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ABSTRACT. Recent technological advances have improved our knowledge of the repli-
cation process of Flaviviruses; however direct measurement of virus replication in the
laboratory can be cost-prohibitive. Mathematical models of the within-host dynamics
of virus replication can be useful for predicting virus load, which can affect virulence,
transmission rate and rate of molecular evolution [1, 2]. In the case of arboviruses,
most mathematical models have focused on transmission dynamics between hosts and
vectors. Within-host replication of arboviruses (particularly Flaviviruses) has not been
well-characterized mathematically. In this study, we model the replication of WNV
in cell culture and generate testable predictions about the spread of the virus within
a host. We study intracellular population dynamics of virus under a set of biologi-
cally sound parameter values and use statistical tools to quantify estimability of model
parameters under distinct scenarios. The resulting mathematical model can also be
applied in a clinical setting, where there is a growing body of work on the within-host
dissemination of Flaviviruses.
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1. INTRODUCTION

The genus Flavivirus of the family Flaviviridae contains more than 100 species of
viruses. Clinically important members of this family include vector-borne viruses and
others which are transmitted through direct contact. For example, Yellow Fever virus
(YFV), Dengue virus (DENV), Japanese Encephalitis virus (JEV),West Nile virus (WNV)
and Zika virus (ZIKV) are transmitted by mosquitos. Clinical symptoms of infection
with these viruses include febrile illness and in some cases neurological disease [3]. West
Nile virus (WNV) is the most widespread arbovirus in the world. It is transmitted by
several species of mosquitos in North America [4] and has been detected in least 100
species of wild and domestic animals [5]. Due to widespread nature of Flaviviruses [6], it
is important to understand the replication and transmission of these viruses in within-
cellular, within-host and between-host scales. Here we focus on intracellular replication
of Flaviviruses; in particular WNV.

Flaviviruses (Flaviviridae) are single-stranded RNA viruses that are approximately
12 kb in length, containing a capsid protein and a lipid envelope. At the cellular level,
attachment and entry proceed by receptor-mediated endocytosis (primarily clathrin-
mediated attachment), followed by uncoating in the cytoplasm, where replication and
assembly take place. The virus particles then mature in the endoplasmic reticulum and
are released as either infectious or defective virus particles [7]. Direct measurement of
each step in the virus replication process is often cost-prohibitive. In cases where specific
aspects of virus replication cannot be directly measured in the laboratory; therefore it is
useful to work with mathematical models and statistical tools for parameter estimation.

Within-host replication of arboviruses (particularly Flaviviruses) has not been well-
characterized mathematically. Several mathematical models of Hepatitis C virus (HCV:
Flaviviridae) have captured several important aspects of virus replication, generating
accurate predictions of within-host dissemination of the virus [8, 9] and of viral entry
into host cells [10]. Kumberger et al. [9] model the within-host dynamics of HCV using
a system of differential equations where the cells are distinguished according to their
infection status (Uninfected, Infected, and Infectious), with viral entry, viral replication
and viral export as rate parameters connecting the three state variables of the host cells.
The model is used to predict cell-to-cell transmission in different types of tissue within a
host. This approach proved effective at predicting the within-host spread of HCV that
had been measured in the literature: in studies where viral maturation was measured by
electron microscopy, and where clinical measurements of within-host dissemination of
the virus were taken. In Padmanabhan et al. [10], the molecular process of viral entry
was the focus of the model. The authors model the kinetics of virus entry into host
cells by including CD81 expression as a determinant of viral entry. Cells resistant to
infection due to reduced CD81 expression were included in the model, and as in the previ-
ous study, the mathematical model was able to predict results obtained in the literature.

In this study, we model the replication cycle of WNV following an approach that is
similar to that of [9], with a few differences detailed below. We focus specifically on the
virus population and assume a single state for the cells. We model the growth trajectory
of a population of WNV particles in cell culture as a continuous process wherein virus
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particles attach to the cell, replicate and mature inside the cell, and then are released
into the supernatant as infectious virus particles. The rationale for this approach was to
divide the replication cycle of the virus into distinct categories that could be measured
in the laboratory, thus providing a model that can be tested and improved with pub-
lished data on WNYV replication dynamics and within-host proliferation. Furthermore,
because these three processes represent common targets for antiviral therapies, math-
ematical models of the mechanisms that affect viral population size at each stage can
inform the design of antiviral therapies.

