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Abstract: How a disease is transmitted affects our ability to determine R0, the average number
of new cases caused by an infectious host at the onset of an epidemic. R0 becomes progressively
more difficult to compute as transmission varies from directly transmitted diseases to diseases that
are vector-borne to environmentally transmitted diseases. Pathogens responsible for diseases with
environmental transmission are typically maintained in environmental reservoirs that exhibit a
complex spatial distribution of local infectious zones (LIZs). Understanding host encounters with
LIZs and pathogen persistence within LIZs is required for an accurate R0 and modeling these contacts
requires an integrated geospatial and dynamical systems approach. Here we review how interactions
between host and pathogen populations and environmental reservoirs are driven by landscape-level
variables, and synthesize the quantitative framework needed to formulate outbreak response and
disease control.
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1. Introduction

Environmental factors play a decisive role in the emergence of infectious diseases, particularly
when indirect transmission is involved. Briefly, pathogen transmission can be defined as direct when an
infected individual can infect another, such as classical influenza air-borne transmission or HIV sexual
transmission. Indirect transmission occurs when the pathogen is acquired from the environment, such
as grazing on pathogen-contaminated feed, or a vector, such as an insect, infecting one individual after
feeding on another infected individual. Estimating indirect transmission requires that we evaluate
the impact of environmental factors on the basic reproductive number, R0, of a pathogen, as has been
done in the context of the recent Ebola outbreak in Africa [1], and mosquito-transmitted Zika virus [2].
The number of new cases from a single case, the R0, has long been the basis for assessing outbreak
severity and control impacts. Here we provide a brief overview of R0 before providing an overview of
challenges to these calculations for pathogens that persist in the environment for long periods.

1.1. A Brief History of R0

1925–1975: R0 is central to our understanding of both population growth and the spread of disease.
As reviewed by Heesterbeek [3], Dublin and Lotka [4] were the first to cast R0 as “ . . . the number of
female offspring born to one female during her lifetime.” In the context of epidemiology, Dietz [5] defined
R0 as “ . . . the number of secondary cases that one case can produce if introduced in a susceptible population.”

1976–1990: The role of R0 in epidemiology received a major boost in 1982 at a conference on
Population Biology of Infectious Disease in Dahlem, Germany (R. M. Anderson and R. M. May, organizers).
Calculating R0 from data became a major challenge in the 1980s due to inhomogeneities, such as
variation in individual susceptibility. This problem was solved by Diekmann et al. [6] in providing a
method of calculating a next generation matrix whose dominant eigenvalue is R0. Using R0, however,
to determine the actual growth rate of an epidemic requires that the generation time G also be known.

Modern demography: If lx is the proportion of individuals surviving to exact age x and bx is
the force of natality (i.e.,

∫ i+1
i bxdx is the number of female young born to each female in the interval

[i,i + 1)), then:

R0 =
∫ ∞

0
lxbxdx and G =

∫ ∞

0
xlxbxdx/R0. (1)

Indirectly transmitted diseases: The next generation matrix approach of Diekmann et al. [6],
applicable to directly transmitted diseases, was extended by van Driessche and Watmough [7] to
class-structured population processes that accounted for both new within-class infections and the
transfer of infection among classes. The structure of this approach could then be applied, for example,
to calculating R0 in vector-host-pathogen transmission systems.

Critique: Methods for calculating R0 have been criticized for conflating processes affecting
disease transmission. For example, Li et al. [8] pointed to the fact that vertical transmission events
may be cancelled out by disease induced mortality events in differential equation models, but not
in next-generation matrix methods, leading to ambiguity in the calculation of R0. However, this
appears to be a shortcoming of oversimplifying differential equation models of transmission, rather
than next-generation matrix methods per se. This conundrum is only resolvable through more
careful formulation of the way R0 is computed for ecologically complicated epidemics, such as those
that have a determinative environmental component. Long-lived environmental pathogens present
exemplar cases for challenging the R0 formulations currently available and require new strategies to
estimate transmission.

