land cover types in Table 1) tends to be negative. 
This finding of widespread surface water decline corroborates recent 
work over more limited spatial scales showing enhanced drainage in 
the Arctic5,27–29 but contradicts models of surface water dynamics used 
to quantify carbon emissions, which show rapid increases in surface 
water in the early to mid-twenty-first century14,17,20.

Climate drivers
We used a machine learning model to determine the landscape 
and climate variables (from the ERA5-Land reanalysis dataset30) 

Permafrost thaw drives surface water decline 
across lake-rich regions of the Arctic
Elizabeth E. Webb   1 ✉, Anna K. Liljedahl   2, Jada A. Cordeiro   3, Michael M. Loranty   4, 
Chandi Witharana5 and Jeremy W. Lichstein   3

Lakes constitute 20–40% of Arctic lowlands, the largest surface water fraction of any terrestrial biome. These lakes provide 
crucial habitat for wildlife, supply water for remote Arctic communities and play an important role in carbon cycling and the 
regional energy balance. Recent evidence suggests that climate change is shifting these systems towards long-term wetting 
(lake formation or expansion) or drying. The net direction and cause of these shifts, however, are not well understood. Here, we 
present evidence for large-scale drying across lake-rich regions of the Arctic over the past two decades (2000–2021), a trend 
that is correlated with increases in annual air temperature and autumn rain. Given that increasing air temperatures and autumn 
rain promote permafrost thaw, our results indicate that permafrost thaw is leading to widespread surface water decline, chal-
lenging models that do not predict a net decrease in lake area until the mid-twenty-first or twenty-second centuries.

Nature Climate Change | VOL 12 | September 2022 | 841–846 | www.nature.com/natureclimatechange 841

mailto:webbe@ufl.edu
http://orcid.org/0000-0001-5398-4478
http://orcid.org/0000-0001-7114-6443
http://orcid.org/0000-0003-2550-9498
http://orcid.org/0000-0001-8851-7386
http://orcid.org/0000-0001-5553-6142
http://crossmark.crossref.org/dialog/?doi=10.1038/s41558-022-01455-w&domain=pdf
http://www.nature.com/natureclimatechange


Articles NATuRE CLImATE CHAnGE

related to changes in surface water (from the MODIS-based SWI; 
Methods). Results from this analysis show that changes in annual air 
temperature and the amount of rain in the previous autumn (here-
after referred to as ‘autumn rain’) were the most important driv-
ers of surface water change (Figs. 3 and 4). Both of these variables 
increased over the study period (Extended Data Fig. 1 and Table 2),  
and both had overall negative effects on surface water, although 
the relationships are not monotonic (Extended Data Fig. 2). These 
results suggest that, on average, increasing annual air temperature 
and increasing autumn rain both lead to decreasing surface water.

Increases in annual air temperatures, whether through gradual 
warming or more frequent heatwaves31, could lead to decreasing sur-
face water through two mechanisms: permafrost thaw or increased 
evapotranspiration. To test which process is primarily responsible, 
we included evapotranspiration in our machine learning model, 
and the results show that changes in evapotranspiration play a negli-
gible role in surface water change across lake-rich areas of the Arctic 
(evapotranspiration was the most important driver in only 0.5% of 
the study area; Extended Data Fig. 3). Additionally, over our study 
area, the trend in annual precipitation (+1 mm yr−1) was stronger 
than the trend in evapotranspiration (+0.6 mm yr−1; Table 2), con-
sistent with previous analyses4,32 and in line with models that project 
a warmer and wetter Arctic33. Together these data suggest that the 
main mechanism through which increasing air temperatures has 

led to surface water declines is through new hydrological pathways 
caused by permafrost thaw rather than through a decrease in the 
precipitation–evapotranspiration balance.

