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INTRODUCTION

The contents of these notes are a compendium of examples I have learned through
the years as a student and teacher in the fields of Statistical Ecology and Statistical
Genetics. An important influence in my formation and in particular in my approach
to teaching have been professors Brian Dennis, Paul Joyce and Steve Krone. Brian
Dennis has been, for many years now, both a mentor and a friend. Many of the
examples at the beginning of these notes are from the courses he teaches at University
of Idaho, and that he in turn learned from G.P. Patil at Penn. State, and many others.
Some key examples also come from my beautiful time at CIMAT, in Mexico, and in
particular, from the course about theoretical likelihood inference taught by Elóısa
Dı́az-Francés and the late David A. Sprott.

To finish later: Acknowledge examples/teaching material from Paul Joyce,
Chris Williams, Ken Newman, Al Manson and Stephen M. Krone
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PART 1:

Discrete probability distributions in Ecology and

Evolution
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1.1 The likelihood function

1.1.1 Two simple mark-recapture models

Sampling with replacement:
Suppose that we are studying a closed population of desert mice. In a first visit to the
desert, we trap 49 mice, mark them with a red tag and then release them. After some
time, we come back to the study area and trap mice again. Each time we capture a
mouse, we record whether it is marked or not and release it. That is, we sample mice
with replacement. With the recorded data, we seek to estimate the total number of
individuals in the population. How do we go about writing a probability model for
this experiment? Can we build a statistical model to explain how the data arose? Let

• X be the r.v. that counts the number of marked mice recaptures in the second
visit.

• x denote the realized value of X.

• m be the number of marked mice in the population.

• t be the total number of mice in the population.

• n be the total number of mice captured in the second visit (23).

Suppose that the experimental data consist of the following results: x = 5, m = 49,
n = 23. Here, t is the only unknown quantity. In what follows, after building a
probabilistic model for this experiment we derive the Maximum Likelihood (ML)
estimate of t.

In order to build a probabilistic model, first note that the experiment “recording
the number of marked mice among the n captured mice” can be viewed as a sequence
of n trials with binary outcome (marked/not marked or “Success”/“Failure”). Let’s
assume for now that each of these n trials is independent from each other. Then,
the probability of observing a marked mouse (i.e. the probability of a success) in
one of these trials is m

t
. Likewise, the probability of observing an unmarked mouse

is
(
1− m

t

)
. Hence, the probability of a particular sequence of x successes and n− x

failures is
(
m
t

)x (
1− m

t

)n−x
. Noting that the total number of such sequences is equal

to
# of ways of assigning x marked mice in n trials

# of ways that x marked mice can be ordered
= n(n−1)(n−2)...(n−x+1)

x!

= n!
x!(n−x)!

=
(
n
x

)
,

we get that

P (X = x) =

(
n

x

)(m
t

)x (
1− m

t

)n−x
, x ∈ {0, 1, 2, . . . , n}.

This the binomial distribution with parameters n and m/t and from here on we will
write X ∼ Bin (n, m

t
). Note that this Binomial distribution is built as a sequence
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of n independent binary trials. In probability, a binary random trial with success
probability p (m/t in our case) is known as a Bernoulli probability distribution,
Be(p). Now, going back to our Binomial distribution, note that the probability of
drawing 5 marked mice in 23 trials is then:

P (X = 5) =

(
23

5

)(
49

t

)5(
1− 49

t

)23−5

.

Since t is an unknown quantity, we can view the right hand side (RHS) of the above
equation as function of plausible values of t. This function is plotted in Figure 1.
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Figure 1: Plot of P (X = 5) as a function of the unknown quantity t.