1.2. Challenges for R0 for Environmentally Maintained Pathogens

For pathogens, such as Bacillus anthracis [9], the causative bacterium of anthrax, and chronic
wasting disease (CWD) [10], that persist in spatially limited environmental reservoirs, estimates of R0

to date have not explicitly included their spatial structure, which can be characterized as a distribution
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of host carcass-generated local infectious zones (LIZs) distributed over the landscape. In such cases,
exposure depends on susceptible individuals arriving at the reservoir and contacting the pathogen [11],
for example through ingestion [12] or inhalation [13]. These LIZs may remain infectious for some
period of time, ranging from hours (Ebola virus [14]) to weeks (Mycoplasma bovis [15]) to months
(Brucella abortus [16]) to decades (Bacillus anthracis [17]), with subsequent exposures arising from
additional naïve hosts seeking resources within the reservoir. In the case of pathogens that persist
across host generations, a traditional susceptible, exposed, infected, recovered (SEIR) model [18] cannot
adequately capture exposure at LIZs. Our central tenet is that successfully modeling LIZ exposure dynamics
requires an integrated geospatial and mathematical approach, tracking seasonal changes on the landscape and
the effects of those changes on host movements (resource selection, site fidelity, and foraging) and pathogen
persistence within LIZs (Figure 1).
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Figure 1. Conceptual diagram of anthrax transmission from hosts interacting with local infectious
zones (LIZs) on two different landscapes. Transmission to browsers, here white-tailed deer in the scrub
habitat of west Texas (left panel), can occur through ingestion of contaminated vegetation, which can
be amplified by blow flies and biting flies (1). Grazers, here zebras in Etosha National Park, Namibia
(right panel), are exposed through ingesting contaminated grasses and soils (2). On both landscapes,
host movements are recorded with GPS collars (3), foraging at LIZs is captured with camera traps (4)
and mortality is found by following vultures to carcasses (5). B. anthracis persists in soil and may have
a soil-borne life cycle in both systems (6). Flies do not play a major role in open grassland grazing
systems, particularly when vertebrate scavengers are abundant, but may in the browser systems.

In support of this tenet, we present a spatially explicit pathogen-reservoir-host formulation that
gives rise to a natural mathematical outbreak description in which both temporal and spatial processes
occurring at local and larger scales are linked in meaningful ways and is broadly applicable across
several pathogen/host systems (Table 1). We show how such a formulation can help to test the idea
that seasonal outbreaks contribute to the accumulation of LIZs to fuel future outbreaks. The spatial
and temporal processes involved are driven by vegetation phenology ([19]; or aquatic analogs [20]),
climatic variables, and host/LIZ interactions (Figure 1).
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Table 1. Several important diseases caused by pathogens (including bacteria, fungi, prions, and parasites) with environmentally maintained reservoirs.

Disease Pathogen Host Environmental Reservoir Local Infectious Zone
(LIZ)

Landscape
Characteristics

Survival Time in
Environment References

Anthrax Bacillus anthracis Wildlife and
livestock

Host, bones, soil, water,
vegetation Carcass site, water’s edge Grasslands,

scrub/pothole regions >1 year [9]

Botulism Clostridium
botulinum Birds & mammals Host, honey, soil Carcass site, honeybee

colony Cosmopolitan >1 year [21]

Bovine mastitis Mycoplasma bovis Bovids Host, soil and/or
animal bedding Bedding within feedlot Broad conditions ~1 year (needs

futher study) [22]

Brucellosis Brucella spp. Wildlife and
livestock

Host, soil and/or birthing
tissues, aborted fetuses

birthing tissues and
aborted fetuses

~20–80 days (needs
further study) [16]

Cholera Vibrio cholerae Humans Host, feces,
zooplankton, saltwater Estuaries Periurban, coastal

regions [23,24]

Leptospirosis Leptospira spp. Animals, humans Host, grass, moist
soil, water

Grasslands, streams,
rivers, ponds, lakes

Periurban,
contaminated lakes [25]

Chronic wasting
disease Prions Cervids Host, some soils Salt/mineral sites,

wallows
Host range & soils

overlap [26–28]

White-nosed
syndrome

Psuedogymnoascus
destructans Hibernating bats Host, some soils Bat hibernacula Cave system or

mountain range [29,30]

