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1.1.8 Hypothesis tests: a review of basic concepts

Some of the very basic concepts and ideas about hypothesis tests can be reviewed
by means of simple examples, without dwelling into likelihood theory. This is the
purpose of this section. In the next section, we will present the theoretical details
of likelihood inference along with detailed examples of biological relevance. These
lectures will be the founding blocks of the rest of our course.

Fisher’s tea lady:

In R.A. Fisher’s experimental designs book there is a ten pages account of an
experiment where he basically laid out the most important principles of experimen-
tation. The experiment is known as “Fisher’s tea lady experiment”. This experiment
was also later described by Fisher’s daughter, who wrote his biography. A pdf file
of this textbook fragment is posted in the course web page. This account tells the
story of a lady that claimed to be able to distinguish between a tea cup which was
prepared by pouring the tea first and then the milk and another tea cup where the
milk was poured first. Fisher then wonders if there is there a good experiment that
could be devised in order to formally test the lady’s claim. The null hypothesis of this
purported experiment would then be that the lady has no selection ability whatso-
ever. A logical experiment would consist of o↵ering the lady a set of “tea-first” cups
and another set of “milk-first” cups and let her guess the tea cup type (milk-first
or tea-first) of each one. The question is -Fisher noted- that it is not evident how
many of each type and in what order shall this be done in order to carry a convincing
experiment. Fisher begins by noting that, the more cups are o↵ered to the lady, the
harder it is to achieve a perfect classification of all the tea cups. Also, note that
by giving her the same number of tea-first cups than milk-first cups we would allow
each of the 2 types to get the same simultaneous presentation (i.e. opportunity to
be chosen). Suppose that we ask the lady to select 4 milk-first from a total of 8 cups
(That is, we o↵er her 4 milk-first and 4 tea-first cups). In how many ways can she
make the 4 choices? Fisher noted that for the first cup there are 8 choices, for the
second there are 7 choices, 6 choices for the third and finally, 5 choices for the fourth
milk-first cup. Therefore, this succession of choices can be made in 8⇥7⇥6⇥5 = 1680
number of ways. But this takes into account not only every possible set of 4, but also
every possible set in every possible order. Now, 4 objects can be arranged in order in
4⇥ 3⇥ 2⇥ 1 = 24 ways and therefore, since the 4 cups are assumed to be identical in
every respect and we do not care about the order in which these 4 cups were given,
then the number of ways of picking 4 cups out of 8 is

# number of ways of assigning 4 cups as milk-first among the 8 cups

# of ways that 4 cups can be ordered

= 8⇥7⇥6⇥5

4⇥3⇥2⇥1

= 8!

4!(8�4)!

,

which is
�
8

4

�
= 70. So if the lady was picking purely at random and didn’t have any

distinguishing ability whatsoever, she would have a probability of 1/70 of picking
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up a particular sequence of cups assigned by her as milk-first that happens to be
the correct one. What if we set 3 milk-first cups and 3 tea-first cups? Then, since�
6

3

�
= 20 the lady would have a 1/20 probability of picking the correct sequence

just by chance. Fisher decided to go for the harder test and decided to give her 4
milk-first and 4 tea-first cups. Now that we have decided on the number of cups,
we can compute the probability of each possible outcome if the lady was picking
purely at random (that is, if she had no ability to distinguish between a tea-first and
a milk-first cup). The possible outcomes of the experiment are the following: the
lady could pick 4 right out of the 4 of one type and therefore get 0 wrong out of the
other type. We will denote this event 4R/0W . She could also get three right of the
first type and one wrong of the second type. This event will be denoted by 3R/1W .
According to this notation scheme, the other possible events are 2R/2W , 1R/3W
and 0R/4W . Computing the probabilities of each of these events is a straightforward
counting exercise. Considering the event 3R/1W for instance, we note that there are�
4

3

�
number of ways of picking 3 right out of 4 of the first type and independently of

that, there are
�
4

1

�
ways of choosing 1 wrong out of the other 4 cups of the second

type. Iterating this argument for the other events we get that,

P (3R/1W ) =

�
4

3

�
⇥
�
4

1

�
�
8

4

� =
16

70
.

