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Abstract Ecological theory predicts that the presence of
temporal autocorrelation in environments can considerably
affect population extinction risk. However, empirical esti-
mates of autocorrelation values in animal populations have
not decoupled intrinsic growth and density feedback pro-
cesses from environmental autocorrelation. In this study, we
first discuss how the autocorrelation present in environmen-
tal covariates can be reduced through nonlinear interactions
or by interactions with multiple limiting resources. We
then estimated the degree of environmental autocorrelation
present in the Global Population Dynamics Database using
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a robust, model-based approach. Our empirical results indi-
cate that time series of animal populations are affected by
low levels of environmental autocorrelation, a result consis-
tent with predictions from our theoretical models. Claims
supporting the importance of autocorrelated environments
have been largely based on indirect empirical measures and
theoretical models seldom anchored in realistic assump-
tions. It is likely that a more nuanced understanding of
the effects of autocorrelated environments is necessary to
reconcile our conclusions with previous theory. We antici-
pate that our findings and other recent results will lead to
improvements in understanding how to incorporate fluctu-
ating environments into population risk assessments.

Keywords Environmental variation · Time series ·
Autocorrelation · Extinction risk · Environmental tracking

Introduction

Biologists have long understood that stochastic factors
influence population growth through both intrinsic and
extrinsic processes (Goodman 1987; Hilfinger and Paulsson
2011). How these processes are articulated mathematically
can strongly influence extinction risk assessments. There-
fore, mathematical representations of the forces affecting
risk need to accurately reflect the processes driving popula-
tion variability.

Environmental variability is a practical way to account
for the emergent effects of biotic and abiotic interac-
tions in single species population dynamics models when
detailed information on extrinsic covariates is not available
(Dennis and Costantino 1988). For sufficiently large popu-
lations, environmental variance is considered to be the pri-
mary contributor to population variability (Lande 1993). It
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is often assumed that the factors driving environmental vari-
ation converge to a normal distribution following the central
limit theorem (Lewontin and Cohen 1969). This model for-
mulation assumes that the processes driving variability are
independent through time; however, many ecological and
environmental time series are characterized by strong tem-
poral dependencies where the assumption of independence
may not hold. This means that the environment at the cur-
rent time can be forecast as a function of the state at the
earlier times (Shumway and Stoffer 2006).

A number of theoretical studies have shown that environ-
mental autocorrelation, that is an environment that fluctu-
ates on longer time-scales than the period between repro-
ductive events, can have important consequences on popu-
lation persistence (Roughgarden 1975; Mode and Jacobson
1987; Rotenberg 1987; Caswell and Cohen 1995; Cohen
1995; Ripa and Lundberg 1996; Kaitala et al. 1997; Petchey
et al. 1997; Morales 1999; Cuddington and Yodzis 1999;
Heino and Sabadell 2003; Holt et al. 2003; Wichmann et
al. 2003, 2005; Roy et al. 2005; Tuljapurkar and Haridas
2006; Schwager et al. 2006; Ruokolainen et al. 2007;
Kamenev et al. 2008; Logdberg and Wennergren 2012).
However, most studies that have empirically estimated the
degree of autocorrelation present in population abundances
have been unable to directly link this autocorrelation to envi-
ronmental covariates (Pimm and Redfearn 1988; Cyr 1997;
Swanson 1998; Miramontes and Rohani 1998; Petchey
2000; Inchausti and Halley 2001, 2002; Halley and
Inchausti 2004) or have found that the link between envi-
ronmental covariates and population growth is weak (Knape
and de Valpine 2010; Garcia-Carreras and Reuman 2011).
Because of the potential importance that theoretical inves-
tigations have placed on environmental autocorrelation for
applications such as population viability analysis, empiri-
cally determining how animal population growth is affected
by autocorrelated environmental covariates is crucial.

To analyze the role that environmental autocorrelation
models have in population risk assessment, we first looked
at how population dynamics interact with autocorrelated
environmental variables in a simulation study. This provided
a baseline expectation for the behavior of real populations
embedded in autocorrelated environments. We then esti-
mated the environmental autocorrelation present in a broad
range of taxa using a large number of time series from
the Global Population Dynamics Database (GPDD) (NERC
2010), decomposing the intrinsic autocorrelation generated
by population processes from environmental autocorrela-
tion. Many of the concepts presented in this work have
been explored previously to some degree, however, here
we integrate these ideas to provide a foundation for the-
oretical expectations and to better understand empirical
estimates of environmental autocorrelation in animal popu-
lations. Taken together, our results raise questions regarding

the importance of autocorrelated environmental variation in
population dynamics and provide an updated perspective
on how to think about the influence of the environment on
extinction risk predictions.

We begin the introduction with a brief account of stochas-
tic population models, showing how these models can be
used to integrate population growth processes with auto-
correlated environmental variability. Then past work on the
impact of autocorrelated environments on animal popula-
tions is briefly summarized, and we define a number of
key concepts. Finally, we introduce environmental track-
ing models which describe how changes in the environment
drive changes in population growth.

Stochastic population models

Time series of abundances are often modeled using discrete-
time density dependent recursive equations. This is due
both to the discrete nature of reproduction and life history
structure in many species and to the discrete nature of the
sampling process. Two commonly used forms of density-
dependence are the discrete Gompertz and Ricker models.
The Gompertz model has been widely used in ecology to
detect density dependence in animal populations (Morris
1959; Sibly et al. 2007; Ziebarth et al. 2010). It has also
been the basis for the development of measurement error
models (Dennis et al. 2006) and for analysis of density
dependence in large datasets (Sibly et al. 2007; Abbott et al.
2009; Knape and de Valpine 2010; Ziebarth et al. 2010;
Knape and de Valpine 2011). The Ricker model was orig-
inally derived by William Ricker (1954) emerging from a
cannibalistic interaction between adults and juveniles in a
population. There have been a number of other derivations
(Royama 1992; Geritz and Kisdi 2004; Brännström and
Sumpter 2005) linking a variety of mechanistic interpreta-
tions to this model. Variations of the Ricker model have
been used in many past studies examining the theoretical
properties of environmental autocorrelation (Petchey et al.
1997; Morales 1999; Cuddington and Yodzis 1999; Heino
and Sabadell 2003; Ruokolainen et al. 2007) and in stud-
ies examining properties of density dependence (Sibly et al.
2005).

The Gompertz model is given by

N(t) = N(t − 1) exp[a + b ln(N(t − 1)) + E(t)], (1)

and the Ricker model is

N(t) = N(t − 1) exp[a + b N(t − 1) + E(t)]. (2)

Here, N(t) is the abundance metric at time t , a is the maxi-
mum per capita rate of increase, b is the strength of density
dependence, and the E(t) is the environmental perturbation
which is usually assumed to affect the rate of increase and
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is therefore typically modeled as independent and identi-
cally distributed (iid) draws from a normal distribution with
mean 0 and where σ 2 is the environmental variance in the
per capita growth rate (Ferguson and Ponciano 2015). We
have not included the effects of demographic stochastic-
ity in the variance model E(t). Demographic factors can
generate variation in births and deaths even in a constant
environment, though this is often considered only for popu-
lations with low abundances that may be at risk of extinction
(Shaffer 1987; Lande 1993). The per capita growth rate,
defined as R(t) = ln (N(t)/N(t − 1)), is a commonly used
transformation that turns the nonlinear stochastic models
such as Eq. 2 into a standard linear model.

One approach to modeling the emergent effects of envi-
ronmental interactions on a population is to relax the
assumption that realizations of the stochastic environment,
E(t) in Eqs. 1 and 2, are iid. Suitably specified autocor-
relation models have been proposed to account for effects
due to complex environmental processes, species interac-
tions, and measurement error that is not otherwise captured
by single-species models. Theoretical evidence generally
predicts that autocorrelated environments have important
population-level impacts; however, as discussed below the
empirical evidence supporting the importance of these
population-level impacts is much more tentative.

Autocorrelation models

Autocovariance is a measure of how strongly a signal
covaries with itself at multiple time lags. For the kth lag in
the time series X, this is written as Cov(X(t), X(t − k)).
The autocorrelation function is the normalized quantity,
Corr(X(t), X(t − k)) = Cov(X(t), X(t − k))/σtσt−k ,
where σ is the standard deviation (Shumway and Stoffer
2006). Both autocovariance and autocorrelation are func-
tions of the lag, k, and are generally expected to go to zero
with increasing lag.

