Quiz 5A (Modules 9)

Be sure to show all your work for full credit!

1. (2 points) Solve the inequality. Express your answer in interval notation.

$$
-7 \leq-3 x
$$

Divide both sides of the inequality by -3 and since we are dividing by a negative number we need to flip the inequality sign from being \leq to being \geq,

$$
\frac{-7}{-3} \geq x
$$

This means that x is less than or equal to $7 / 3$. So, the interval notation is $\left(-\infty, \frac{7}{3}\right]$. Notice we have a bracket after $7 / 3$ because $7 / 3$ is included.

2. (3 points) Solve the inequality. Express your answer in interval notation.

$$
x^{2}-12 x>-35
$$

We need to get all terms to one side of the inequality and zero on the other. So, add 35 to both sides:

$$
x^{2}-12 x+35>0
$$

Now factor the left hand side of the inequality

$$
(x-7)(x-5)>0
$$

Now we need to know what x-values make $(x-7)(x-5)>0$ a true statement. So, let's make a number. First we need to know when $(x-7)(x-5)=0$. It is 0 when $x=5,7$. So, 5,7 will break up our number line into intervals of positive and negative numbers.

Now we have to test the intervals $(-\infty, 5),(5,7)$, and $(7, \infty)$. When testing these intervals, we take any number in the interval and plug it into $(x-7)(x-5)$. If we get a negative number, that means every number in the interval will give us a negative number. If we get a postive number, that means every number in the interval will give us a positive number.

So, let's first test the interval $(-\infty, 5)$. We can pick any number in this interval to test. Let's test $x=0$. Now, we plug 0 into $(x-7)(x-5)$. So, $(0-7)(0-5)=(-7)(-5)=35$. So, we got a positive number. That means that every number in the interval $(-\infty, 5)$, when plugged into $(x-7)(x-5)$ will give us a positive number. Now look at our statement. We want $(x-7)(x-5)>0$. Is a positive number larger than 0 ? Yes, of course. So, every number in the interval $(-\infty, 5)$ makes the statement $(x-7)(x-5)>0$ true. So, that interval is one of our answers.

Now do the same steps for the intervals $(5,7)$ and $(7, \infty)$. When we plug $x=6$, we get $(6-$ $7)(6-5)=(-1)(1)=-1$ which is not bigger than zero. So, any number in the interval $(5,7)$ does not make the statement $(x-7)(x-5)>0$ true. So, that interval is not one of our answers. When we plug $x=8$, we get $(8-7)(8-5)=(1)(3)=3$ which is bigger than zero. So, any number in the interval $(7, \infty)$ makes the statement $(x-7)(x-5)>0$ true. So, that interval is also one of our answers.

So, the final answer is $(-\infty, 5) \cup(7, \infty)$. Notice we had parantheses after the 5 and before the 7 because 5 and 7 make $(x-7)(x-5)=0$ and we only want $(x-7)(x-5)>0$. If we were asked to solve $(x-7)(x-5) \geq 0$, then our answer would have been $(-\infty, 5] \cup[7, \infty)$.

3. (2 points) Solve the inequality. Express your answer in interval notation.

$$
|4 x|<3
$$

When taking terms out of an absolute value we need to have two cases, a positive and a negative case. So, we have either $4 x<3$ or $-(4 x)<3$. Evalutating the first case we divide both sides by 4 and get:

$$
x<3 / 4
$$

Now evaluate the second case and first we must multiply both sides by -1 . This also means we have to flip the inequality sign. So,$-(4 x)<3$ becomes

$$
4 x>-3
$$

Now divide both sides by 4 and we get

$$
x>-3 / 4
$$

Combining these two inequalities we get the interval $(-3 / 4,3 / 4)$ as our answer.

4. (3 points) Solve the inequality. Express your answer in interval notation.

$$
\frac{9-7 x}{x} \geq-4
$$

We need all terms on one side and 0 on the other. So, we get:

$$
\frac{9-7 x}{x}+4 \geq 0
$$

Now get common denomiators on the left hand side of the inequality. That means muliplying 4 by $\frac{x}{x}$.

$$
\begin{aligned}
& \frac{9-7 x}{x}+4 \cdot \frac{x}{x} \geq 0 \\
& \frac{9-7 x}{x}+\frac{4 x}{x} \geq 0
\end{aligned}
$$

Now, we can add the fractions together.

$$
\begin{gathered}
\frac{9-7 x+4 x}{x} \geq 0 \\
\frac{9-3 x}{x} \geq 0
\end{gathered}
$$

Now find where the numerator and demonimator equals 0 . The numerator equals 0 when $x=3$ and the denominator equals zero when $x=0$. So we plot those on our number line. Notice that we include $x=3$ since that would make the left hand side equal to 0 and we want to know when the left hand side is greater than or equal to 0 . We don't include $x=0$ because that makes the denominator 0 and the denominator can never equal 0 .

So, now test the intervals $(-\infty, 0),(0,3)$, and $(3, \infty)$ in a similar way to how we did so in question 2. You should get that $(-\infty, 0)$ gives you negative numbers, $(0,3)$ gives you positive numbers, and $(3, \infty)$ gives you negative numbers. Since we want to know when $\frac{9-3 x}{x}$ is greater than or equal to 0 , then we want numbers that make $\frac{9-3 x}{x}$ positive or 0 . So, our answer is $(0,3]$.