Rain increased across the study region in the spring, summer 
and autumn (Table 2), reflecting both a gradual rise in warm season 
precipitation4 as well as an increase in extreme precipitation events 
in recent years34. In the absence of permafrost thaw, increasing rain 
leads to increasing surface water. Thus, the negative relationship 
between autumn rain and surface water suggests that the primary 
effect of autumn rain on surface water is through permafrost thaw 
and not through the precipitation–evapotranspiration balance. Rain, 
particularly in the autumn, can increase soil temperature and thaw 
depth directly35,36 through heat advection and indirectly because 
wetter soils have higher latent heat and therefore delay freeze-up in 
the autumn37. Extreme rainfall events can also destabilize permafrost 
terrain and accelerate thermoerosion38,39, which promotes drainage 
channel formation40. Lastly, more rainfall can increase surface water 
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Fig. 1 | Change in the average July superfine water index (yr−1) from 2000 
to 2021. A change in SWI of −0.002 yr−1 corresponds to ~3% decrease in 
percentage surface water cover over 20 yr (for example, a change from 
15 to 12% cover; 15% is the mean surface water cover across the study 
area). The study area includes areas of the continuous and discontinuous 
permafrost zones (Extended Data Fig. 4) where lake cover percentage 
is ≥5%. The continuous and discontinuous zones have an estimated 
permafrost percentage area of 90–100% and 50–90%, respectively67. Grey 
regions, which include areas where lake cover percentage is <5% and/
or sporadic, isolated and non-permafrost zones, are not in the study area. 
Pixel resolution is 12 × 12 km2.
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Fig. 2 | Pixel-wise surface water trends (change in the July SWI (yr−1) 
from 2000 to 2021). a–c, Trends are binned by permafrost extent (a), 
ground ice content (b) and lake cover (percentage of the pixel area 
occupied by lakes) (c). Pixels in this figure (n = 22,216) are pixels whose 
surface water trends were in the lower/upper 20th/80th percentile of 
the 12 km pixels. Horizontal lines and circles in a and b represent the 
median and mean, respectively. Boxplot limits are the upper and lower 
quartiles, and whiskers are 1.5× the interquartile range. Surface water 
decreased more strongly in the discontinuous permafrost zone than in 
the continuous zone (P < 0.001, a) and more strongly in areas with high 
ice content than in areas with medium or low ice content (P < 0.001, b). 
Values in c are means (±s.e.) of 12 km pixels binned in 2% intervals with 
the x axis label representing the bin midpoints; bins containing <1% of the 
data were excluded. The surface water trend responds more strongly to 
increasing cover of yedoma and peatland lakes compared to glacial lakes 
(Supplementary Table 3). Peatland lakes have thick organic sediments 
and are mainly found adjacent to peatlands or in lowland tundra regions; 
yedoma lakes form in non-glaciated regions with yedoma deposits 
(organic-rich permafrost with high ice content); glacial lakes include all 
lakes with organic-poor sediments62,68.
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drainage by increasing lake levels and thereby accelerating mechani-
cal and thermoerosion of drainage channels29,41.

Our machine learning model performed better (higher R2) when 
precipitation was partitioned seasonally rather than annually. Even 
though the trend in autumn rain was only ~70% of the magnitude of 
the trend in summer rain (Table 2), autumn rain explained more of 
the variation in surface water trends (Fig. 3). Together these results 

suggest that the timing of precipitation change is critical for predict-
ing and understanding surface water trends in our study area. In the 
Arctic, autumn is a time of heat loss from the ground surface to the 
atmosphere, but unfrozen water in the soil at this time can result in 
ground surface temperatures up to 9 °C warmer during the month of 
freeze-up37. Thus, increasing autumn rain could extend the thawed 
season by weeks. Furthermore, unlike early season precipitation, 
which is lost to surface runoff because there is little infiltration into 
the frozen ground, autumn rain penetrates deeper into the active 
layer42. Thus, autumn rain will probably remain on the landscape until 
the spring, when it could combine with snowmelt to promote rapid 
lateral drainage channel development as lakes overtop their banks27.

Landscape characteristics
Our machine learning analysis quantified the drivers of surface 
water change in 12 km pixels and may therefore underestimate the 
importance of landscape characteristics such as ground ice con-
tent and permafrost zone that are available only at coarser scales 
(Extended Data Fig. 4). Because of the known importance of 
these landscape variables to permafrost thaw-driven surface water 
change11,14,43, we analysed ground ice content and permafrost zone 
separately from the finer-scale climate variables.