The simplest example of an autocorrelation model is the
autoregressive lag 1 (AR(1)) model. The AR(1) has found
wide use in statistical time series modeling (Shumway and
Stoffer 2006). It is given by

E(t) = φE(t − 1) + W(t), (3)

where W(t) is a normal distribution with mean equal to
zero and variance given by σ 2, and φ controls the degree
of autocorrelation of the current observation on the previ-
ous observation. Alternative error models that incorporate
long-memory processes are discussed in Appendix D.

An additional autocorrelation model of interest is the
moving average lag 1 (MA(1)) model, which can be inter-
preted as stochastic influences from either measurement
error terms (Dennis et al. 2006) or intraspecific and inter-
specific interactions (Royama 1981; Abbott et al. 2009;

Ferguson and Ponciano 2014). The MA(1) model is given
by

E(t) = W(t) + θW(t − 1), (4)

where the W(t)’s are drawn from a normal distribution with
mean equal to zero and variance given by σ 2. As opposed to
AR(1) processes, in which the autocorrelation is in the pro-
cess, the MA(1) model has autocorrelation introduced in the
random shock, distributing the effect of variance perturba-
tions from previous time lags onto the current observation.
The AR(1) and MA(1) models can be applied simulta-
neously through the ARMA(1,1) model (Appendix B). In
addition, an important connection between AR and MA pro-
cesses exists as any causal, invertible ARMA process can be
written as an MA or AR process of infinite order (Shumway
and Stoffer 2006).

Not specifying an accurate autocorrelation model can
lead to confounding estimates of environmental autocor-
relation with measurement error (Akçakaya et al. 2003).
When independent estimates of measurement error are not
available, state space methods can be used to estimate the
measurement error (de Valpine and Hastings 2002). For
the Gompertz model, the state-space approach reduces to
an MA(1) error structure (Dennis et al. 2006). Thus, the
ARMA(1,1) error process accounts for the impact of envi-
ronmental autocorrelation along with measurement error.

One of the underlying assumptions behind using AR
models to capture the effects of population-environmental
interactions is that there are no feedbacks between the
environmental conditions driving population fluctuations
and the population. Interactions with feedbacks can gen-
erate similar environmental autocorrelation patterns though
with added complexity. For example, consider observing
the dynamics of a single population that is interacting
with another unobserved population. The dynamics of the
observed population approximated around a point can be
approximated as a Gompertz model with an ARMA(1,1)
environmental error process (Abbott et al. 2009). Under
this scenario, the sign and magnitude of the AR compo-
nent depend on the signs of the interspecific interaction and
on relative magnitude of intraspecific to the interspecific
interactions (Ferguson and Ponciano 2014).

Impacts of environmental autocorrelation in animal
populations

Population abundances are inherently autocorrelated
because abundances in the next year are dependent on the
previous year through intrinsic processes such as birth and
survival. Environmental processes that drive population
fluctuations may operate at longer timescales than the
population reproductive process. When specific covariates
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cannot be linked to this variability the environmental vari-
ance, E(t), may be best modeled with some autocorrelation
(Roughgarden 1975). Examples of extrinsic conditions that
can drive population change and may also exhibit temporal
autocorrelation are rainfall (Dennis and Otten 2000; Taper
and Gogan 2002) and temperature (Savage et al. 2004), or
demography and ecological factors such as interspecific
interactions (Royama 1977; Abbott et al. 2009; Ferguson
and Ponciano 2014). Because understanding the poten-
tial impact of autocorrelated environments on population
dynamics requires untangling interactions between multiple
autocorrelated random variables, we provide a summary of
these terms in Table 1.

The intrinsic population autocorrelation is defined as the
temporal correlation in abundances (per capita growth rate)
in a constant environment. For the abundances (per capita
growth rate), this can be denoted as Corr(N(t), N(t −

k)|E(t)) (Corr(R(t), R(t − k)|E(t))), where N(t) is pop-
ulation abundance at time t and the notation indicates we
have conditioned the stochastic growth process to occur in a
constant environment, E(t). This intrinsic autocorrelation is
generally assumed to be positive due to the nature of growth
processes but complex deterministic dynamics may also
generate negative autocorrelation (Cohen 1995). Extrinsic
processes that generate population environmental autocorre-
lation (PEA) are denoted as Corr(E(t), E(t−k)). These are
also often assumed to be positively autocorrelated, though
some ecological processes may generate negative values.

The total population autocorrelation (TPA) is a mea-
sure of the total autocorrelation observed in population
abundances though it is oftentimes measured in the per
capita growth rate as well. For the abundances (per capita
growth rate), this can be written as Corr(N(t), N(t −
k)) (Corr(R(t), R(t − k))). As noted in previous work

Table 1 Glossary of terms related to environmental autocorrelation in animal populations

Term (abbr.) Definition

Environmental variance in the per capita growth rate Var(E(t)) The variance of population

abundances due to environmental

fluctuations.

Intrinsic population autocorrelation Corr (N(t), N(t − k)|E(t)) This is the autocorrelation present in

the population abundances induced

only by growth and density feedback

processes.

Population environmental autocorrelation (PEA) Corr (E(t), E(t − k)) Autocorrelation in the population

environmental variance may arise when

population growth is affected by

autocorrelated environmental covariates.

Total population autocorrelation (TPA) Corr (N(t), N(t − k)) The total autocorrelation present in

the population abundances. This can

be a mixture of intrinsic and

environmental processes.

Environmental covariate autocorrelation Corr (C(t), C(t − k)) Autocorrelation in an environmental

covariate, C(t).

Environmental tracking Environmental tracking is the degree

to which changes in the per capita

growth rate reflect changes in

environmental covariates.

Environmental filter These models map covariate values

(C(t)) to environmental perturbations

(E(t)).

Stochastic Leibig’s Law of the minimum (SLLM) A sampling process where the limiting

factor for each year is the minimum

observed environmental covariate

value for that year from the set of all

limiting environmental factors.
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(Sugihara 1995; Kaitala et al. 1997; Ranta et al. 2000), the
autocorrelation measured at the population level is influ-
enced by the intrinsic processes of growth and density
feedback as well as by autocorrelation generated through
extrinsic processes. This effect is nicely illustrated in Fig. 1
of Garcia-Carreras and Reuman (2011). Different combi-
nations of the intrinsic population autocorrelation and PEA
can generate identical TPA values so previous work exam-
ining only the TPA does not provide information on the
relative contributions of PEA to the observed population

dynamics. Although most previous work has focused on the
direct impacts an autocorrelated environment has on pop-
ulation dynamics, the process of translating environmental
conditions into population growth is often characterized by
complex relationships that may influence the strength of
PEA.

Starting with an observation at time t of the environmen-
tal covariate, C(t), we define the covariate autocorrelation
as defined as Corr(C(t), C(t − k)). This environmen-
tal covariate is linked to stochastic perturbations of the
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Fig. 1 An illustration of how environmental filters can transform the
autocorrelation in environmental covariates and the resulting effect on
population dynamics. Panel a shows a time series of an environmen-
tal covariate, C(t), with lag one autocorrelation φ = 0.5. Panel b
shows the tracking model, which describes the perturbation, E(t), on
the per capita growth rate for different values of the environmental
covariate. We illustrate a linear tracking model (grey) and a unimodal
tracking model (blue). Panel c illustrates the resulting perturbation,

E(t), once the covariate, C(t), passes through the filter. This resulting
time series has some population environmental autocorrelation (PEA)
that is a result of this transformation. Finally, the environmental pertur-
bations affect the population growth process and the total population
autocorrelation (TPA) in panel d. The per capita growth rate, R(t),
in the Ricker model (parameter values; a = 0.10, b = −0.0010,
σ = 0.10) displays a lag one autocorrelation value that is a function
the environmental signal, E(t), and the effects of density dependence
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population growth, E(t), though an environmental filter
that defines the relationship between C(t) and population
growth. When there is a linear transformation between C(t)

and E(t) the PEA will be equal to the autocorrelation in
the environmental covariate. However, when the mapping
between C(t) and E(t) is nonlinear this correspondence
may be disrupted. We discuss several potentially common
filters in the next section.

The incorporation of high levels of PEA into popula-
tion projections has been shown to lead to large differences
in extinction risk predictions, as reviewed by Ruokolainen
et al. (2009). PEA coupled with undercompensatory den-
sity dependence tends to increase extinction risk due to
the increased probability of having a series of bad years
in autocorrelated environments. Overcompensatory popula-
tion dynamics in autocorrelated environments will tend to
decrease extinction risk due to the reduced probability of
having a single extreme event occur in some time period
(Schwager et al. 2006). In general, the effects on population
extinction are dependent on both the underlying dynam-
ics and on the magnitude of PEA. These results suggest
that accurately assessing species extinction risk using pop-
ulation dynamics models requires estimating both the form
of density dependence and the degree of PEA present in a
population.