This paper is organized as follows. In the next section, we present a coupled differen-
tial equation system describing the viral replication cycle depending on the location and
infectivity of viral particles within a cell culture. In Sect. 3, we investigate the intra-
cellular population dynamics of viral particles by exploring the equilibria and threshold
analysis of the system. In Sect. 4, we use statistical tools to study estimability of model
parameters under distinct scenarios. We point out knowing or fixing value of what pa-
rameter improves or gives the best estimates of the rest of the model parameters. In the
last section, we summarize our results, and give the conclusion.

2. MODEL OF INTRACELLULAR WEST NILE VIRUS REPLICATION

We divide the virus population into three sub-populations (V, A, and R) according
to their location and infectivity (See Fig.2). Upon contact with the host cell, infectious
virus particles V(¢) bind to membrane receptors at time ¢ and become incorporated via
endocytosis at a rate « (stage A). The low pH of the endosome causes the virion envelope
to fuse with the endosomal membrane, causing the nucleocapsid to become uncoated at a
rate of o virus particles per unit time. The viral RNA is then released into the cytoplasm,
where RNA replication takes place at a rate ¢. Virion assembly and maturation occur
in the endoplasmic reticulum at a rate of . Translation of viral proteins is the most
energetically expensive process. Thus if the abundance of viral particles at stage A is
large, due to over all consumed energy from the cell at this stage,and the large energy
budget need for translation of viral proteins at stage R, we assume that the rate of
assembly and maturation is weighted inversely by the concentration of attached virus
particles: 5/(1+ A(t)) [11]. It is also well-known that WNV replication and maturation
are error-prone processes, thus to account for the production of defective (non-infectious)
virus particles, we include p in the equation for R(t) to denote the loss of virus particles
from the system. Upon infectious virus particles entering the supernatant, either they
become attached to a cell at a rate o or are degraded by RNases and other environmental
factors at a rate . Figure 2 illustrates the trajectory of the virus population in each
of the categories. In the schematic representation, all substages R;, for ¢« = 1,2, 3, are
represented by the stage R.

WNYV establishes a persistent infection [12], meaning that a cell can be infected multi-
ple times, producing several overlapping generations of virus particles before cell death.



F1GURE 1. Schematic representation of a generalized Flavivirus replica-
tion cycle. Virus particles (V') become attached (A) to the cell membrane.
Virus RNA is then released into the cytoplasm, where virus replication oc-
curs. Newly assembled, immature virions enter the endoplasmic reticulum
(R) and progress along a pH gradient until becoming released back into
the extracellular matrix as infectious virus particles.

Hence we consider a continuous time model, consisting of a system of differential equa-
tions, describing the replication cycle of a virus with cell culture as follows:

(A'(t)=aV(t) — dA(t),

(2.1) R'(t)= ¢o A(t) — (%;(t) + w)R(1),
Vi(t)= %%R(t) —(a+ 8V (1)

2.1. Equilibria and Stability Analysis of the Model. Lets define the basic repro-
ductive number for the system (2.1) as follows:
I6] o}
(B +p) (a+6)
The basic reproduction number is the average number of secondary viruses produced by

(2.2) Ro=1¢

one virus particle during its lifetime. The term in the Ry expression denotes the

a
(o +0)
probability of free viruses attaching to a cell during its lifetime. The parameter ¢ is the
average number of immature virus particles produced by one virus at stage R. Finally

the term gives the probability of viral particle maturation in the absence of

B
(B+n)

viruses at stage A.