Surface water declined more strongly in the discontinuous per-
mafrost zone of our study region than in the continuous permafrost 
zone (P < 0.001; Fig. 2), which is consistent with our understand-
ing of how permafrost thaw drives landscape drainage. When pres-
ent, permafrost prevents vertical and/or horizontal water flow. 
Permafrost loss increases hydrological connectivity by connecting 
adjacent terrain previously isolated by permafrost44 or through talik 
formation (unfrozen ground otherwise surrounded by permafrost), 
which can increase surface water exchange with ground water12,45–47. 
Because discontinuous permafrost is thinner and less connected 
than continuous permafrost48, temperature-driven permafrost loss 
and associated increasing hydrological connectivity is more likely 
in this zone. For example, talik formation is thought to have caused 
landscape-scale surface water drainage in discontinuous permafrost 
in Alaska47 and Siberia11 over recent decades.

Table 1 | July surface water trends aggregated by thermokarst land cover type66

Thermokarst wetlandsa Thermokarst lakes Non-thermokarst areas

High to very high Low to moderate High to very high Low to moderate

All pixels in land 
cover type

(%)b 19 65 26 21 16

Trend −0.0011 ± 0.0024 −0.001 ± 0.0028 −0.0013 ± 0.0025 −0.0007 ± 0.003 −0.0002 ± 0.0037

All extreme 
pixels in land 
cover type

(%)b 19 61 25 22 19

Trend −0.0015 ± 0.0037 −0.0012 ± 0.0045 −0.0019 ± 0.0038 −0.0006 ± 0.0045 0.0004 ± 0.0052

Top 20% of 
pixels in land 
cover type

(%)c 17 18 14 24 32

Trend 0.0017 ± 0.0024 0.002 ± 0.0033 0.0017 ± 0.0025 0.0021 ± 0.0032 0.0029 ± 0.0039

Bottom 20% of 
pixels in land 
cover type

(%)c 23 20 24 18 16

Trend −0.0038 ± 0.0027 −0.0041 ± 0.0033 −0.004 ± 0.0027 −0.0041 ± 0.0035 −0.0045 ± 0.0037
aWetland thermokarst landscapes include bogs, fens and shore fens. bPercentage of study region or extreme pixels found within each thermokarst land cover type. cPercentage of thermokarst land cover 
pixels with increasing/decreasing extreme surface water trends. Trends are the mean ± s.d. of the 500 m pixel-wise temporal trends in the SWI. The analysis reported in this table was performed at the 
scale of MODIS pixels (500 m), rather than aggregated 12 km pixels, to quantify fine-scale spatial variability in surface water trends. ‘High to very high’ and ‘low to moderate’ indicate fractional coverage of 
wetlands and lakes (high to very high: 30–100%; low to moderate: 1–30%). Rows sum to >100% due to partial overlap of thermokarst wetland and lake classifications (details in ref. 66 and Extended Data 
Fig. 4). The study region (n = 39,206,880 MODIS pixels) includes continuous and discontinuous permafrost land north of 50° N where lake cover percentage is ≥5%. Extreme pixels (n = 15,682,749) are 
those whose surface water trends were in the lower/upper 20th/80th percentile of the study region pixels.
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When ice-rich permafrost thaws, the land surface formerly sus-
tained by ice can collapse and create ground subsidence. Water may 
pool in subsided areas, creating a new pond, which may expand 
laterally by thermoerosion at the lake margins46. Accordingly, mod-
els of surface water dynamics predict a net increase in thermokarst 
lake area (formation plus expansion minus drainage) until the 
mid- to late-twenty-first century (rates of thermokarst lake forma-
tion, expansion and drainage from ref. 20 are 0.3% yr−1, 0.4% yr−1 
and 0.03% yr−1, respectively; net rate of thermokarst lake expan-
sion from ref. 14 is ~0.29% yr−1 until 2060). However, contrary to the 
expectations of these models, our results show that surface water 
decreased more strongly in areas with high ice content than in areas 
with medium or low ice content (P < 0.001, Fig. 2). This suggests 
that degradation of ice-rich permafrost leads to greater increases in 
drainage than surface water formation and expansion.