Previous studies that have attempted to empirically quan-
tify levels of autocorrelation in animal population time
series have typically looked at the TPA, the overall auto-
correlation present in population abundances (Pimm and
Redfearn 1988; Cyr 1997; Miramontes and Rohani 1998;
Inchausti and Halley 2001, 2002; Halley and Inchausti
2004). Because past studies of TPA have not decomposed
environmental variability from density dependent processes,
it is not known how much of the observed TPA signal is
contributed by the intrinsic population autocorrelation rela-
tive to the PEA, though both are thought to occur in most
animal populations (Ariño and Pimm 1995). Furthermore,
these studies have generally failed to link estimated TPA to
specific environmental covariates despite suggestions that
species depending on autocorrelated environmental covari-
ates should display PEA.

Several recent empirical studies that have attempted
to determine whether population growth directly tracks
specific environmental covariates. Knape and de Valpine
(2010) incorporated weather and climatic index data as
covariates into a large number animal time series mod-
els and showed that environmental covariates can improve
model predictions. However, these improvements were
often marginal when corrected for model overfitting. A
similar study by Garcia-Carreras and Reuman (2011) also
examined a number of climatic variables and animal time
series, their results suggest that the autocorrelation in mean
summer temperature is weakly correlated (r = 0.312) with

the TPA in populations from the GPDD. The results of
these studies suggest that the average coupling between
any one climatic variable and population growth will be
weak. However, both studies point out the important caveat
that most populations will be affected by multiple envi-
ronmental factors that may not be directly measured by
convenient summary statistics available for global analyses.
The theoretical body of literature has little to say on how
the effects of multiple autocorrelated environmental factors
might combine to drive extinction risk.

We are also aware of four microcosm experiments that
have examined the role of autocorrelated environments on
population dynamics. The first study (Petchey 2000) found
no significant effects of the environmental autocorrelation
on the resulting TPA, contrary to theoretical predictions.
However, populations in positively autocorrelated environ-
ments did tend to be more correlated to the environmental
state than populations in uncorrelated environments, an
effect that while statistically significant was weak. The
author points out that the tracking ability of experimen-
tal Colpidium populations relies on long periods of very
high temperatures, during which the population growth
was strongly correlated to the environment while at other
temperatures this correlation was weak. A second study
(Gonzalez and Holt 2002) found that average population
abundances in autocorrelated environments were higher
than in uncorrelated environments, as predicted by theory.
The other prediction tested, that populations in autocor-
related environments display greater variability, was sup-
ported in one of the two experimental treatments. In addi-
tion, this study was with open populations that allowed
migration between subpopulations, potentially leading to
stronger responses to environmental conditions than growth
processes due to the potential for rapid migration in
response to current conditions. Another microcosm exper-
iment (Laakso et al. 2003b) found that population abun-
dances and temperature were more strongly correlated when
temperature was positively autocorrelated, supporting theo-
retical predictions. A culling experiment (Pike et al. 2004)
was suggestive of autocorrelated mortality effects on extinc-
tion times for one of two experimental treatments, partially
supporting theoretical predictions.

These experimental results suggest that although it may
be possible for populations to be strongly coupled to the
environment, often this relationship does not hold even in
relatively simple experimental systems. Taken together, past
empirical and experimental studies suggest that assuming
a direct, linear relationship between correlation in environ-
ments and the resulting PEA is likely an oversimplification
and that more biologically plausible models of environmen-
tal autocorrelation are needed to be empirically useful under
natural conditions. In order to complement theoretical work
to date, we assess whether linear models of environmental
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autocorrelation are sufficient to accurately estimate density
dependence and autocorrelated environmental variability
using animal abundance time series.

Environmental tracking models

Environmental tracking models call into question the
implicit assumption that the autocorrelation in environmen-
tal factors will translate directly into population environ-
mental autocorrelation (PEA) and thus affect the total popu-
lation autocorrelation (TPA). Nonlinear growth responses to
environmental conditions and phenotypic plasticity define
the ecological niche, a central concept in ecology (Holt
2009). These responses can affect the way that animals
track environmental conditions, which in turn can lead to
PEA values that are much different than the autocorre-
lation present in environmental covariates (Laakso et al.
2001).

Nonlinear responses to the environmental state can alter
an autocorrelated environmental variable so that the PEA
differs from the original autocorrelation in an environmen-
tal covariate (Laakso et al. 2001, 2003a; Ruokolainen and
McCann 2013). Figure 1 is a heurisitic illustration of the
steps required to transform a changing environmental state
into population growth. This multi-step process begins by
passing the environmental covariate signal (Fig. 1a) through
a nonlinear filter (Fig. 1b). The resulting transformed fluc-
tuations drive perturbations in the per capita growth rate
(Fig. 1c). Finally, the TPA is measured on the resulting time
series (Fig. 1d). The resulting autocorrelation in the per
capita growth is affected by the nonlinear filter selectively
dampening extreme oscillations in the environment.

In addition to previously studied nonlinear tracking mod-
els, we propose a stochastic version of Liebig’s law of
the minimum (SLLM) (Hooker 1917; Farrior et al. 2013)
(Table 1). This may reduce the PEA for populations that
are limited by multiple limiting resources by changing the
limiting resource each year, breaking the autocorrelation
that would be present in a single limiting resource. The
model assumes that the limiting environmental factor for
each year is one of several resources, each of which may
be autocorrelated with itself but is uncorrelated to the other
limiting resources. Sampling from these different resources
may serve to disrupt the autocorrelation present in any one
of the environmental covariates and reduce the overall PEA.

A third process that has been shown to disrupt the influ-
ence of autocorrelation in environmental covariates on PEA
is demographic stochasticity. The presence of demographic
stochasticity leads to the addition of white noise to the total
population variance, potentially reducing the overall impor-
tance of PEA at low abundances (van de Pol et al. 2011).
Although demographic stochasticity is at work to some
degree in all populations, our analysis is primarily focused

on long-term studies of stable populations that are likely to
have relatively low amounts of demographic stochasticity.

Single-species time series without environmental covari-
ate data are not sufficient to estimate environmental filters,
therefore, we provide estimates of PEA values in the GPDD
and use those estimates as a lens to indirectly determine
how well standard assumptions about how autocorrelated
environments effect populations hold up. We explored the
impacts of the nonlinear and SLLM tracking models on
the observed PEA in animal populations with a simulation
study.

Methods

Effects of environmental tracking models

We used simulations to explore the impacts of environmen-
tal filters on covariates with autocorrelation, then estimated
the population environmental autocorrelation (PEA) in the
GPDD. Although we cannot estimate environmental filters
directly from abundance time series, the simulation work
provides a baseline to compare what we estimate in the
GPDD to what would be expected by a linear environmental
filter.

In order to assess the effects nonlinear tracking models
have in transforming environmental covariates with auto-
correlation into PEA, we simulated the impact of several
forms of population responses to environmental variation on
time series generated from an AR(1) model. Various func-
tions that have been used when modeling species responses
to environmental covariates. Two of the most common
functions are the power and the logistic (or S-shape) trans-
formations. The power function is often justified as a niche
model of environmental suitability because at even pow-
ers the function results in one optimal response along an
environmental axis. A squared power can be viewed as a
second-order approximation to functions describing a uni-
modal response of populations to an environmental factor.
Such responses include the temperature response of fit-
ness in ectothermic species (Huey and Stevenson 1979;
Amarasekare and Savage 2012). Cubic and other odd func-
tions are more rarely observed in ecological systems but
can be used to incorporate the effects of skewness into a
model (Austin 2007) or to approximate an environmentally-
driven allee affect such that low levels of an environmental
resource correspond to negative growth while high values
correspond to positive growth. Quartic powers can approx-
imate truncated fitness responses where the fitness is near
optimal over some finite range, then drops off outside this
range (Huey and Stevenson 1979; Kearney et al. 2008).
The logistic function is often used to model the response of
survival to an environmental variable (Jonzén et al. 2010).
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Although the logistic function can also be a power func-
tion of the environment, we limit our analysis to logistic
transforms of linear environments.