By doing this exercise, we find that one value around 230 of the unknown
quantity t would yield the observed result (x = 5) more frequently than any other
value. Noting that ‘probability’ implies a ratio of frequencies and “about the frequen-
cies of such values we can know nothing whatever”, Fisher (1922) suggested to talk
instead of the likelihood of one value of the unknown parameter being a number of
times bigger than the likelihood of another value. Thus, following Fisher, we refer to
the function

`(t) =

(
n

x

)(m
t

)x (
1− m

t

)n−x
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as the likelihood function of t and use it to quantify the relative frequencies with which
the values of the hypothetical quantity t would in fact yield the observed sample
(Fisher 1922). The value t̂ that maximizes this function is called the Maximum
Likelihood (ML) estimate of t. Finding this value analytically is straightforward in
this case. To do that, we 1) compute ln `(t), 2) find its derivative with respect to t
and 3) set it equal to 0 and solve for t:
1)

ln `(t) = ln

(
n

x

)
+ xlnm− xln t+ (n− x)ln (t−m)− (n− x)ln t

2)
dln `(t)

dt
= −x

t
+

(n− x)

(t−m)
− n− x

t
,

and 3)
dln `(t)

dt
=
n− x
t−m

− n

t
= 0⇒ t̂ =

nm

x
= 225.4

This estimator of t is known as the “Lincoln-Petersen” index in the scientific literature.
Finding t̂ using R is also straightforward. Instead of doing the above calculations in
R, we will find the integer ML estimate “by hand”: First, let’s define a function that
computes `(t) for various values of t, given the (known) values of x, m and n. We can
do that using the function dbinom that computes the pmf of the Binomial random
variable:

binom.like<- function(t,n,m,x){

like<- dbinom(x=x,size=n,prob=(m/t),log=FALSE);

return(like)

}

Alternatively, instead of using function dbinom we could have used the function
lgamma(x) that computes ln (Γ(x))1 :

binom.like<- function(t,n,m,x){

like <- exp(lgamma(n+1)-lgamma(x+1)-lgamma(n-x+1)+x*log(m/t)+(n-x)*log(1-(m/t)));

return(like)

}

To do the plot in Figure 1 we type in R ’s command line :

>tvec <- seq(50,500,by=5);

>like.caprecap<- binom.like(t=tvec,n=23,m=49,x=5);

>par(oma=c(1,2,1,1));

>plot(tvec,like.caprecap, col="red",type="l",main="Binomial mark-recapture likelihood",

xlab="total population size t", ylab="likelihood function L(t)",xlim=c(0,501),

cex.main=1.5,cex.lab=1.5,cex.axis=1.5);

1The gamma function (Γ(x)) is explained in detail right after the derivation of the gamma dis-
tribution. For now, just think of it as the factorial function for real, positive numbers. You might
also wonder: why exponentiate and then take the log in this code? Because when dealing with very
big and very small numbers, it is numerically more stable to compute sums than multiplications.
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Finally, the integer ML estimate of t is found by typing

> that<- tvec[which(like.caprecap==max(like.caprecap),arr.ind=T)]

> that

[1] 225

Sampling without replacement:

Suppose now that in the second visit we sample n mice without replacement. Here
again, we let X be the r.v. that counts the number of marked mice recaptures in the
second visit. Under this setting we have that(

t
n

)
= # of samples of size n from t mice

1/
(
t
n

)
= probability of a particular batch of n mice captured from t mice(

m
x

)
= # of ways of choosing x marked mice from m marked mice,(

t−m
n−x

)
= # of ways of choosing n−x unmarked mice from t−m unmarked mice and(

m
x

)(
t−m
n−x

)
= # of ways of choosing x marked and n− x unmarked mice.

Then,

P (X = x) = f(x) =

(
m
x

)(
t−m
n−x

)(
t
n

)
Hence, X follows the hypergeometric distribution. Note two things: first, if n exceeds
(t−m) then some marked animals must appear in the sample. Second, the number
of marked animals in the sample cannot exceed m or n. In other words

max(0,m+ n− t) ≤ x ≤ min(m,n).