The role of lake sedimentation
In addition to drainage, another mechanism probably contributing 
to permafrost thaw-driven decreases in surface water is increasing 
lake sedimentation, which occurs when lake-adjacent permafrost 
thaws and causes lake infilling49. This may occur rapidly and com-
pletely as a result of slope failure by abrupt thaw49, which is often 
triggered by extreme heat and precipitation events38,49,50. Or, it may 
occur progressively as warmer and wetter conditions gradually 
increase connectivity between lakes and the surrounding land51. 

Overall, our results indicate that over the past two decades, lake 
drainage, sedimentation and/or other mechanisms of surface water 
decline have exceeded surface water formation and expansion, lead-
ing to a net decrease in surface water that was not anticipated by 
models until ~2060 (ref. 14) or ~2150 (ref. 20).

Regional trends
Surface water declined more strongly in Eurasia (mean pixel-wise 
SWI trend of −0.001 yr−1) than in North America (mean 
pixel-wise SWI trend of −0.0007 yr−1). This regional trend may be 
due to several factors. First, the two most important climate pre-
dictors of surface water change (trends in autumn rain and trends 
in annual air temperature) increased more strongly in Eurasian 
than in North American areas of our study region (Table 2  
and Extended Data Fig. 1). Second, the percentage of the study 
region with a high to very high concentration of thermokarst 
lakes, which on average exhibit stronger surface water declines 
than other land cover types (Table 1), is higher in Eurasia (60%) 
than in North America (15%; Extended Data Fig. 4).

Future surface water change and climate feedbacks
Our results show that, on average, surface water has declined across 
lake-rich regions of the Arctic in recent decades and that the most 
likely cause is drainage and/or sedimentation due to permafrost thaw. 
Similar results were obtained for the entire northern permafrost zone 
(lake-rich and non-lake-rich areas of the continuous and discontinu-
ous permafrost north of 50° N; Extended Data Figs. 5 and 6). This 
thaw-induced decline is due to near equal contributions of increasing 
annual air temperatures and increasing autumn rain. These results are 
consistent with recent work suggesting that heat transfer by precipita-
tion is equally important to air temperature as a driver of permafrost 
degradation52 and evidence from across the Arctic that permafrost 
is thawing faster than anticipated5,7. Precipitation, however, is not 
included as a driver of permafrost thaw in some models of surface 
water change17,53, which could partially explain why we observe net 

Table 2 | Trends in climate variables derived from the ERA5-
Land reanalysis dataset30 over the Eurasian and North American 
parts of the study region and the entire study region

Eurasia North 
America

Entire study 
region

Annual air temperature 
(°C yr−1)

0.12 ± 0.03 0.01 ± 0.03 0.05 ± 0.06

Annual 
evapotranspiration 
(mm yr−1)a,b

1 ± 0.69 0.42 ± 0.62 0.63 ± 0.71

Annual precipitation 
(mm yr−1)

2.14 ± 2.28 0.4 ± 2.22 1.01 ± 2.39

Autumn rain (mm yr−1) 0.48 ± 0.63 0.21 ± 0.93 0.3 ± 0.85

Spring rain (mm yr−1) 0.06 ± 0.25 0 ± 0.36 0.02 ± 0.33

Summer rain (mm yr−1) 0.39 ± 1.47 0.44 ± 1.55 0.42 ± 1.52

Melt water in snow 
(mm yr−1)a

1.23 ± 1.5 −0.79 ± 1.25 −0.11 ± 1.65

Growing season 
evapotranspiration 
(mm yr−1)a,b

0.71 ± 0.54 0.42 ± 0.56 0.52 ± 0.57

 Snowmelt date 
(day yr−1)

−0.26 ± 0.32 −0.17 ± 0.28 −0.2 ± 0.3

aMillimetres of water equivalent. bThe ERA5-Land reanalysis dataset uses the convention that 
positive values indicate condensation and negative values indicate evaporation. Here, we have 
reversed the sign so a positive trend in evapotranspiration indicates evapotranspiration has 
increased over the study period. Trends are the mean ± s.d. calculated over the period 2000–2021 
for all variables except autumn rain, which is for the period 1999–2020.
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drainage earlier than projected. Indeed, models that do include precip-
itation as a driver of surface water change indicate that net decreases 
will occur nearly a century earlier than models that exclude this 
mechanism14,20.