To determine the effect of these transformations, we
simulated an environmental covariate, C(t), as an AR(1)
process (Eq. 3) with mean equal to 0 and variance equal to
1. Data were generated using the arima.sim function in R (R
Development Core Team 2012) and were rescaled to vari-
ance 1 by rescaling all observations by

√
1 − φ2 (Shumway

and Stoffer 2006). For each series, the autocorrelation in an
environmental covariate, given by φ in Eq. 3, was set to one
of 30 equally space values in the interval [−0.9, 0.9]. We
drew a time series of length 106 from each level of auto-
correlation. We then transformed C(t) into E(t) using the
power transform, E(t) = −C(t)η, and the logistic trans-

form, E(t) = eζ C(t)

1+eζ C(t) . The value η was varied between the
integer values 1 to 4 and ζ was set to be 1, 5, 10, or 20.
We transformed C(t) into E(t) for all values of φ, and η or
ζ . The PEA, φ′, was estimated by regressing the series on
its previous state E(t) = φ′E(t − 1) + W(t), where W(t)

was iid normally distributed with mean zero and estimated
variance.

The effect of the stochastic Leibig’s law of the min-
imum (SLLM) on the overall PEA was also determined
by using another simulation procedure. First, we assumed
that a number (n) of time series with autocorrelation are
determinants of per capita growth rate. Then we simulated
these n time series using an AR(1) process with mean 0,
variance 1, and of length 106. Data were generated using
the arima.sim function in R (R Development Core Team
2012) were rescaled to variance 1 by rescaling all observa-
tions by

√
1 − φ2 (Shumway and Stoffer 2006). We took

the minimum value from the n realizations at each time
step, so that E(t) = min{X1(t), X2(t), . . . , Xn(t)}, where
E(t) is the environmental variance in the per capita growth
rate.

We examined two scenarios for the SLLM. In the first,
we let all the Xi’s have the same degree of autocorrela-
tion, we then applied the SLLM to construct the new E(t).
In the second scenario, we fixed the autocorrelation for
n − 1 of these series at 0.5, a level hypothesized to be a
reasonable default for environmental processes (Halley and
Inchausti 2004). The remaining covariate time series had an
autocorrelation level that was incrementally varied. In all
simulations, we incrementally varied the autocorrelation in
the interval [−0.9, 0.9], by steps of 0.1 for a total of 20
values. We then estimated the PEA, φ′, by regressing the
SLLM series on its previous state E(t) = φ′E(t−1)+W(t),
where the W(t) are iid normally distributed with mean zero
and estimated variance. We repeated the simulation for n =
2, 3, 4, and 5 limiting environmental factors. These two
scenarios examine the potential of SLLM to disrupt auto-
correlation among similar environmental covariates, and the

potential of SLLM to affect the PEA when a single series is
less than or greater than the other covariates.

Joint estimation of density dependence
and the autocorrelation structure for the GPDD

We examined the degree of environmental autocorrelation in
the GPDD by jointly estimating growth and density depen-
dence (contributing to the intrinsic population autocorre-
lation) as well as the autocorrelation in the environmental
variance (the PEA). Our curated dataset consisted of 445
high quality time series from the approximately 5000 avail-
able datasets in the GPDD (NERC 2010). In order to include
a dataset from the GPDD, we required at least 15 obser-
vations in the time series, the qualitative GPDD reliability
rating must have been 4 or 5 (out of a maximum rating of
5), and the data must not have been constant over the first
3 years. In addition, we only allowed datasets where sam-
pling units indicated nonharvest indices, as harvests may
not reflect true population abundances. All data were trans-
formed by adding 1 to all observations in order to remove
any 0’s. We tested the effects of this data transformation
by analyzing a subset of the 445 datasets where there were
no zero counts, but fewer datasets (166) were available for
this analysis. We report the unique GPDD identification
numbers for the series chosen in Appendix A.

The ability to accurately estimate the PEA in density
dependent models was determined using a model struc-
tural adequacy analysis (Taper et al. 2008). This allowed us
to determine how well simple density dependence models
could estimate the PEA arising from a more complex model.
Because previous work has shown that both measurement
error (Lindén and Knape 2009) and model structure (Jonzén
and Lundberg 2002; Lindén et al. 2013) can affect the esti-
mation of the environmental autocorrelation, we explored
the impacts of these factors on the estimation process of the
PEA estimator, φ̂.

We began by fitting a population dynamics model to
each of the 445 GPDD time series included in our study
to obtain parameters for simulating new datasets. This fit-
ting procedure was performed for density dependence lags
of 0 (density independent) through 3 with the Gompertz
model of density dependence and with an ARMA(1,1)
error structure to decompose estimates of PEA and mea-
surement error. A new dataset was then generated using
each of the fitted model’s parameters except the AR(1)
component, φ in Eq. 3, was set to one of the values
(0.0, 0.225, 0.45, 0.675, 0.9). These generated data had
the same parameters, sample size, and were initialized at the
same initial population abundance as the original dataset.
For each of the generated datasets, we fit a set of candi-
date models of lags 0 to 3 with an ARMA(1,1) error term.
We then compared the estimator bias and mean squared
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error in the case where we selected the best lag model using
AICc versus the case where we simply use the lag-1 density
dependence model regardless of the generating model.

Based on the results of this simulation study we were able
to determine the best method for estimating the PEA in the
GPDD time series in terms of the estimator bias and mean
squared error. We then were able to apply this procedure
to the GPDD and also use the estimated bias in the AR(1)
parameter to perform a bias correction procedure. In order
to determine whether there were underlying patterns in the
distribution of PEA estimates we tested a number of covari-
ates associated with the GPDD to determine if they could
explain estimated PEA values. These methods and results
are fully described in Appendix C.

Finally, bias in our estimates of the PEA may arise if the
source of environmental variation is perturbations to the car-
rying capacity, rather than the maximum per capita rate of
increase as we assumed. We conducted a simulation study
to determine whether this source of bias is negligible or not,
presented in Appendix D.

Results

Effects of environmental tracking models

We found that the magnitude of population environmen-
tal autocorrelation (PEA) was reduced from the original
autocorrelation in environmental covariates by the nonlin-
ear environmental tracking models (Fig. 2). This decrease
in magnitude has not been described in the literature to the

best of our knowledge. Previous work that has explored the
impact of tracking models on PEA has found that they can
also affect the magnitude of the variance, skew, and kur-
tosis in the resulting PEA (Laakso et al. 2001). Although
this can have potentially important impacts on predictions of
extinction dynamics (Laakso et al. 2003a, 2004), we were
solely concerned with the ability of tracking models to
modify the strength of autocorrelation in environmental
covariates.

The degree of the autocorrelation dampening when trans-
lating autocorrelated covariates into PEA with nonlinear
tracking models depended on the relationship between the
population and the environmental variable. However, power
and threshold functions both tended to reduce the PEA rel-
ative to the original covariate, with the greatest dampening
effect coming from even-powered, symmetric niche mod-
els (Fig. 2). Asymmetric models such as the power model
with odd coefficients and the logistic model had less impact
on the original covariate autocorrelation than the symmet-
ric models, due to the ability of symmetric models to cause
changes in the sign of the covariate autocorrelation. Sym-
metric tracking models had weak effects on higher levels
of autocorrelation than at moderate values, as these series
correspond to populations that spend more consecutive time
on the edges of their environmental tolerances where the
curvature of the tracking model is less. These results sug-
gest that the dampening of autocorrelation in covariates is a
ubiquitous phenomenon but may often depend on whether
a population is near the limits of its niche tolerance or not.
For populations in marginal environments where the track-
ing model is centered on the tails of the niche model, rather
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Fig. 2 The effect of two different nonlinear interactions on an auto-
correlated time series, C(t). The dashed black line is the autocorrela-
tion estimated in the untransformed environmental covariate, while the
colored lines are the population environmental autocorrelation (PEA)

values in E(t) for different transformations. Panel a corresponds to
power transforms of the form E(t) = −C(t)η . Panel b corresponds

to the logistic function, E(t) = eζC(t)

1+eζC(t) . All estimations were made
using an AR(1) model
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than the center, a linear tracking model may be a reasonable
approximation.