Likewise,

P (4R/0W ) =

�
4

4

�
⇥
�
4

0

�
�
8

4

� =
1

70
,

P (2R/2W ) =

�
4

2

�
⇥
�
4

2

�
�
8

4

� =
36

70
,

P (1R/3W ) =

�
4

1

�
⇥
�
4

3

�
�
8

4

� =
16

70
,

and

P (0R/4W ) =

�
4

0

�
⇥
�
4

4

�
�
8

4

� =
1

70
.

These probabilities completely specify the probability mass function of the outcomes
of the experiment where the picking was done purely at random, that is, assuming
that the lady has no detection ability. Therefore, this is the distribution of outcomes
under the null hypothesis. Suppose that the experiment is carried and the lady picks
3 right of the first type and 1 wrong of the second type (3R/1W ). Is this evidence
enough to convince ourselves that she is not picking the cups at random and that she
indeed has a detection ability? So we ask ourselves, if the null hypothesis is correct
and the lady is picking purely at random, how unlikely it is to get an outcome as
extreme or more more than the one we actually observed. This amounts to specify
the probability of making only one error or less by pure dumb luck. According to the
calculations above, that probability is

P (3R/1W ) + P (4R/0W ) =
17

70
⇡ 0.24.
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So if the null hypothesis is true, then there is a chance that we would have observed
a choice as good or better than the one we saw about 24% (about a fifth) of the time!
That chance is way too big to convince our skeptic (Fisher) that his null hypothesis
is wrong. 0.24 is in fact, the p-value of the test of the lady’s claim. Compare that
value to what we are used to think of what a good skeptic’s convincing threshold is:
0.05 (or 5% of the time). Hence, here we blatantly failed to reject the null hypothesis!
Fisher’s account is important in many ways and the most notable is the description
of the value of randomization in experimentation (which I explicitly left out in here)
as well as his careful elaboration of the logics of hypothesis testing.
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Exercise 1.1. Suppose we ask the lady to select 4 milk-first from a total of 8 cups
(that is, we o↵er her 4 milk-first and 4 tea-first cups). In how many ways can she
make the four choices? Fisher noted that for the first cup there are 8 choices, for the
second there are 7 choices, 6 choices for the third and finally, 5 choices for the fourth
milk-first cup. Therefore, this succession of choices can be made in 8⇥7⇥6⇥5 = 1680
number of ways. But this takes into account not only every possible set of 4, but also
every possible set in every possible order. Now, 4 objects can be arranged in order in
4⇥ 3⇥ 2⇥ 1 = 24 ways and therefore, since the 4 cups are assumed to be identical in
every respect and we do not care about the order in which these 4 cups were given,
then the number of ways of picking 4 cups out of 8 is

# number of ways of assigning 4 cups as milk-first among the 8 cups

# of ways that 4 cups can be ordered

= 8⇥7⇥6⇥5

4⇥3⇥2⇥1

= 8!

4!(8�4)!

,

which is
�
8

4

�
= 70. So if the lady is picking purely at random, she can assign four

cups as “milk-first” in 70 di↵erent ways.

1. What is the probability that the lady doesn’t make any mistake and correctly
chooses the 4 milk-first cups?

2. Had Fisher given her 3 milk-first cups and 3 tea-first cups, what would the
probability of correctly picking the 3 milk-first cups had been?

3. In fact, when he was thinking how to design the experiment, Fisher chose the
number of cups after computing the probability of making no mistakes in two
cases: when she is given to select 4 cups out of a total of 8 and when she is
given 3 cups out of a total of 6. Given your answers to the two questions above,
which number of cups do you think Fisher picked: 4 and 4 or 3 and 3? Why?

4. Enumerate all the possible outcomes of the experiment when a total of 8 cups
are given to her (4 of each type). Hint: for instance, one outcome is as follows:
she can pick 4 right out of the 4 of one type and therefore get 0 wrong out of
the other type. Denote this event as 4R/0W , where R stands for ‘right’ and W
for ‘wrong’. Use the same notation for all the other events.