With continued climate change, Arctic air temperatures and 
autumn rain are expected to continue increasing33,54, which will 
probably contribute to further surface water decline across the per-
mafrost zone. Decreases in lake surface water will negatively impact 
human livelihood, as surface water in permafrost regions is often 
the only viable source of fresh water and northern communities rely 
on it for household use55,56. Decreasing surface water may also nega-
tively impact fish, migrating birds and other wildlife that depend on 
northern lakes for habitat57,58.

Changes in surface water involve important feedbacks to climate 
change. In permafrost regions, lake drainage can act as a negative 
feedback to climate change due to increased summer surface albedo13 
(replacing dark lake surfaces with more reflective bare ground and 
vegetation) and carbon uptake following vegetation expansion and 
reduced soil respiration due to permafrost aggradation in drained 
lake basins19,59,60. In contrast to drainage, surface water expansion 
is a positive feedback to climate change because lake initiation and 
expansion results in decreased albedo and increased carbon dioxide 
and methane emissions to the atmosphere13,14,16,17,61. Similarly, lakes 
that transition to wetlands, rather than draining or drying com-
pletely, may serve as persistent sources of methane emissions62.

Our results show that there is high spatial variability in Arctic 
surface water change, including local increases in surface water 
within regions of net decline. On decadal timescales, the positive 
feedback effects of local surface water expansion may be stronger 
than the negative feedback effects of surface water decline because 
carbon released during lake initiation and expansion happens much 
faster than carbon uptake following vegetation regrowth in drained 
lake basins17. Thus, the net feedback to climate change depends 
not only on the net change in surface water but also on the gross 
changes and the timescale considered.

None of the Earth System Models included in recent Coupled 
Model Intercomparison Projects (CMIPs) include fine-scale abrupt 
thaw processes probably responsible for surface water drainage and 
lake infilling due to sedimentation63,64. Other types of models have 
been developed to study the potential effects of abrupt permafrost 
thaw on carbon emissions14,17,20,65. However, contrary to our results 
showing net surface water decline over the previous two decades, these 
models predict that surface water in the permafrost zone is currently 
increasing and will continue to increase until the mid-twenty-first 
or twenty-second centuries14,17,20. The observed pan-Arctic decrease 
in surface water in lake-rich regions and a likely trajectory towards 
further declines suggest that current and future estimates of carbon 
emissions from abrupt permafrost thaw are probably too high. A bet-
ter understanding of the carbon cycle consequences of net surface 
water decline in the Arctic will require quantifying the carbon emis-
sions and uptake associated with gross increases and decreases in 
surface water over decadal and centennial timescales.
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Methods
General approach. To determine the drivers of surface water change (2000–2021) 
across the permafrost zone, we mapped (1) the pixel-wise trends in July surface 
water across the study region, (2) the pixel-wise trends in climate variables 
expected to contribute to surface water change and (3) the landscape characteristics 
expected to influence surface water change. We then used a machine learning 
approach to relate the surface water trends to the climate trends and landscape 
characteristics.

Study area. Our study region was the continuous and discontinuous permafrost 
zone north of 50° N where the percentage of surface area covered by lakes is 
≥5%. The study region covered 77% of areas with high to very high (30–100%) 
thermokarst lake coverage, 53% of areas with low to moderate (1–30%) 
thermokarst lake coverage, 27% of the continuous permafrost zone and 20% of 
the discontinuous permafrost zone. Lakes occupy ~15% of the surface area of the 
study region. We limited the study area to lake-rich regions because, like all remote 
sensing indices, the SWI26 (used to determine surface water trends; see below) is 
responsive to changes in all bands, including bands that are sensitive to non-water 
surfaces. Changes in the SWI in non-lake-rich regions could indicate changes in 
non-water surfaces, and we sought to minimize these errors by restricting our 
analysis to regions with high lake cover, where we assume that changes in SWI are 
most likely to reflect true changes in surface water. Our main conclusions were not 
qualitatively affected by this choice; when we included the entire continuous and 
discontinuous permafrost zones north of 50° N in our analysis, the results showed 
that surface water declined across the region, due mainly to changes in annual air 
temperature and autumn rain (Extended Data Figs. 5 and 6).