Applying the stochastic Leibig’s law of the minimum
(SLLM) also led to reductions in the PEA by breaking the
dependency present in long runs from any one of the time
series (Fig. 3). In both simulation, experiments dampen-
ing due to the SLLM was stronger on negative values of
autocorrelation, due to oscillatory behavior in this parame-
ter regime that leads to frequent changes in the minimum
limiting environmental factor. With equal and positive auto-
correlation in all the environmental covariates (Fig. 3a), the
degree of dampening was less but still potentially signifi-
cant, for example, when there were five time series all with
autocorrelation values of 0.5 the resulting PEA was 0.33.
For the case when the autocorrelation of a single environ-
mental covariate was varied and the remaining series were
set to the plausible general values of 0.5, the general trend
was to reduce the PEA, though very high values in one
environmental covariate combined with few limiting fac-
tors can lead to values greater than 0.5 (Fig. 3b). Overall,
these results suggest that both the number of environmental
covariates limiting population growth and the distribution
of autocorrelation in those covariates will have potentially
important consequences on the PEA.

In these simulations, we only tested the impacts of
environmental processes without direct feedbacks to the
population. Previous work has identified that interactions
with feedbacks can often be approximated by more com-
plex ARMA autocorrelation structures that are additive
extensions of the AR(1) process used here. Therefore, we

expect that our conclusions will generalize to interactions
with feedbacks as long as ARMA models are appropriate
approximations to those feedbacks.

GPDD estimates

Our simulation study indicated that estimations of the pop-
ulation environmental autocorrelation (PEA) depend on the
model form and error structure used, consistent with previ-
ous work (Jonzén and Lundberg 2002; Lindén and Knape
2009; Lindén et al. 2013; Fowler and Ruokolainen 2013).
Bias in estimates of φ̂ tended to be negative at moderate to
high values (Fig. 4a, c), and slightly positive when using
the lag-1 model at low values (Fig. 4c). The magnitude of
bias and the mean squared error in the estimates using the
lag-1 model tended to be less than when performing model
selection at moderate to high autocorrelation values and
over all lags. This suggests that the model selection proce-
dure introduced estimation error through model uncertainty
(Fig. 4). Finally, we found that both the AR component and
MA component were necessary in order to decompose the
effects of PEA and measurement error.

Based on the lag-1 estimates, we tested whether the
degree of bias could be estimated as a linear function of the
true environmental autocorrelation (Fig. 4c). We found that
a linear model was better than a model with constant inter-
cept (�AICc = 34.3), suggesting that a bias correction term
could be implemented. Including model lag did not lead to
improvements in model performance (�AICc = 0.21) sug-
gesting that the true dimension of the generating model will
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Fig. 3 Two applications of the SLLM to a number, n, of autocorre-
lated time-series. In both panels, the x-axis denotes the autocorrelation
in the environmental covariate while y-axis is the population environ-
mental autocorrelation (PEA) that affects the per capita growth rate
once the SLLM has been applied. In panel a, all n covariates have
the same autocorrelation. In panel b, n − 1 of the covariates have
an autocorrelation of 0.5, while the remaining covariate has the auto-
correlation value given on the x-axis. In both panels, the dashed line

denotes the covariate’s autocorrelation, for comparison. The overall
effect of the SLLM depends on the number of environmental covari-
ates, n, that limit the population. In general, the SLLM tends to reduce
the magnitude of the PEA relative to what is expected from a single
limiting factor. However, as shown in the right panel, the effect can
increase the PEA if a single limiting environmental factor has a high
enough autocorrelation. All estimations were made using an AR(1)
model

Author's personal copy



Theor Ecol

Fig. 4 Bias and mean squared
error (MSE) in the estimated
environmental autocorrelation,
φ̂, for data generated from a
given lag with the Gompertz
model with an ARMA(1,1) error
structure. a The estimated bias
when performing model
selection using AICc, b the
corresponding estimated mean
squared error in φ̂. c The
estimated bias present when
using estimates from the lag-1
model, and d the corresponding
estimated mean squared error in
φ̂ estimator
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not significantly affect our correction. Our estimated bias
was, φ̂ − φ = 0.10 − 0.54φ. Then the bias correction is
estimated as,

φ̂Corrected = φ̂ − 0.1

0.46
.

We provide a set of different PEA estimators for our anal-
ysis of the GPDD, including both the raw estimates of PEA,
φ̂, and bias corrected PEA estimates, φ̂Corrected, (Table 2).
When testing between Gompertz, Ricker, and density inde-
pendent models (Fig. 5), we found an estimate of φ̂ =
0.08 and φ̂Corrected = −0.03. Not including datasets with
observed zeros changed the PEA estimate to φ̂ = 0.07 and
φ̂Corrected = −0.06, suggesting that adding one to all obser-
vations had little effect on these estimates. When selecting
between the Gompertz and density independent models, we
found a median PEA estimate in the GPDD of φ̂ = 0.08
and φ̂Corrected = −0.05, while when selecting between
the Ricker and density independent models, we estimated
φ̂ = 0.06 and φ̂Corrected = −0.10 (Table 2). In all cases,
estimates were near zero and 86 % of the raw estimates and
73 % of the bias corrected estimates were below 0.5, a level

that has been hypothesized as a reasonable default for the
PEA (Halley and Inchausti 2004).

We tested a number of potential covariates to deter-
mine if they could explain variability in our estimates of
PEA, however, we found no important explanatory variables
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Fig. 5 Histogram of 445 estimated population environmental autocor-
relation (PEA) values from the GPDD
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Table 2 Summary statistics and sample size for distributions of PEA estimated under different models and with different data sets

Density dependence Autocorrelation model Sample size Median φ̂ SD φ̂

Gompertz & Ricker ARMA(1,1) 445 0.08 (−0.03) 0.42 (0.90)

Gompertz & Ricker (no +1 transform) ARMA(1,1) 168 0.07 (−0.06) 0.42 (0.91)

Gompertz ARMA(1,1) 445 0.08 (−0.05) 0.42 (0.90)

Ricker ARMA(1,1) 445 0.06 (−0.10) 0.42 (0.91)

Estimates are given as the raw estimator with the bias corrected estimator in parentheses. Bold entry corresponds to the most reliable estimation
procedure and results. The density dependence column reports the forms of density dependence considered in the model set. “No +1 transform”
means that all datasets with zeros were excluded from the analysis. For all model analyses, density independent models were also included. All
models included an MA(1) term to account for measurement error

(methods and results in Appendix C). Our diagnostic tests
were suggestive that estimates of PEA tended to decrease
with sample size and that specialist species may be subject
to different levels of PEA than generalists, consistent with
predictions from the SLLM. However, these effects were
also not statistically significant (Appendix C).

Finally, we examined the impact of PEA arising through
environmental variation in the carrying capacity, rather than
the maximum per capita rate of increase, using a simulation
study. Our results (Appendix E) suggest that this is not a
source of significant estimation bias of the PEA, though at
very high levels of variability in the carrying capacity the
magnitude of the estimated PEA may be slightly lower than
the actual PEA. More details on the method and results are
provided in Appendix E.

Discussion

Here, we have shown that decoupling population dynamics
from the environmental variance in the per capita growth
rate are necessary to provide interpretable population envi-
ronmental autocorrelation (PEA) estimates. Previous esti-
mates of total population autocorrelation (TPA) (Pimm and
Redfearn 1988; Cyr 1997; Miramontes and Rohani 1998;
Swanson 1998; Inchausti and Halley 2001, 2002; Halley and
Inchausti 2004) have not decomposed the TPA into its basic
components, and therefore, provide an ambiguous guide to
the levels of PEA present in populations. When external and
internal sources of TPA are teased apart using process-based
statistical methods evidence for low levels of PEA emerges.
Median levels of autocorrelation were not in the range that
previous studies have identified as significantly affecting
population extinction risk, typically PEA values greater than
0.5 (Petchey et al. 1997; Cuddington and Yodzis 1999;
Schwager et al. 2006), though this threshold can be lower
depending on model assumptions (e.g., Ripa and Lundberg
1996). We emphasize that these results are not evidence
that environmental changes do not strongly affect popula-
tion dynamics. Instead, they indicate that the population

environmental variance does not exhibit the high autocor-
relation levels we would expect from a linear interaction
between high-levels of autocorrelation in environmental
covariates and the per capita growth rate.

There is a reason to expect that a decoupling of covari-
ate autocorrelation and the PEA is a general phenomenon.
Evolution should act to flatten the norm of reaction to envi-
ronmental perturbations leading to hump-shaped responses
to environmental conditions. Mutations that improve the
performance of conditions other than most frequent will
be selected for if they don’t diminish the performance of
the individual under the most frequent condition. This will
be true even when the mutation has deleterious pleiotropic
effects under even rarer conditions. Thus, evolution should
lead to a mesa-like norm of reaction where individuals
are largely indifferent to small variation in environmen-
tal covariates but are disproportionately vulnerable to rare
extreme events, decoupling environmental variation from
covariate autocorrelation.