The differential equation system given in (2.1) expresses the rate of change of the
number of infectious virus particles per mL, the number of virus particles inside the
cell as well as the number of attached virus particles. Setting the left hand side of the
equations in the system equal to 0 and solving for the values of variables provide us
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FiGure 2. WNV population dynamics in cell culture. The number of
virus particles per mL in the supernatant decreases exponentially and then
stabilizes to a level that is lower than that of the original population size.
The parameter values used here are as follows: a = 1.1, 0 = 2.5,¢ =
1.00225, 5 = 1.5, p=0.0001, 6 = 0.001.

the values of the state variables for which their rate of change is 0. These are termed
the equilibrium values of the state variables. The trivial equilibrium for the model is
E0 = (A% = 0,R" = 0,V° = 0). If however, all these equilibrium abundances are
positive, such equilibrium is called an endemic equilibrium. In our case, the non-trivial
equilibrium is £* = (A*, R*,V*), where

(2.3)
yro o Brplard) Brwo®Ro-b ,._ap. po oA UL+A)
—u(a+0) ap o B+ p(l+ A%

o

Note that whenever Ry > 1, the system has a positive endemic equilibrium. In biological
setting, the equilibrium values can correspond to concentrations to which the system ar-
rives some time after starting the experiment and subsequently stays there indefinitely,
or they can correspond to concentration values that the system quickly can get away
from despite starting with initial concentration values that are close to these equilib-
rium values of concentrations. In the first scenario, the model is said to have a stable
equilibrium. In the second scenario, where the trajectories of the state variables depart
from the equilibrium values, the model is said to admit an unstable equilibrium. The aim
of our stability analysis is to determine under what conditions, these equilibria are stable.

Below, we show that the same condition: Ry > 1 must be met for the endemic equi-
librium £* to be stable. This stability condition is important because it delineates when
a positive amount of free virus particles will persist in the system. In other words, this
inequality represents an explicit condition that, if met, will guarantee the long-term
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persistence of free virus particles in the system (as well as attached and intracellular).

Assuming that the initial concentration values (Vg, Ry, Ag) are sufficiently close to the
equilibrium values in €7 = (A", RT, V1), with stability analysis, we aim to study the
long-term behavior of the deviations of the system states from these equilibrium values.
If the deviations grow indefinitely over time, the equilibrium is unstable. If however the
deviations of the system state from the equilibrium values decay towards 0 over time,
then the equilibrium is stable, i.e., the trajectories of the state variables V' (t), R(t), A(t)
will eventually converge to their equilibrium values.

Let z1(t) = A(t) — AT, x5(t) = R(t) — R" and 23(t) = V(t) — VT be all the time-

A
dependent deviations of the trajectories from the equilibrium values. Let d—@) =
dR(t) dv(t) o
Fl(A, R, V), 7 = JT"Q(A, R, V), and 7 = fg(A, R, V) Then it follows that
(dxi(t) d(A(t) — AT)
= — A
dt dt T ‘Fl( 7R7 V)7
dxo(t) _ d(R(t) — R')
2-4 pu— p—
( ) dt dt T FQ(Aa Ra V)7
das(t) _d(V(t) = V")
= == A
[ dt dt FolA R V)

Then, to study the behavior of the deviations from equilibrium over time, we approxi-

mate dz: (t)

ET = (AT, RT, V1) (in technical jargon we say that the system is linearized). Using vector
notation by setting z(t) = (x(t), x2(t), z3(t)), the Taylor series approximation yields the
following system of equations, written in matrix form:

oF, O0F O0F

, for © = 1,2, 3, by using a Taylor series expansion around the equilibrium

9A OR OV 21 (t)
oF, 0F, OF

da: 2 2 2 t

- =J@=| 94 R v za(t)
OF; OF; OF w3(1)
9A OR OV

Doing these partial derivatives gives

—0 0 @
oR 5 e
%:j(:c) _ pat (1+AhH2 (1+AT —i—,u) 0 zo(t)
dt
R'p B t
Ty AT o e |\
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The sign of the eigenvalues A1, Ao, and A3 of the Jacobian matrix 7 evaluated at the equi-
librium determine the trajectories of those derivations because the solution trajectory
for the deviations, written in vector format is of the form:

A1t

z(t) = c1eMt + et 4 et
)

where the vectors ¢; are constants depending on the model parameters [13]. When all
the eigenvalues are negative, as ¢t goes to 0o, all the terms e* converge to 0, and hence,
all the elements in the vector of the deviations of equilibrium x(t) converge to 0. In other
words, as time goes to oo, if all the eigenvalues of the Jacobian matrix are negative, then
the system trajectories converge to the equilibrium values and the equilibrium is said
to be stable. Knowing whether the three eigenvalues are negative amounts to verifying
that the Routh-Hurwitz criterion [13] holds. For our three-dimensional model system,
this criterion is stated as follow:

Let
—(o+ ) 0 «
A T
e ()
¢o+ e — [ ) = A 0
A = |TJ — diag A — (1+ Af)? 14 Af
A RS g
RCEHE AT o) -2

The determinant is readily found to be

A:—(a+)\)(1fm +u+>\) (a+6+ )
BR! B B Rip
+a[(¢0+ (1+AT)2) 1+ At (1+AT+“+)‘> (1+AT)2]

Rt
:_(a+>\)(1fm+ﬂ+)‘> (a+5+A>+O‘{¢”1fAT_(“+A)ﬁ]

Rearranging the expression above and setting it equal to zero, we obtain a third degree
polynomial of \: agA® + a; A2 + as\ + a3 = 0, where

ag = 1,
a :Oz+c7—i-(5—+—u—|—i
1+ At

. B BRI

as = (1+AT +u)(0+a+5)+a(a+5)+a—(1+AT)2
p s BRI

= o) — —_

as U(1+AT + p)(a+9) a¢01+AT +Ma(1+AT)2
The zeros of the characteristic equation A = —ag\® —a;\2 —as\ —as are the three eigen-

values of J. The Routh-Hurwitz criterion states that these eigenvalues are all negative
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(i.e., the equilibrium is stable) if a; > 0, for all i = 1,2, 3, and a;as — a3z > 0.

First equilibrium of interest is trivial equilibrium £°. Thus by setting £ = £°, we
obtain

ap = 1,

ay=a+o+0+pu+p,

as =+ p)(c+a+6)+o(a+9)

as = o(B+p)(a+6) —agof = o(B+ p)(e+9)[1 — Rol

It is clear that if Ry < 1, then a; > 0, for all + = 1,2,3 and ajas — az > 0. Therefore
by Routh-Hurwitz criterion, whenever Ry < 1, the trivial equilibrium &, is (locally)
asymptotically stable. Otherwise if Ry > 1, it is unstable since the system has at least
one positive eigenvalue by Descartes’ rule of sign.

Next equilibrium of interest is endemic equilibrium £*. Thus by setting £ = £*, we
obtain

CL():l7
a1:@+0+6+u+1fA*’
R*
agz(HA*+u)(0+a+5)+0(a+5)+a<1§—m>z
R*
=t o ) =oe L
R*
—~ 1fA* [(6+u(1+A*))(a+5)—aWHWQi—A*)
= [(B+ma+d)+puA (a+5)—a¢ﬁ]+uam
= A (a+5)+(ﬁ+u)(a+5)[1—Ro]]ﬂwém
R*
_ o B
~ T Ay

It is clear that all coefficients ag, a1, as, ag are positive, whenever Ry > 1, since this
condition implies the positivity of the equilibrium £*. Also note that ayas—az > 0. Then,
by Routh-Hurwitz criterion, the endemic (positive) equilibrium £* is locally asymptoti-
cally stable whenever the basic reproduction number Ry > 1, which completes the proof.

This model can be tested and improved with published data on WNV replication
dynamics and within-host proliferation. Because these three processes in the replication
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cycle represent common targets for antiviral therapies, the mechanisms, affecting viral
population size at each stage can inform the design of antiviral therapies. Yet, obtaining
values for all parameters in the laboratory poses a different challenge. However statistical
tools and the results of the simulations can provide guidance on which parameters are
most informative. In the next section, we investigate the estimability of the model
parameters.