Toxoplasmosis Toxoplasma gondii Mammals Host, feces, soil,
invertebrates

Soils, streams, bays,
estuaries

Periurban areas,
coastal regions [31,32]
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By way of example, in Figure 1 we illustrate anthrax transmission (as an example of environmental
transmission) on two landscapes: (1) the scrub habitat of west Texas (left panel), where blow flies [33]
and biting flies [34] can increase local case intensity of white-tailed deer (Odocoileus virginianus)
predominantly browsing during the outbreak season; and (2) the grasslands of Etosha National Park
in Namibia (Etosha; right panel), where grazing near LIZs during the wet season is the primary mode
of transmission [11,12]. On each of these landscapes LIZ persistence has been confirmed. Furthermore,
movement data and foraging behavior observations (e.g., camera traps [11]) strongly suggest the
formulation of a new R0; in these landscapes, it is the host interaction with carcasses (both landscapes)
or fly-contaminated browse (Texas scrub; left panel) that drives the exposure and subsequent infection.
In Figure 2, we illustrate how such host/LIZ interactions can be compartmentalized in an SEIR
framework. The formulation itself suggests that while controlling individual outbreaks may be
strategically desirable, reducing the number of local infectious zones may be a better long-term
strategy for disease management.
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Figure 2. Components of an SEIR model as applied to environmental transmission during a single
outbreak season (t). Susceptible hosts (S) move across the landscape (A) and contact infectious LIZs (I)
and become exposed (E; B). As they leave the LIZ, they may succumb to infection and die, becoming a
new LIZ, establishing in time t and persisting across future time periods (t + 1, . . . ,n) (C) or recover (R)
and survive to a future time period (D).

Under-studied aspects of the role of environment in pathogen transmission are the mechanisms
that permit pathogens to be maintained in reservoirs [35,36]. Some pathogens may remain dormant,
with no reproductive activity within soil or aquatic environments, while other pathogens can multiply
in the environment. For example, non-reproducing Leptospira spirochetes can persist for several
months in soils in the absence of a mammalian host [25]. A causative agent of cattle disease,
M. bovis persists for long periods and may replicate in sandy soils used as bedding under certain
conditions [22]. CWD-causing prions can also survive for long periods in soil [26]. In each case, the role
of environmental factors in governing pathogen persistence, such as soil alkalinity, moisture, or specific
mineral content, are poorly understood.

Empirical data are needed to assess the time constants of processes involved in indirect
pathogen transmission (e.g., replication rates in the environment; half-life decay rates of LIZs),
as well as to parameterize transmission models. In the case of soil-borne B. anthracis, recent
studies on the environmental conditions that support pathogen persistence include ecological
niche modeling [37–39]), host seasonal resource selection in risk areas [40], host foraging behavior at
LIZs [11,41], seasonal changes in host diet [12], and seasonal fluctuations in host antibody titers to
B. anthracis [42]. These studies allow us to parameterize tactical models that estimate the force of
infection (within or between species) within an anthrax transmission season on a single landscape.
The long-lived nature of LIZs, however, demands the formulation of strategic models able to reliably
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estimate the number of “offspring” LIZs generated by a “parent” LIZ and to quantify the force of
infection (i.e., persistence) across multiple seasons or years. Similarly, in the case of the water-borne
bacterium Vibrio cholerae, the causative agent of cholera, sufficient data exist [26,37,40] to construct
strategic models that account for transmission enhancement and seasonal affects through V. cholerae
associations with zooplankton [23,24,41,42]. Likewise, a growing number of studies find that
some bacterial pathogens, including B. anthracis [43], B. thuringiensis [44], Salmonella enterica [45],
and Escherichia coli [46], may replicate in the rhizosphere or directly on plants. In addition to
providing resources for replication, such environmental reservoirs may promote alternative pathogen
transmission routes.