Within this study area, recently burned areas (details below) and pixels 
identified by the European Space Agency Climate Change Initiative Land Cover 
Maps69 as permanent snow and ice or agricultural or urban land were omitted. 
While fire is known to cause permafrost thaw and changes in surface water70,71, we 
excluded recently burned areas because preliminary analysis indicated that the SWI 
did not reliably distinguish between char and water without further optimization. 
Because our goal was to study changes in the area of lakes and other inland waters, 
rather than surface water change caused by coastal erosion and sea level rise, we 
also excluded land within 5 km of the coast. Permafrost extent was delineated 
according to ref. 67, and lake cover percentage data came from ref. 68. Burned pixels 
were identified from four products: the Bureau of Land Management, Alaska Fire 
Service Historical Wildfires database72, the Canadian National Fire Database73, the 
MODIS burn area product74 and a Landsat-based data product of fires in Siberia75. 
These products allowed us to exclude areas that burned in North America between 
1995 and 2021 and in Eurasia between 2000 and 2021.

Surface water trends. We limited our analysis to changes in surface water 
during the month of July, when our study region is typically snow-free. For each 
500 m pixel, we used the MODIS Nadir Bidirectional Reflectance Distribution 
Function-Adjusted Reflectance (NBAR) product76 to compute the SWI26:

SWI =
Sat(RGB) − 7 × NIR
Sat(RGB) + 7 × NIR (1)

where Sat(RGB) is the hue-saturation-value transformation of the RGB composite 
made up of red (R), green (G) and blue (B) bands and NIR is the near infrared 
band. After excluding retrievals with any snow (pixels where the MODIS snow 
cover product77 was greater than zero), we calculated the average July SWI (SWIJuly) 
for each pixel in each year. We then quantified the pixel-wise temporal trend (or 
‘change’) in surface water as the Sen’s slope of SWIJuly versus year. The Sen’s slope78 is 
relatively insensitive to outliers and is therefore widely used to reduce the effects of 
random noise when estimating pixel-wise trends in large-scale geospatial datasets 
(for example, refs. 79,80). To further reduce the influence of outliers, which may 
reflect data acquisition or processing errors, pixels with a slope >8 s.d. from the 
mean slope were excluded from further analysis.

Surface water trends were calculated for each MODIS pixel within the study 
region, and these 500 m pixels were then averaged to 12 km pixels. We chose a 
pixel size of 12 km because aggregation was necessary to match spatial scales 
between explanatory and response variables and because initial data exploration 
revealed that the model R2 was highest when pixels were aggregated to 12 km. All 
subsequent analyses were based on the aggregated 12 km pixels, except for analysis 
of spatial variability (Table 1), which used the original 500 m pixels.

Climate trends and landscape characteristics. We explored different climate and 
landscape variables as potential drivers of surface water trends. Climate variables 
included in our analysis were the pixel-wise trends in spring, summer, autumn 
and total growing season rain accumulation; autumn, winter and spring snow 
accumulation; spring, summer, autumn, winter and annual temperature means; 
growing season evapotranspiration; water in snowmelt (January–July); snow 
onset date; and snowmelt date. For all variables, we used the following seasonal 
definitions: spring—March, April, May; summer—June, July, August; autumn—
September, October, November; winter—December, January, February; growing 
season—June–September. For the rain, snow, melt water and evapotranspiration 

variables, we first summed the daily accumulation values for each season 
(Variablesum) and then quantified the Sen’s slope of Variablesum versus year. For the 
temperature variables, we first took the seasonal average hourly air temperature 
at 2 m (Variablemean) and then quantified the Sen’s slope of Variablemean versus year. 
Snowmelt and onset dates were defined as the first and last day of the calendar 
year with zero per cent snow cover (DOYzero), and their trends were quantified 
as the Sen’s slope of DOYzero versus year. Autumn trends were calculated over the 
period 1999–2020, snow onset was calculated for 2000–2020 and all other trends 
were calculated over the period 2000–2021. We defined the winter of year x as the 
December of year x − 1 and January and February of year x.