Our study provides a reasonable biological mechanism
describing the lack of PEA in the GPDD. Nonlinear inter-
actions can reduce the ability of an animal population to
track environmental covariates and dampen the autocorre-
lation perceived by the population. Because single-species
time series data are not sufficient to determine the causes
of these low autocorrelation in the GPDD, we cannot pre-
cisely identify the mechanisms involved. However, it is not
unreasonable to think that one or more of our proposed envi-
ronmental filters are operating in most animal populations.
As a result, an imperfect translation of covariate autocorre-
lation into PEA may be quite common and recent empirical
results are beginning to support this viewpoint (Knape and
de Valpine 2010; Garcia-Carreras and Reuman 2011; van de
Pol et al. 2011; Engen et al. 2013).

Despite the converging lines of evidence in observa-
tional studies, there is conflicting experimental evidence
demonstrating that autocorrelated environments can affect
population dynamics (Petchey 2000; Gonzalez and Holt
2002; Laakso et al. 2003b; Pike et al. 2004). Reconciling the
body of experimental evidence with our model predictions
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is crucial for understanding when autocorrelated environ-
ments can affect population persistence. Our study proposes
the nonlinear response of populations to environmental
conditions must be considered in the resolution of these
viewpoints (Petchey 2000). Our models predict that popu-
lations in environments near the limits of their ecological
niche are more likely to exhibit stronger environmental
tracking behavior and therefore display higher PEA values.
Future work may make progress by examining the impact of
autocorrelated environments over environmental gradients.
Because populations at the edge of their range are also often
at lower abundance, it may be that autocorrelated environ-
ments have important implications on persistence for these
populations and on species distributions.

At first glance, the potentially weak relationship between
environmental covariates and population abundance sug-
gested by our results is at odds with the view that pop-
ulations can be strongly regulated by density independent
factors (Andrewartha and Birch 1954). In their classic
study on the pest species, Thrips imaginis, Davidson and
Andrewartha (1948) found that environmental variables
could be used to explained over 80 % in the annual vari-
ance in peak log densities. However, their investigation into
daily fluctuations of variability showed that environmental
effects could only explain 10 % of the variation not due to
population growth processes. The use of yearly peak log
abundances is likely to be more sensitive to fluctuations
under nonlinear environmental tracking because popula-
tions will often have disproportionately stronger responses
to environmental covariates as conditions deviate farther
from the average. This also highlights the potential diffi-
culties of detecting the impact of environmental covariates
when using relatively sparsely sampled time series data. Our
modeling approach assumes that generations are either over-
lapping or non-overlapping with a generation time equal to
the sampling period. For populations not following these
assumptions, our model estimates may not correspond to
the interpretations presented here. For example, when gen-
erations are non-overlapping and much longer than the
sampling period, we expect that the long times between
reproductive events will be accounted for by higher order
lags in the AR model, potentially confounding the estimated
PEA with other effects.

We did not consider more complex life histories in
our analysis although theory has suggested that PEA may
have significant effects on the per capita growth rate of
age- and stage-structured populations (Tuljapurkar 1982;
Tuljapurkar and Haridas 2006). However, recent work has
found that the presence of autocorrelation in a temperature
dependent, stage-structured model of Eurasian oystercatch-
ers (Haematopus ostralegus) only weakly affected popula-
tion extinction risk primarily due to nonlinear interactions
between demographic rates and environmental covariates

that led to poor environmental tracking (van de Pol et al.
2011) and estimates in four other age-structured populations
were found to be quite small (Engen et al. 2013). These
results provide an empirical example that coupling real life-
history complexity to nonlinear environmental responses
leads to reductions in the influence of autocorrelated envi-
ronments. It is likely that in many species differing ecologi-
cal and climate covariates typically limit specific life stages
through mechanisms such as ontogenetic shifts and other
complex life histories that may serve to buffer populations
against autocorrelated environments (Ratikainen et al. 2008).

The mechanisms that link animal populations to their
environment are undoubtedly more complex than the track-
ing models used here. Yet, our work shows that simple,
tractable models can be used to reveal the stochastic prop-
erties of population-environment interactions. In the face
of long-term climatic change, it is important to be able to
make informed predictions for management and conserva-
tion purposes. In our view, understanding how fluctuations
in the environment translate into animal population growth
is an important step towards better predictions of population
abundances that account for environmental changes.
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Appendix A: Curating the GPDD

We chose a high quality subset of the over 5000 GPDD
datasets using the following criteria: there must have been
at least 15 observations in the time series, the qualitative
GPDD reliability rating must have been 4 or 5 (out of a
maximum rating of 5), and the data must not have been
constant over the first 3 years. In addition, we only allowed
datasets where sampling units indicated nonharvest indices,
as harvests may not reflect true population abundances.
All data were transformed by adding 1 to all observa-
tions, in order to remove any 0’s. We tested the effects of
this data transformation by analyzing a subset of the 445
datasets where this transformation was not applied, but
fewer datasets (166) were available for this analysis. The
MainID’s of the GPDD datasets used in our analysis were
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1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 56 57 58 59 60 61 62 63 64 65 66 67
1088 1089 1090 1091 1092 1093 1094 1095
1096 1097 1098 1099 1100 1101 1102 1103
1104 1105 1106 1107 1108 1109 1110 1111
1112 1113 1114 1115 1116 1172 1173 1174
1175 1176 1177 1178 1179 1180 1181 1182
1183 1184 1185 1186 1187 1188 1189 1211
1213 1248 1250 1254 1261 1268 1272 1275
1276 1347 2770 2771 2772 2773 2774 2775
2776 2777 2778 2779 2780 2781 2787 2789
2791 2798 2800 2802 2805 2810 2815 2829
2833 2840 2842 2844 2852 2857 2867 2869
2879 2887 2891 2901 2903 2905 2915 2917
2922 2926 2935 2937 2939 2958 2960 2962
2974 2976 2986 2991 3001 3003 3017 3021
3028 3030 3037 3043 3045 3051 3056 3059
3068 3070 3072 3084 3092 3108 3110 3112
3118 3123 3127 3133 3135 3139 3144 3157
3159 3161 3170 3177 3182 3190 3214 3216
3218 3223 3225 3233 3237 3249 3251 3253
3260 3263 3265 3268 3275 3283 3295 3297
3306 3312 3316 3323 3330 3356 3358 3360
3372 3378 3382 3393 3395 3406 3426 3428
3430 3437 3442 3445 3455 3466 3468 3470
3477 3480 3482 3484 3489 3496 3508 3521
3533 3535 3539 3546 3557 3559 3567 3575
3577 3583 3585 3592 3623 3625 3627 3639
3641 3650 3664 3666 3673 3676 3678 3680
3683 3688 3693 3706 3708 3716 3718 3723
3726 3739 3741 3757 3774 3776 3784 3787
3795 3797 3799 3811 3814 3825 3827 3829
3838 3840 3849 3853 3864 3866 3876 3882
5019 5020 6057 6104 6105 6106 6107 6108
6109 6110 6111 6112 6113 6114 6115 6116
6117 6118 6119 6120 6121 6122 6123 6124
6125 6126 6127 6128 6129 6130 6131 6132
6133 6134 6135 6136 6137 6138 6139 6140
6141 6142 6143 6592 6728 6729 6730 6731
6732 6733 6734 6735 6736 6737 6738 6739
6740 6741 6742 6743 6744 6745 6788 6789
6790 6791 6792 6793 6794 6795 6796 6797
6798 6799 6800 6801 6802 6803 6804 6805
6806 6807 6808 6809 6810 6811 6812 6813
6814 6815 6816 6817 6818 6819 6820 6821
6822 6823 6824 6825 6826 6827 6828 6829
6830 6831 6832 6833 6834 6835 6836 6837
6838 6839 6840 6841 6842 6843 6844 6845
6846 6847 6848 6849 6850 6851 6852 6853
6854 6855 6856 6857 6858 6859 6860 6861
6862 7065 9191 9192 9193 9245 9246 9247
9248 9249 9279 9280 9302 9338 9339 9340
9341 9342 9343 9344 9345 9346 9347 9348