2. Host Interaction with Local Infectious Zones (LIZs) at the Landscape Level

In the 19th century, Louis Pasteur identified carcass sites as key to anthrax transmission [47],
while 45 years ago Van Ness [48] proposed that under certain conditions, B. anthracis maintains
high population densities in areas where it multiplies in the environment. Observations of naturally
occurring carcass sites in Etosha indicate that spores persist for at least several years after carcass
decomposition [11,49]. Environmental reservoirs may be influenced by nutrient availability, weather
patterns, and bio-geo-chemical parameters [43,48,50]. Features of the exosporium can affect the ability
of B. anthracis spores to bind to different soil types [51,52]. Thus, the rate at which a spore pool decays
likely depends on local conditions [9]. CWD prion persistence and infectiousness also varies with soil
type [26] and consequences of this variation in environmental persistence was examined with disease
modeling [10]. In addition to physical and chemical variables affecting spore persistence, biological
interactions between carcass materials and other species occurring in environmental reservoirs may
alter the exposure of animal hosts to pathogens [53]. For example, hosts may be attracted to the
growth and quality of vegetation that arises from nutrient deposition from carcasses [54–57]. Using
camera traps, host visitation and duration rates at LIZs were quantified in the field for anthrax [11],
M. bovis [58] and CWD [59]. These data are readily incorporated into disease models. Landscapes that
support LIZ persistence can be characterized using habitat mapping procedures [37,40]: in the case of
B. anthracis at continental [37,39,60,61] and local [40,62] scales. Similar approaches were employed for
cholera [63] and brucellosis [64]. Kracalik et al. [65,66] used logistic regression approaches to estimate
anthrax risk and Osnas et al. [67] employed a hierarchical Bayesian approach to produce spatially
explicit estimates of prevalence for a wildlife CWD outbreak.

2.1. Local Infectious Zone (LIZ) Ecology

In the case of anthrax, seasonal peaks in disease incidence are commonly observed [9,12,51]. For
example, major anthrax epizootics follow rain events or seasonal changes in green-up trajectories [19],
particularly in grass [68] and shrubland [69]. Due to increased nutrient availability, plant growth at
LIZs may outpace growth in non-LIZ areas, potentially promoting host foraging. In a field experiment,
B. anthracis spores substantially increased the rate of establishment for a native grass, which was also
taller when treated with blood [70]. Tall lush growth of plants resulting from a combination of the
influence of the bacterium and input of nutrients from decaying carcasses may be attractive to grazing
hosts and promote disease transmission [70]. Additionally, host populations may track vegetation
responses to environmental triggers and migrate locally, concentrating susceptible hosts in areas where
they experience high contact rates with LIZs. Likewise, individuals may change diet preferences
seasonally to plants that are greening up. Prevalence rates of Brucella or M. bovis also tend to peak
seasonally, with transmission occurring where host populations commingle [71,72]. Unlike B. anthracis,
these two pathogens exhibit relatively short-term survival in the environment and thus are likely to
have only intra-seasonal LIZ persistence.
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2.2. Host Movement Ecology and Transmission

For successful indirect transmission, hosts must contact LIZs. Estimating contact can be done
across spatial scales and levels of resource selection as defined by Johnson [73]. As a first estimate
of where contact may occur, one can estimate seasonal home ranges for susceptible hosts and
compare those to environments that promote LIZ persistence, as was recently done for anthrax
in elk (Cervus canadensis) [40] and bison (Bison bison bison) [74]. When modeling the likelihood of host
presence in a LIZ region, we are most interested in local utilization distributions (UDs), where space
is quantified in some form of density of animal positions over time [75,76]. Several techniques are
available for quantifying these local UDs [75] in space and time [77]. New movement analysis tools,
coupled with high resolution spatio-temporal data from GPS collars, allow us to directly estimate
how individual re-visitation (spatial) and duration of visits [77] (spatio-temporal) to specific areas
change seasonally. Such estimates can be used to parameterize movement patterns of hosts and
related to LIZ concentrations. Most recently, tools were introduced to evaluate optimal parameter
settings for the T-LoCoH (http://tlocoh.r-forge.r-project.org/) package for R, where home ranges and
these visitation/fidelity metrics can be calculated, including examples of host/LIZ overlap in Etosha
National Park (ENP), Namibia [78,79].