Rain, snow, melt water, evapotranspiration and air temperature data were 
obtained from the ERA5-Land reanalysis dataset30. For evapotranspiration, we use 
the variable ‘total_evaporation’ in the ERA5-Land reanalysis because it includes a 
simplified representation of transpiration in addition to evaporation. Snow cover 
data came from the MODIS snow cover product77. The temporal trend in each 
variable was calculated in its native resolution and then averaged to 12 km pixels.

We included the following landscape characteristics in our analysis: ground 
ice content67, permafrost designation67, overburden thickness67, the percentage of 
surface area covered by lakes68 and land cover type68. These categorical variables 
were converted from vector to raster format, using the same 12 km pixels as 
the continuous variables. We performed an analysis of variance (ANOVA) and 
Tukey’s Honest Significant Different test to determine if surface water trends were 
significantly different between permafrost zones and between areas with varying 
amounts of ice content. To determine if lake type impacted surface water trends, 
we fit nested linear regression models of surface water change with the percentage 
cover of lake types in each 12 km pixel as explanatory variables. The explanatory 
variables in the nested models were (1) the percentage cover of all lake types 
combined, (2) the percentage cover of yedoma and peat lakes combined and the 
percentage cover of glacial lakes and (3) the percentage cover of each lake type.  
We then performed an ANOVA on the models to determine the best fit model.

Quantifying the drivers of surface water change. To quantify the effects of 
the potential drivers of surface water trends, we fit a histogram-based gradient 
boosting regression tree (HGBRT) model that related trends in surface water to 
landscape characteristics and trends in climate variables. To focus on pixels where 
surface water change is substantial, we restricted this analysis to pixels whose 
surface water trends were in the lower/upper 20th/80th percentile of the 12 km 
pixels. We chose the HGBRT approach because regression trees are an easily 
interpretable method of determining variable importance and ensemble methods 
such as boosting generally produce better models (lower bias and variance) than 
single tree methods81. We fit the HGBRT using the Python-based Scikit-learn 
library82, and optimal model hyperparameters were determined using grid search 
and tenfold cross validation81,83.

Preliminary analyses revealed that collinearity among some explanatory 
variables complicated model inference (the estimated importance of some variables 
changed considerably when other variables were included in the model). To 
overcome this issue, we calculated the Pearson’s correlation coefficient (r) between 
all variables. We then removed variables that were highly correlated (r > 0.5) with 
variables that were the most important to model performance in preliminary 
analyses (see methods on variable importance below). Variables omitted for this 
reason include snow onset, overburden thickness, snow accumulation, permafrost 
designation (continuous versus discontinuous) and land cover type.

The model performed better (resulted in a higher R2 value) when rain 
accumulation was partitioned seasonally (spring, summer and autumn rain were 
included individually rather than as total growing season rain) and when mean 
annual temperature was included rather than the seasonal temperature means. As 
a result, annual rain and seasonal temperature variables were removed from the 
model. The final model included lake percentage cover, ground ice and trends in 
annual air temperature, autumn rain, spring rain, melt water in snow, summer rain, 
evapotranspiration and snowmelt date. The final model R2 was 0.57.

We used two methods to assess the relative importance of each explanatory 
variable: permutation importance and Shapley values. Permutation importance 
randomly shuffles the value of each explanatory variable among all pixels many 
times and reports the resulting drop in average R2 value. Shapley values quantify 
the contribution of each explanatory variable to the predicted value of the 
response variable. Thus, both metrics seek to quantify a variable’s contribution to 
explaining variation in the response but using different approaches. We compared 
both metrics to evaluate if our inferences regarding the importance of different 
explanatory variables are robust. We calculated permutation importance with 100 
permutations using the Scikit-learn implementation82 and Shapley values using 
the SHAP library84. To put the two measures of variable importance on a common 
scale, we calculated the relative importance of each variable by dividing its 
importance value by the importance value of the most important variable.