5. Compute the relative frequency with which every single one of these possible
outcomes occurs.
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Hypothesis test for the sample mean (known variance):

Suppose that an education researcher suspects that college students at UF have
a higher IQ than the population at large. The average IQ score from the population
at large is 100. Because the IQ score can be though as a continuous phenotypic trait,
to model its distributional properties this researcher should use a continuous random
variable. In particular, here we’ll use a Normal distribution, which is symmetric
around the mean. Now, suppose that the standard deviation � of the IQ scores
distribution is known and equal to 15. To confront his suspicion with data, the
researcher takes a random sample of n = 30 IQ tests from the population of UF
students and obtains a sample mean score x̄ equal to 105.3. A colleague of the
education researcher is very skeptic of this suspicion and in fact, tells him that an IQ
sample mean of 105.3 is not really an unlikely outcome if these 30 samples really came
from a population of scores that is normally distributed around a mean µ = µ

0

=
100. The value µ

0

= 100 embodies the skeptic’s point of view, it corresponds to his
hypothesized value of the mean of the distribution of IQ scores from which our random
sample was drawn. In statistical terms, this is called the null hypothesis. Conducting
a hypothesis test in this case amounts to convincing the skeptic that the researcher’s
suspicion (that is, the alternative hypothesis) that µ > 100 is indeed supported by
the data. In response to his colleague’s questioning, the researcher starts by asking
himself how unusual a sample mean of 105.3 would be if it really came from the IQ
distribution of the population at large. Repeated independent random sampling from
the population at large of IQ scores generates a series of sample means. Each time
a sample of IQ scores is taken, a new sample mean is obtained. Thus, the computed
sample mean IQ score can be considered as the outcome of a random variable. Let’s
denote this random variable X̄ (remember that capital letters in this notes denote
a random variable, unless otherwise specified). From the Appendix review (and a
bit of common sense) we know that if the samples are really random, independent
and drawn from a population with mean µ

0

= 100 (the skeptic’s hypothesis), the
distribution of the sample mean is again Normal, with mean equal to µ = µ

0

and
variance �2/n. We write:

X̄ ⇠ N

✓
µ
0

,
�2

n

◆
.

Asking how unusual would a sample mean of 105.3 be if the null hypothesis were to
be true then amounts to compute an integral, the area to the right of x̄ = 105.3 under
a normal curve whose mean is µ

0

= 100 and variance is �

2

n

= 15

2

30

. This area is in fact
a probability. It is the probability that X̄ � 105.3 which is given by

P (X̄ � 105.3) =

Z 1

105.3

1p
2⇡�2/n

exp�(x̄� µ
0

)2

2�2/n
dx̄.

Fortunately, we can ask R to compute that integral for us with the following line:

> 1-pnorm(q=105.3, mean=100, sd= 15/sqrt(30))

[1] 0.02647758
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Alternatively, we could go the old ways and standardize our normal distribu-
tion of sample means X̄ and get the equivalent quantile value of x̄ = 105.3 in the
standard normal distribution Z. Because X̄ can be thought of as the following linear
transformation of the standard normal distribution

X̄ =
�p
n
Z + µ

0

,

solving for Z in this equation allows us to find the standardized value of x̄ = 105.3.
That is, since

Z =
X̄ � µ

0

�/
p
n
,

the standardized value of x̄ = 105.3 is found to be

z
obs

=
x̄� µ

0

�/
p
n

=
105.3� 100

15/
p
30

= 1.935280.

Then, knowing that P (X̄ � 105.3) = P (Z � 1.935280) we just have to do a table
look up to find out this probability, or, if we don’t have our “Z-table” at hand, just
ask R again:

> 1-pnorm(q=1.935280, mean=0, sd= 1)

[1] 0.02647797

which happily corresponds to the previous value found before (besides some numer-
ical round-o↵ error). What does the 0.02647797 means? It simply means that if
the skeptic’s hypothesis was true and the 30 sampled IQ scores came from a dis-
tribution with mean 100, then the probability of observing a sample mean as big

or bigger than 105.3 is slightly less than 0.03. In other words, if the skeptic’s hy-
pothesis was true and we were to repeat the experiment of drawing a sample of size
n = 30 student’s IQ scores and each time compute the sample mean, less than 3%
of the time we would actually observe sample means as high or higher than 105.3.
So our researcher now has computed a value, 0.02647797, that makes his colleague’s
hypothesis untenable. Given the evidence against his hypothesis, the skeptic con-
cedes and admits to be convinced. How small has the value of P (X̄ � x̄) to be in
order to convince a skeptic? Well, in a typical statistical analysis, the threshold to
reject the skeptic’s null hypothesis is set to be less than 5%, or 0.05. Very serious
scientific experiments set the convincing threshold to 0.01. In any case however, that
threshold is what is known as ↵ and the probability of observing a test statistic as
extreme (extreme in the direction of the research hypothesis) or more than the value
actually observed is known as the p-value. So this skeptic vs. researcher argument
is really where the famous quasi-robotic “Decision rule: Reject H