Seasonal and inter-annual variation in observed incidence are driven by factors affecting
transmission itself, as well as factors affecting data-gathering. Anthrax incidence in Etosha, for example,
is affected by LIZ demography and distribution, animal exposure to LIZs, and the immunological state
of individuals [42,80]. Within the context of Johnson [73], third order selection (patch use within a home
range), such as individual foraging or interactions at LIZs, can be measured using camera traps set at
LIZs, as was done in ENP [11]. Observed anthrax incidence, however, differs from actual incidence
because surveillance efforts are typically seasonal, though a modeling approach exists to account for
this sampling bias [81]. These difficulties have been documented across disease systems, particularly
in wildlife [34,82]. Thus, it is important to keep in mind how ecological and epidemiological processes
interact with observation processes. For instance, anthrax outbreaks tend to be observed in Etosha
after rainfall with a delay that could be explained by both ecological and observational mechanisms.
Rainfall affects animal movement patterns, the splashing of spore-laden soil onto palatable grass leaves,
and exposure to interacting microparasites and macroparasites [83,84]. However, there was also a
significant correlation with the preponderance of wet season researcher activity [81]. In west Texas,
anthrax in deer is also seasonal and has been correlated with seasonal peaks in vegetation greenup [19]
and increased biting fly densities [34]. Also, case intensity may be amplified within an outbreak by
blow flies [33]; the latter phenomenon can expand the zone of contamination at a LIZ during the first
several days after host death.

2.3. Dynamic Thresholds and the Joint Modeling of Reservoir (LIZ) and Host Dynamics

Individual host heterogeneities, along with geographical and environmental discontinuities, might
critically amplify, dampen or lag the known effects of pathogen reservoirs. A recent study illustrated
host population dynamics and environmental drivers are required to model anthrax outbreak
periodicity [85], however the approach was not spatially explicit. Thus, continuity of geographical
expansion and homogenous mixing of individuals are unsuitable assumptions for modeling many
host-pathogen systems (see [86]). An approach that can account for such inhomogeneities, yet remains
relatively simple, is to specify a low-dimensional model of the host, pathogen and reservoir dynamics
that explicitly incorporates spatial and temporal lag effects. In reservoir-driven epidemics, considerable
effort is currently being invested in unraveling host movement and behavior characteristics that shape
the host’s susceptibility, thereby providing data for within-season models of outbreaks that can be
coupled to an across-season model of the reservoir or LIZ-population dynamics. Such across-scale
stochastic processes are often best characterized by a combination of a fine (fast and small) scale
Brownian Motion (BM) process and a coarser scale pure-jump process [87,88], which combination can

http://tlocoh.r-forge.r-project.org/
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be often be adequately modeled as a Lévy process [89]. These models have been applied in various
biological settings, including epidemiological data [86], with a primer provided here.

3. Discrete, Self-Decomposable (DSD) Parameter Estimation

Discrete, self-decomposable (DSD) stochastic processes [90–92] provide a way to combine
short-term seasonal outbreaks of a number of pathogen systems (Table 1) modeled by a Lévy process
with long-term gradual changes within LIZs modeled by a Brownian (i.e., Gaussian) processes. The first
step is to define a stochastic process for the number of LIZs present within the smallest spatial and
temporal resolution unit of the data (e.g., the 250 m2 pixel dimensions and 16-day NDVI measurements
of the MODIS satellite system). The second step is to formulate a DSD probability generating function
that is a composition of two distinct stochastic processes: a stochastic LIZ decay process and an
“innovation” (random generation of new LIZs) jump process [91]. The resulting DSD process is then
able to model jumps (various formulations can used [88,92]) in the LIZ sample path, as it accounts for
abrupt changes in the number of LIZs within a pixel (noting that alternative, as well as accommodating
LIZ persistence and LIZ “arrival” process parameters that are dependent on environmental covariates
(thereby providing a natural test bed for the relevance of covariates). The arrival of naïve hosts to a
pixel establishes a susceptible population, estimated from host movement data. At the population
level, resource selection function-based probabilities can be used to define the likelihood a host will
choose a pixel [40] (derived from GPS collar data and a use-available framework to model resource
selection [93]), while visitation and duration metrics can be used to estimate the length of stay and
number of return visits to a given pixel [77] (applying the T-LoCoH metrics to GPS collar data, e.g., [78]).
Estimating foraging activity at LIZs within the pixel then effectively provides an informed measure
of exposure rate. Camera trap data can be used to estimate foraging activity within a pixel, as was
applied in ENP [11].