9365 9391 9393 9425 9517 9518 9519 9536
9542 9684 9833 9834 9911

Appendix B: Parameter estimation and model
selection

Parameter estimation

Parameter estimation was performed using both maxi-
mum likelihood (ML) and restricted maximum likelihood
(ReML) methods. We used one-step predictions to fit pop-
ulation dynamics models with PEA using abundance data
from the GPDD. AICc was used to perform model selec-
tion from among the candidate models using the model’s
ML estimates. However, our reported values of φ̂ used
ReML parameter estimates from the best AICc models.
ReML estimation has been shown to perform better than
traditional ML when estimating variance components, but
is not valid for model selection using information criterion
(Staples et al. 2004). ML and ReML estimations were per-
formed using the generalized least squares (gls) function
from the NLME package in the R software environment
(Pinheiro et al. 2011; R Development Core Team 2012). We
assumed a multivariate normal distribution for the observed
per capita growth rate, ln

(
N(t)

N(t−1)

)
, where the mean vec-

tor was given by the predicted per capita growth rate for
the corresponding form of density dependence. The covari-
ance matrix was given by σ 2R, where the correlation matrix,
R, was given by the correlation structure for the appro-
priate ARMA(1,1) model used. For k observations of the
per capita growth rate, the ARMA(1,1) correlation structure
with AR(1) parameter φ and MA(1) parameter θ is given
by

R = (1 + θφ)(θ + φ)

1 + 2θφ + θ2

⎡

⎢⎢⎢
⎣

1 φ0 . . . φk−2

φ0 1 . . . φk−3

...
...

. . .
...

φk−2 φk−3 . . . 1

⎤

⎥⎥⎥
⎦

, (B1)

where the AR(1) model corresponds to a special case
where θ = 0. For example, the log-likelihood for the
Gompertz lag 1 density dependence model was then given
by,

ln(L) = −k ln(2π)

2
− k ln

∣∣σ 2R
∣∣

2
−

1

2σ 2

(
ln

(
N(t)

N(t − 1)

)
− a + b ln(N(t − 1))

)T

×R−1
(

ln

(
N(t)

N(t − 1)

)
− a + b ln (N(t − 1))

)
.

(B2)
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Appendix C: Covariate analysis

We tested the explanatory power of a suite of covariates,
available in the GPDD, on φ̂. We explored whether envi-
ronmental factors, species information, and data quality
metrics could explain variation in φ̂. Specifically, we tested
whether time series length, latitude, and longitude of the
data collection location, GPDD reliability index, and sam-
pling frequency were significant predictors of φ̂ at the
α = 0.10 level. We ran an additional regression looking at
species taxa as predictors of φ̂ at the α = 0.10 level. We also
tested whether species status as specialists or generalists
could explain variation in φ̂. We used definitions from Mur-
doch et al. (2002) to determine specialist/generalist status
in 48 time of the GPDD series. We predicted that general-
ists, with potentially more trophic interactions would have
lower levels of PEA than specialists who may have fewer,
but stronger, trophic interactions consistent with our results
from the SLLM model in the main text.

Results

Our exploratory regression analysis on φ̂ was used to deter-
mine whether covariates could explain results from our
analysis. We used the arctanh transformation on φ̂, defined
by Z = arctan(φ̂), in order to satisfy the assumption of
normally distributed residuals. We performed a test on all
sampling units reported in the GPDD. We found that only
the Breeding females category was a statistically signifi-
cantly predictor (t test, p value = 0.0293), though when
using the Bonferonni correction for multiple tests this is
no longer a significant predictor. The two species in this
category were Tringa nebularia and Melospiza melodia.
We also examined whether sample size and GPDD relia-
bility index influenced estimates. We found that φ̂ tended
to decrease with increases in sample size and the reli-
ability index, though these effects were not statistically
significant.

Status as specialist (φ̂ = 0.11) or generalist (φ̂ = 0.03)
was not found to be a significant explanatory value of φ̂ at
the α = 0.1 level (p value = 0.44). However, the results
were consistent with our predictions with the specialist hav-
ing slightly higher mean levels of autocorrelation, consistent
with predictions from the SLLM.

Appendix D: Alternative error models

Past work has formulated autocorrelation models several
different ways. Here, we discuss the differences in two
alternative model formulations of temporally autocorrelated
processes and contrast their properties to methods used by
past studies examining the TPA.

A potentially important distinction in autocorrelated time
series models is between long- and short-memory processes.
Short-memory processes have autocorrelation functions that
decay exponentially to 0 as k → ∞ (e.g., exp(−φk)), while
long-memory processes have autocorrelation functions that
converge to 0 according to slow-decaying power-law func-
tions as k → ∞ (e.g., k−β ) (Shumway and Stoffer 2006).
Thus, though both processes may have the same degree
of autocorrelation and go to 0, short-memory processes go
to 0 faster than long-memory models. Short-memory mod-
els depend only on recent realizations of the process while
long-memory models exhibit autocorrelation over many
past realizations of the process. The relevance of this dis-
tinction is that incorporating PEA in long- and short-term
memory models with the same degree of autocorrelation
can lead to different predictions about species persistence in
otherwise identical models (Cuddington and Yodzis 1999;
Fowler and Ruokolainen 2013). These findings suggest that
distinguishing between long- and short-memory PEA may
have practical implications for population modeling.

While it is often convenient to think of population abun-
dances as functions of time, previous discussions of long-
memory processes in the ecological literature have often
used the frequency domain representation of time series
(Halley 1996; Cuddington and Yodzis 1999; Vasseur and
Yodzis 2004). This approach decomposes a time dependent
signal into an infinite sum of sine waves with different fre-
quencies through the Fourier transform. The transformation
calculates the amplitude for each sine wave, giving the rel-
ative contribution of that frequency to the original series.
This frequency representation can then be used as a conve-
nient diagnostic tool when determining the appropriateness
of a particular time dependent model (Box et al. 2011).

The power spectral density function, denoted as S(f ),
gives the distribution of the frequencies f present in a time
series. The most commonly used long-memory process is
the inverse power law model (1/f model) (Johnson 1925).
For this model, the spectral density function is given by

S(f ) = constant/f β, (D1)

where β controls the degree of autocorrelation. The 1/f

model has also been proposed several times as a general
model of environmental variation for population dynamics
due to its apparent ubiquity in natural phenomena (Montroll
and Shlesinger 1982; Bak et al. 1987; Halley 1996). The
mathematical representation of the autocorrelation in a time
series model and the function S(f ) are transforms of each
other and thus are mathematically equivalent.

Long-memory models are typically investigated within
the framework of frequency domain methods while short
memory processes are usually studied using traditional time
domain tools, which tend to be more convenient for model
estimation. We used the fractionally differenced model
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(FDM) to model time series with long-memory. In the FDM,
the current state of the autocorrelated process is given as the
sum of all the past contributions to the process and an inde-
pendent random shock (Hosking 1981). Autocorrelation is
controlled by a single coefficient, d , which determines the
relative contributions of all past states. The mathematical
representation of the model is

E(t) =
∞∑

k=1

−�(k − d)

�(k + 1)�(−d)
E(t − k) + W(t), (D2)

where E(t) is the state of a process at time t , �(x) is a
gamma function, d is the fractional differencing parameter
where −0.5 < d < 0.5, and W(t) is a normal distribu-
tion with mean equal to zero and variance of σ 2. In this
model, the state at the current time step depends on all
previous time lags through an infinite series representa-
tion, leading to the long-memory property. The differencing
degree d controls the degree of autocorrelation and corre-
sponds approximately to β/2 in the 1/f model (Hosking
1981). Thus, the FDM and the 1/f model are approximately
equivalent for −1 < β < 1.

Because previous methods have often used frequency
domain approaches, we determined whether estimates of the
total population autocorrelation (TPA) made to the GPDD
dataset using an AR(1) model would be different from pre-
vious studies that were based on the estimated spectral
exponent, a long-memory model used in several past stud-
ies of TPA (Pimm and Redfearn 1988; Inchausti and Halley
2001). We were also interested in whether the FDM model
would be more consistent with the long-memory process
that is spectral exponent than the AR(1) model. We first esti-
mated the spectral exponent by fitting a linear regression to
the Fourier transform of the log-transformed abundances in
our GPDD dataset consistent with previous methods. The
transform was calculated with the fft function in the R
software environment (R Development Core Team 2012).
The frequency amplitude of the transformed time series,
S(f ), was then fit to a model of the form, ln(S(f )) =
a − βln(f , where f is the observed sampling frequency of
the time series signal, β is the spectral exponent, and a is
an intercept term. We also estimated the FDM and AR(1)
coefficients in Eqs. D2 and 3 using the arfima package in R
(Veenstra 2012) from the log-transformed abundance time
series in order to compare them to β̂.