0

if p-value < ↵”
comes from. Also, note that whenever a decision is made, two possible errors arise:
first, the null hypothesis could be true, but it is rejected. Since we reject the null
hypothesis whenever we observe a p-value less than ↵, given that the null hypothe-
sis is true, that probability is just given by ↵. Second, it may be possible that we
fail to reject H

0

even if it is false. The probability of that happening is denoted by
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�. 1 � � is therefore the probability of making the correct choice and it is known
is statistics as the power of the test. In future lectures we will deal with trying to
compute the power for our ANOVAS. Finally, note that I’ve written “Failing to reject
H

0

”. Why? Why not simply “accepting H
0

”? Well, it can be argued that accepting
the null hypothesis may suggest that it has been proved simply because it has not
been disproved yet. This is a logical fallacy known as “the argument from ignorance”.

The duality between Confidence Intervals and Hypothesis Tests:

Suppose we were conducting a hypothesis test of

H
0

: µ = µ
0

= 500
H

a

: µ 6= µ
0

.

We go out and take a random sample of size n = 60 knowing that � = 100. Look
at the graph below and locate the rejection region and the acceptance region for this
example of a two-sided hypothesis test.

450 460 470 480 490 500 510 520 530 540 550
0

0.5

1

1.5

2

2.5
x 10−3

Rejection Region =
�/2= 0.025

Rejection region = 

�/2 =0.025

Critical value: −474.69=

500−(1.96)*100/(sqrt(60)) Critical value: 525.30 = 
500 + (1.96)*100/(sqrt(60))

Remember:

� = 0.05 implies
z
�/2 = 1.96

This is the pdf for  Xbar 
(a random variable)

Figure 5: Probability distribution for X̄: Depicted are the rejection and the accep-
tance regions for the two-sided hypothesis test.

What’s the size of the acceptance region? That’s a probability, it’s the area
between the two critical quantile values of the distribution of X̄. This area is found
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to be:

P

✓
µ� z

↵/2

�p
n
< X̄ < µ+ z

↵/2

�p
n

◆

= P

✓
�z

↵/2

�p
n
< X̄ � µ < z

↵/2

�p
n

◆
(subtracting µ everywhere)

= P

✓
�X̄ � z

↵/2

�p
n
< �µ < �X̄ + z

↵/2

�p
n

◆
(subtracting X̄ everywhere)

= P

✓
X̄ � z

↵/2

�p
n
< µ < X̄ + z

↵/2

�p
n

◆
(⇥� 1).

(11)

So what this is showing is that, in fact, the confidence interval for µ is just the set of
all values of µ

0

for which the null hypothesis µ = µ
0

would not be rejected in a test
against the alternative hypothesis µ 6= µ

0

. Note that because x̄ is the realized value
(that is, one fixed quantity) from the probability distribution of X̄, it doesn’t make
sense to ask

P

✓
x̄� z

↵/2

�p
n
< µ < x̄+ z

↵/2

�p
n

◆
=?

For a particular random sample, the realized confidence interval
✓
x̄� z

↵/2

�p
n
, x̄+ z

↵/2

�p
n

◆
.

either contains or does not contains the true mean µ and we actually do not know
which of these two outcomes occurred. If we were to repeat the experiment many
many times however, and each time after taking a random sample of size n, we com-
puted the sample mean and its realized confidence interval, then (1 � ↵) ⇥ 100% of
the time the realized confidence interval would contain the true mean µ. For each
individual confidence interval, the true mean would either be inside or it would not.
Thus, repeating this experiment many many times and computing a confidence inter-
val each time can be though of as a horse shoe game where we have our eyes closed.
We shoot the horse shoe many many times (i.e. we get the random sample, compute
its mean and confidence interval) and each time we either make a stake (i.e. the true
mean is contained in our realized confidence interval) or we miss the stake (the true
mean is not contained in our realized confidence interval), but we do not know for
sure what happened (we have our eyes closed!). The only thing we know from the
probability calculations above is that (1�↵)⇥ 100% (= 95% if ↵ = 0.05) of the time
the true mean value will be contained in the confidence interval. This is a very hard
concept to understand and it is not commonly understood properly.