3. ASSESSING THE ESTIMABILITY OF THE MODEL PARAMETERS

We estimate a “true” value of each parameter and conduct simulations to determine
the level of confidence in each parameter when varying sampling frequency. At the
start of the experiment, the number of attached virus particles Ag and the number of
intracellular virus particles Ry are both 0. We initiate virus population growth with a
multiplicity of infection (MOI) of 3 virus particles per cell; thus V5 = 3. To set the
initial parameter values, we manually assigned a combination of values that would yield
biologically feasible trajectories, where V' (t) would stabilize to a carrying capacity and
A(t) would remain below V(t). The population in spent media (V(¢)) is sampled at
times tg, t1, to, ..., t,, for a total duration 7.
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F1GURE 3. Relative bias of each parameter when certain parameters are
known, after running 100 simulations for each set of parameters. In the
upper left panel, it is assumed that all parameters are unknown. The most
difficult parameter to estimate (most uncertain) in this model is 5. Fixing
(or “knowing”) o yields the lowest total amount of bias. When ¢ is fixed,
the amount of uncertainty in the model increases.

3.1. Materials and Methods. The estimability of the model parameters is assessed
in the context of the data generated by the serial passage experiment. Under this exper-
imental setting, a typical data set consists of a number, say n, of virus samples collected
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from the supernatant at regular time intervals (e.g. if samples are collected every 8 hours
for a period of 72 hours that gives us 10 samples if time 0 is included). Then, to assess
estimability of the model parameters, the idea is to simulate the trajectories of A, R,
and V' as well as regular random samples from those trajectories at intervals matching
the experimental conditions. With those simulated samples, one can then estimate the
model parameters and later judge, from the statistical properties of the estimates, the
quality of the estimation. Furthermore, here we modified the sampling frequency in
order to assess how does the quality of the estimate changes as a function of the number
of samples taken, during the same total time period an experiment is running. The
specific details of the simulations are given below.

The time series of samples with observation error were then used to estimate via least
squares the model parameters. As stated in [14], least-squares estimation amounts to
specifying a Normal likelihood. These two steps (simulation and estimation) are the
basic building blocks of our simulation experiments. The statistical qualities of the
estimates under any given experimental setting can be assessed by running these two
steps a large number of times (here we used 100 times for all of our simulation settings).
Then, the mean and variance of the estimates, relative to the true parameter values
gives precise estimates of the bias and variability of the model parameter estimates.

We assessed the quality of the parameter estimates under two different simulation
settings. In the first setting (simulated 100 times), we assumed that for a total of T' = 72
hours, virus particles were sampled every 1.44 hours, to get a total of 50 observations.
Although gathering 50 samples of the supernatant in 72 hours represents substantial
experimental work, having a large number of samples gave us a benchmark for assessing
the estimability of the parameters. Indeed, in time series statistics, the more samples
over time are gathered, the better the quality of the estimate of the dynamics and of
the model parameters are. The second experiment consisted of simulating a total of 25
observations taken every 2.88 hours during 72 hours. This setting corresponded to a
realistic experimental setting. For this experimental setting, we also ran 100 simulation
and estimation steps. Finally, for each sampling setting (25 and 50 samples), we assessed
the quality of the estimates when one of the parameters was assumed to be known (or
estimated empirically from a different experiment), for each one of the model parameters.
Thus, for each one of the two settings we initially programmed 7 simulation experiments
with 100 runs each (for a total of 700 simulation and estimation steps). The programs
were all written in the language R and as it stands, the computer code takes about 24
hours to run per simulated setting.

3.2. Numerical results. The parameters that gave biologically feasible trajectories of
the model are shown in Figure (2). The first subfigure in Figure (3) presents a simple
test of estimability of the model parameters, using 50 simulations. To obtain this figure,
we conducted 50 simulations of the A, R,V trajectories with 25 where the deterministic
trajectories were contaminated each time with different levels of observation error, (up
to 20%). For each simulated time series, we estimate the model parameters using only
as observations the time series of V' contaminated with observation error. The figure
shows that all the estimated parameters fall around the true value, which gave us a
quick indication that the model parameters were indeed estimable when one has as data
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only the time series of the free virus particles. Going from 25 to 50 samples in time
only improves the quality of the inference by a little bit, but not substantially (results
not shown). When estimating all parameters, all appear unbiased. The variance of
the parameter estimates, however, varies widely which indicates that the time series of
virus particles contains more information for some parameters than others. For example,
Figure (3) shows that o has a large variance and is sometimes over-estimated three to
fourfold. Because ¢ is the most difficult parameter to estimate, when this parameter is
known, the remaining parameters are estimated with the highest precision and unbiased
for all experiments. Assuming that ¢ is known, it yields the worst estimates. Fixing (3
also gives good parameter estimates, but § would be difficult to measure empirically.
Fixing u, 0, and « individually improves the precision the estimates of ¢ and more so
when « is the parameter that is fixed.