Data availability
The analysis in this study relied on datasets from the following sources, all 
of which are freely available to the public. The climate trends were generated 
using Copernicus Climate Change Service Information [2022] ERA5-Land 
hourly data (2 m temperature, total evaporation, snowmelt, snowfall and total 
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precipitation) (https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/
cds.e2161bac?tab=overview). The surface water trends were generated 
using the MODIS MCD43A4.006 product (https://doi.org/10.5067/MODIS/
MCD43A4.006). Snow cover trends were generated using the MODIS 
MOD10A1.006 product (https://doi.org/10.5067/MODIS/MOD10A1.006). 
Fire masking was based on MODIS MCD64A1.006 (https://doi.org/10.5067/
MODIS/MCD64A1.006), fire perimeters for eastern Siberia taiga and tundra 
(https://arcticdata.io/catalog/view/doi%3A10.18739%2FA2N87311N), the 
Canadian National Forest Service National Fire Database fire perimeters (http://
cwfis.cfs.nrcan.gc.ca/datamart/metadata/nfdbpoly) and the Alaska Interagency 
Coordination Center Wildland Fire Maps (https://fire.ak.blm.gov/predsvcs/maps.
php). Land cover masking was based on the ESA CCI land cover 2015 product 
(https://www.esa-landcover-cci.org/?q=node/164). Permafrost extent, ground 
cover content and overburden thickness data were from the Circum-Arctic Map 
of Permafrost and Ground-Ice Conditions v.2 (https://doi.org/10.7265/skbg-kf16). 
Lake cover percentage was from the Boreal-Arctic Wetland and Lake dataset 
(https://arcticdata.io/catalog/view/doi:10.18739/A2C824F9X). Thermokarst lake 
and thermokarst wetland coverage was from the Arctic Circumpolar Distribution 
and Soil Carbon of Thermokarst Landscapes dataset (https://doi.org/10.3334/
ORNLDAAC/1332). Surface water trends generated for this study are archived 
through the Arctic Data Center (https://doi.org/10.18739/A2037V). Source data 
are provided with this paper.

Code availability
Google Earth Engine code used to calculate surface water and climate variable 
trends and Python code used to perform machine learning analysis are available on 
GitHub (https://github.com/webb-e/Pan-Arctic-SWchange).
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Extended Data Fig. 1 | Trends in annual air temperature and fall rain across the study region. Trends are derived from the ERA5-Land reanalysis dataset30 
for 2000–2021 (annual air temperature) and 1999–2020 (autumn rain). Generated using Copernicus Climate Change Service Information [2022].
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Extended Data Fig. 2 | Partial dependence plots for the effect of annual temperature trends and autumn rain trends on surface water trends. These 
plots show that after controlling for variation in other predictors, increasing annual temperature and increasing autumn rain both lead to decreases in 
surface water at a given location. The line shows the partial dependence relationships, and the histogram shows the frequency distribution of 12 km pixels.
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Extended Data Fig. 3 | Predictor variables, other than changes in annual air temperature and autumn rain, contributing the most to surface water 
trends, as determined using Shapley values. Pixels in this figure are marked as ‘other’ in Fig. 4.
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Extended Data Fig. 4 | Circumpolar distribution of continuous and discontinuous permafrost extent, ground ice content, thermokarst lake coverage, and 
thermokarst wetland coverage. ‘High to very high’ and ‘low to moderate’ indicate fractional coverage of wetlands and lakes (high to very high: 30–100%; 
low to moderate: 1–30%). Permafrost extent and ground ice content is from ref. 67 and thermokarst lake and wetland coverage is from ref. 66.

Nature Climate Change | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


ArticlesNATuRE CLImATE CHAnGE

Extended Data Fig. 5 | Change in the average July superfine water index (yr-1) from 2000 to 2021 across the entire northern permafrost zone. As in Fig. 
1, but trends are calculated over the entire northern permafrost region (lake-rich and non-lake-rich areas of the continuous and discontinuous permafrost 
north of 50° N) rather than only in lake-rich regions.
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Extended Data Fig. 6 | Relative importance of predictor variables in explaining surface water trends across the entire northern permafrost zone. As 
in Fig. 3, but relative importance is calculated based on trends and geospatial data from across the entire northern permafrost region (lake-rich and 
non-lake-rich areas of the continuous and discontinuous permafrost north of 50° N) rather than only in lake-rich regions.
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