We evaluated the consistency of the AR(1) model and
the FDM with β̂ by regressing each models autocorrela-
tion estimates (φ in Eq. 3 and d in Eq. D2) against β̂

using standard major axis linear regression due to the higher
variance in estimates of β. For the AR(1) model, we fit,
β̂/2 = aφ + bφφ̂ + W , and for the FDM model we fit
β̂/2 = ad + bdd̂ + W , where W was a random variable
assumed to be iid normally distributed. Consistency with

the 1/f β model was determined by whether the confidence
intervals of the intercept parameters (a) contained 0 and
the intervals of the slope parameters (b) contained 1. This
comparative method was used rather than directly perform-
ing model selection on AR(1) and FDM models of PEA
due to the inability for information theoretic methods to
reliably distinguish between long- and short-memory mod-
els (Wagenmakers et al. 2004). We also determined if the
properties of the data sets used here were consistent with
previous studies on the GPDD by comparing our estimates
of the TPA in our GPDD datasets using the 1/f model to
previous estimates of TPA in the GPDD (e.g., Inchausti and
Halley 2001).

Results

We found levels of the spectral exponent with our dataset,
β̂ = 0.94 that were similar to previous estimates of β̂ =
1.02 (Inchausti and Halley 2002), indicating that the data
set used here is comparable to previous work on the GPDD.
We also compared autocorrelation estimates from both the
AR(1) and FDM error processes to β̂ in order to determine
model consistency with previous estimates from the GPDD.
In the comparison of the AR(1) and to 1/f noise, we did not
include estimates that indicated nonstationary time series,
which led to 387 data sets in the analysis. In the comparison
of the FDM model and 1/f model, this same criterion led to
244 data sets being included in the analysis. For the AR(1)
model, we found an intercept value of âφ = −0.0.072, 95 %
CI = (−0.101, −0.045), and slope of b̂φ = 1.18, 95 %
CI = (1.109, 1.26). For the FDM model, we found an inter-
cept value of âd = 0.075, 95 % CI = (0.069, 0.081), and
slope of b̂d = 0.086, 95 % CI = (0.78, 0.95). These results
indicate that there may be bias in both models with regards
to comparisons with the spectral exponent. However, the
AR(1) model does make estimates that are broadly consis-
tent with the spectral exponent, an interesting result. Despite
the important differences in the properties of the spectral
density of the AR(1) and the spectral exponent, our results
suggest that parameter estimation using the AR(1) model is
comparable to estimates that would be obtained with a long-
memory process population environmental autocorrelation
(PEA) model.

Appendix E: PEA in the carrying capacity

We performed a simulation analysis in order to determine
if our analysis would provide biased estimates when the
PEA occurs in the carrying capacity rather the maximum
per capita rate of increase. The carrying capacity in the lag
1 Ricker model, given by K = a/b in Eq. 2, was assumed
to be an AR(1) random variable. We set a = ln(1.5)
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Fig. 6 The impact on estimated PEA when the PEA arises in the pop-
ulation carrying capacity but the error model is in the intrinsic rate of
reproduction. The degree of estimation error increases as a function of
the coefficient of variation (CV) in the carrying capacity and is larger
for negative values of the PEA

and E[K] = 100 for all simulations. We tested 15 dif-
ferent autocorrelation levels evenly spaced in the interval
[−0.95, 0.95] over three different levels of variability in K ,
where variation was measured used the coefficient of vari-
ation (standard deviation of K divided by the mean). The
CV values we tested were 0.5, 1, and 2. For values of the
CV higher than 2, we found that some values of our simu-
lated K became negative and were therefore unrealistic. For
each combination of autocorrelation and CV value, we esti-
mated the autocorrelation from a time series with length of
105 following the methods of the main text that assume that
the variation occurs in the intrinsic growth rate.

We found that estimation error was negligible at the
low CV levels of 0.5 and 1 (Fig. 6). At CV= 2, there

was estimation bias at very low negative levels of the
autocorrelation but the bias was low for positive levels of
autocorrelation. Overall, we found that the influence of this
kind of model specification to be low, suggesting that our
results are not biased by the way that the environmental
variation enters into the population dynamics. These results
are not too surprising as variation in the carrying capacity
is often difficult to distinguish from variation in the maxi-
mum per capita rate of increase with differences emerging
primarily at very low or very high abundances (Ferguson,
unpublished results).

Appendix F: Spectral mimicry

In the main text, we used the known distributional form
of stationary AR time series to ensure that the simulated
time series had identical properties except for the degree
of autocorrelation. Although this allowed us to control all
the statistical moments, alternative methods, such as spec-
tral mimicry, exist that allow the generation of time series
using the same realization of the generated data with only
the degree of autocorrelation changing. We used this method
to check if our approach properly accounted for changes in
statistical properties with autocorrelation.

Spectral mimicry (Cohen et al. 1999) can vary the
autocorrelation in the same realization of a stochastic pro-
cess, thereby controlling for the effects of not scaling of
process variance with autocorrelation or other unintended
mismatches that may arise between simulated series. The
method works by first generating a series from a stochas-
tic model such as a standard normal distribution. In order to
turn this iid stochastic process into an autocorrelated one,
a new reference series with the desired degree of autocor-
relation is generated. The original process is then reordered

Fig. 7 The effect of two
different nonlinear interactions
on an autocorrelated time series,
C(t), when data is generated
using the spectral mimicry
method. The dashed black line
is the autocorrelation in the
untransformed environmental
covariate, while the colored
lines are the population
environmental autocorrelation
(PEA) values in E(t) for
different transformations. Panel
a corresponds to power
transforms of the form
E(t) = −C(t)η . Panel b
corresponds to the logistic

function, E(t) = eζC(t)

1+eζC(t) −1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Environmental covariate autocorrelation

P
op

ul
at

io
n 

en
vi

ro
nm

en
ta

l a
ut

oc
or

re
la

tio
n

E(t) = −Cη

η = 1
η = 2
η = 3
η = 4

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Environmental covariate autocorrelation

P
op

ul
at

io
n 

en
vi

ro
nm

at
al

 a
ut

oc
or

re
la

tio
n

E(t ) = exp [ζ C(t )]/(1 + exp [ζ C(t )])

ζ = 1
ζ = 5
ζ = 10
ζ = 20

a b

Author's personal copy



Theor Ecol

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

All environmental covariates with 
the same autocorrelation 

Environmental covariate autocorrelation

P
op

ul
at

io
n 

en
vi

ro
nm

en
ta

l a
ut

oc
or

re
la

tio
n 

Number of series (n)

n = 2
n = 3
n = 4
n = 5

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

All but one environmental covariate with 
the same autocorrelation 

Environmental covariate autocorrelation 

P
op

ul
at

io
n 

en
vi

ro
nm

en
ta

l a
ut

oc
or

re
la

tio
n

Number of series (n)

n = 2
n = 3
n = 4
n = 5

a b

Fig. 8 Two applications of the SLLM to a number, n, of autocorre-
lated time-series. In both panels the x-axis denotes the autocorrelation
in the environmental covariate while y-axis is the population environ-
mental autocorrelation (PEA) that affects the per capita growth rate
once the SLLM has been applied. In panel a, all n covariates have
the same autocorrelation. In panel b, n − 1 of the covariates have an
autocorrelation of 0.5, while the remaining covariate has the autocorre-
lation value given on the x-axis. In both panels, the dashed line denotes

the covariate’s autocorrelation, for comparison. The overall effect of
the SLLM depends on the number of environmental covariates, n, that
limit the population. In general, the SLLM tends to reduce the mag-
nitude of the PEA relative to what is expected from a single limiting
factor. However, as shown in the right panel, the effect can increase
the PEA if a single limiting environmental factor has a high enough
autocorrelation

such that it’s sequence of order statistics matches the ref-
erence series. This reordered version has the same realized
values as the original process, however, the autocorrelation
is equal to the reference series. Because the new series has
the same values as the original series, just in a different
order, the statistical properties of the ensemble must be equi-
valent.

We reproduced Figs. 2 and 3 using datasets gener-
ated with spectral mimicry in order to confirm that our
method of generating autocorrelated data did not lead to
any differences between time series other than the degree
of autocorrelation. The reproduced figures (Figs. 7 and 8)
show no differences with the figures in the main text (Figs. 2
and 3).
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