4. CONCLUSION

Laboratory experiments and mathematical models can facilitate progress towards con-
trolling the spread of arboviruses; however in the absence of field research, the results
from these studies cannot be ground-tested and the models cannot be improved. Con-
ducting clinical research in tandem with the development of these models is important.
Here we introduced a coupled differential equation system describing three stages of
virus replication cycle depending on the location and infectivity of virus particles. The
model analysis conveys important qualitative predictions. First, we derive a biologically
interpretable basic reproductive number R for the intra-cellular dynamics of the WNV.
It is an important threshold value informing how the persistence of the infectious virus
particles can be affected when one or several of these processes is changed. It provides
quantitative predictions such as under what conditions, virus persistence occurs or virus
population dies out. Next, we show that whenever Ry < 1, the virus dies out provided
that initial free virus population is sufficiently small (€° is locally asymptotically stable).
Otherwise if Ry > 1, the viruses persists provided that initial abundance Ay, Ry, Vy are
sufficiently close to the endemic equilibrium £* = (A*, R*,V*) (£* is locally asymp-
totically stable). These predictions can be scaled up in order to link the intra cellular
processes with processes at higher scales involving the vector itself.

Estimation of the parameters of a biological, dynamic model using time series data
is a common approach in ecological research [15, 16, 17]. We apply this approach in
the field of virology, where we attempt to estimate parameters in the virus replication
cycle. We show that when the data at hand consists of time series of observations of
one of the stages of the virus replication cycle (V'(¢)), it is possible to estimate with a
suitable degree of precision the value of the critical parameters governing the transitions
and changes in the virus life-history processes. Although the model is a first and simple
representation of the WNV life-cycle, our results represent a substantial step into the
formulation of a general understanding of the dynamical processes involved in such life-
cycle.

In general, all parameter estimates are unbiased; however the precision varies accord-
ing to which parameter is known (Figure (3)). When fixing ¢, there is a large reduction



12

in the precision of the model. This parameter appears only once in the system of equa-
tions and is multiplied by o. Thus, fixing it imposes a numerical restriction on the
potential optimal solution. These results emphasize that teasing apart the estimates of
¢ and o can be challenging. If one could estimate o and d, one can reduce the variability
in the estimates of ¢ so that now the estimates are on average unbiased and with a pre-
cision that frames the estimate within 0.5 and 1.5x relative to the true value (Figure (3)).

Obtaining values for the parameters in the laboratory poses a different challenge;
however the results of the simulations provide guidance on which parameters are most
informative, all else being equal. In an experimental setting, V' (¢) can be measured
directly as plaque-forming units or, alternatively, by TCID50. To determine the number
of defective virus particles that are being produced, the difference between the num-
ber of genome copies by real-time RT-PCR and the number of plaque-forming units
can be calculated. This will allow an estimation of u, the rate at which virus particles
leave the system either via incomplete maturation or assembly, or due to degradation
of viral RNA. Measuring R(t) becomes more costly: electron microscopy can be used
to visualize the process of virus particle maturation through the endoplasmic reticulum.
Direct measurement of A(t) and of the kinetics of RNA replication in the cytoplasm
(particularly o) is challenging. By empirically measuring the rate of virus attachment
and maturation, it will be possible to obtain statistical estimates of the parameters that
cannot be measured in the laboratory.

Our simulations and assessment of the statistical properties of the Maximum Like-
lihood (ML) estimates of the model parameters show how to target efforts aiming at
complementing time-series statistical analyses with experimental methods. Because the
variance of the parameters varies widely from one parameter to the other, the changes
in the observed time series of free virus particles contains more information to estimate
some parameters than others. Via our approach where we assumed that one of the pa-
rameters at a time was known, we were able to isolate the set of parameters that it would
be more valuable to estimate using experimental work. We hope that the results pre-
sented here offer guidance and ideas as to which one of these parameters or intra-cellular
life-cycle stages, it would be most interesting to target in the laboratory.
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