If LIZ dynamics are modeled as a first-order Markov process, then maximum likelihood estimation
allows the calculation of the mean number of LIZs remaining in any pixel after d time steps.
In its simplest formulation, the number of LIZs over time follows a Poisson process that implicitly
assumes the persistence process is temporally homogeneous, thereby neglecting the effect of the
covariates and links to host movement. To make the model spatially explicit, one can model the LIZ
decay (epidemiological recovery) and LIZ innovation (epidemiological incidence) processes using
environmental covariates in resource selection functions. To account for temporal heterogeneity in
the abundance of LIZs, the well-known derivation of the Negative Binomial as a conditional Poisson
distribution can be used, where the innovation rate itself is Gamma distributed [94]. The mean of
this Gamma process can be made a function of environmental covariates. Then, LIZ persistence
can be modeled using a combination of a deterministic trend (e.g., exponential decay) and random
fluctuations due to environmental variation. Other elaborations are possible to make this approach
more realistic, depending on the quantity and quality of data available to support identification and
selection of models with additional complexity [95].

Estimating the probability of a threshold condition for disease emergence, a DSD model can be
seeded with a single LIZ within a pixel in an otherwise “clean” landscape. Simple calculations using
the model probabilistic structure can then be used to obtain explicit expressions of the average number
of newly generated LIZs within any time frame: either after a single iteration of the process, or at the
end of a season. Hence, the DSD model is a means to obtaining a “within-year” LIZ reproduction
number (R0) as well as assessing the expected number of LIZs that remain on a landscape of a given size
after one or more seasons (years). In this way, a DSD model connects the beginning of a given year’s
zoonotic season with past dynamics, thereby providing a spatially explicit estimate of R0. With this
quantitative framework in place, hypothetical “what-if” games simulating different control measures
can lead to informed estimates of their effects. For example, carcass burning or burial (individual LIZ
destruction) is a primary means of anthrax control during an epizootic. A DSD model can be used
to simulate such a removal process by reducing the increase in LIZs between years and evaluating
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its impact on R0. A second type of control would be to evaluate the impact of vaccinating a host
population, such as a bison herd in Montana [82], on the expected value of R0. These first two kinds of
simulations would essentially assess changes to the rate of new LIZ formation due to healthy bison
encountering fewer current LIZs (affected by carcass control) or reduced susceptibility (affected by
vaccine coverage and efficacy). A third approach to control would be to evaluate the effect of excluding
naïve hosts from pixels with LIZs. This would mimic the management strategy of using fences around
pastures to keep livestock herds (such as bison in Montana) from areas of known historical outbreaks.
Such exclusion would eliminate LIZ contacts by limiting the spatio-temporal jump processes to only
non-excluded pixels, thereby lowering the average of the innovation process in the DSD model. The
DSD framework provides a way to use empirical data to conduct plausible simulations relating to
control strategies that are not possible to directly evaluate on real landscapes, but are likely to inform
decisions, with applicability to several pathogens (Table 1).

4. Conclusions

The emergence of diseases caused by environmentally-maintained indirectly transmitted pathogens
depends upon local and landscape-level variables, complicating disease modeling efforts.
The analytical approaches synthesized here capitalize on advances in our knowledge of pathogen
persistence, and high-resolution host movement and foraging behavior to estimate the basic
reproductive number, R0 for such pathogens, using LIZs or patches of infection on the landscape. We
illustrate that data are required from each the host population, the pathogen population, and the LIZs,
as a separate and integral part of the modeling process. Data collection for such an approach should
include monitoring and measurement of each population.

This quantitative framework is needed by real world stakeholders of agricultural and wildlife
resources for them to manage environmentally transmitted diseases. As an example, anthrax is a
globally occurring disease presenting a wide range of control challenges. Eradication of anthrax in
Etosha for example, could negatively impact predator/scavenger populations [96], while eradication
in commercial bison herds in Montana is highly desirable [82]. Modeling the effects of control in these
systems also applies broadly to other landscapes, such as northern Canada, where anthrax threatens
the survival of the endangered wood bison [97], and the Republic of Georgia, where livestock and
human anthrax is re-emerging [68,98]. However, this modeling strategy is not anthrax specific, and
can be extrapolated to other disease systems with environmentally-mediated indirect transmission,
such as cholera, chronic wasting disease [27], brucellosis [71], or bovine tuberculosis [99], which are all
associated with significant disease risk in multiple hosts, including humans.
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