The ML estimate of t for this setting may be found using four different methods.
The first method consists of drawing a picture of the likelihood function and finding
graphically t̂. The second approach is to take the derivative of ln`(t), set it equal to
0 and solve for t. However no closed form of t̂ can be found in this case, and we have
to resort to the third approach: numerical maximization of ln`(t). However, before
giving up, we can try to find the integer ML estimate analytically. This last approach
consists of finding an integer value of t such that `(t) = `(t − 1). Let [a] denote the
greatest integer ≤ a. Then, first we set `(t) = `(t− 1), solve for t and and take t̂ to
be [t]:

`(t− 1)

`(t)
− 1 = 0⇒

(
t−1−m
n−x

)(
t
n

)(
t−m
n−x

)(
t−1
n

) − 1 = 0,
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and after simplifying (in fact, after some messy algebra) we get

(t−m− n+ x)t = (t− n)(t−m)⇒ t =
nm

x
.

Rounding to the nearest integer we get t̂ =
[
nm
x

]
, which is the Petersen index.

It is often the case that multiple independent samples are taken, in which case the
setting is:

• k = # of independent samples taken,

• t = total population size,

• mi = # in population that are marked at time of the ith sample,

• ni = # captured in the ith sample,

• xi = # marked and captured in the ith sample,

and the likelihood function is:

`(t) =
k∏
i=1

(
mi
xi

)(
t−mi
ni−xi

)(
t
ni

) .

As an example, consider the following data set: In Alaska, 13 wild goats where
captured and marked. Then 3 aerial surveys were done. The results are

flight Total # of goats seen Total # of marked goats seen

1 74 6
2 72 6
3 51 6

Exercises:

1. For the Goats data set in the Hypergeometric distribution example above, write
an R function that calculates the log-likelihood function and maximize it with
respect to t to find t̂.

2. Show via simulations that as t → ∞, m → ∞ and m
t
→ p, where p ∈ (0, 1) is

a constant, the hypergeometric distribution approaches the binomial distribu-
tion. Illustrate your answers graphically. Type ?rhyper in R to learn how the
simulator of random numbers for the hyper-geometric distribution works.

3. Extra credit:If X1 ∼ Bin (m, p) and X2 ∼ Bin (t−m, p) is independent of X1

and Y = X1 +X2, what is P (X1 = x|Y = n), 0 ≤ n ≤ t? Carefully interpret
your result (this is as important as the mathematical derivation you will work
out).
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4. Extra credit: Show (analytically, that is) that as t→∞, m→∞ and m
t
→ p,

where p ∈ (0, 1) is a constant, the hypergeometric distribution approaches the
binomial distribution.

Conditional distributions as sampling models: Before moving on with a careful
comparison of the sampling with replacement and the sampling without replacement
mark-recapture models, let’s think a little bit more about the process of eliciting
a probability model of how the data arises. In both formulations, we left out one
important piece of realism: even if I know that in my study area there are exactly m
marked animals from my first visit, setting the traps in the field wouldn’t certainly
guarantee that all m mice are going to be captured. Let us assume that every marked
animal in the population has a probability, say φ, of being captured, and thus a
probability 1− phi of avoiding capture. Never mind the fact that such probability is
the same for every animal, we will deal with biological heterogeneities later. Suppose
now that regardless of whether or not the animals are marked, not only all of them
have exactly the same chance φ of being trapped, but the fate of every mouse is
independent from the fate of all the other mice.

Under this setting, the process of attempting to capture all the marked animals
in the sample can be thought of as a binomial experiment X1 with a total number
of trials m and success probability φ. Likewise, attempting to capture the remaining
animals could be modeled with a binomial random variable X2 ∼ Bin(t − m,φ).
Because all mice have the same probability of being trapped, the total number of
marked mice can be modeled with a binomial random variable N defined as the sum
of X1 and X2, with total number of trials m + (t −m) = t and success probability
φ. Now, suppose that we go ahead with the trapping and capture n individuals.
Then, eliciting a probabilistic model for the number of marked animals x present in
a sample of size n amounts to ask what is the conditional probability that X1 = x
given that N = n. Note that because N = X1 +X2, if X1 = x, then conditioning on
N = n amounts, by necessity, to conditioning on X2 being equal to n− x. Therefore

P (X1 = x|N = n) = P (X1=x,N=n)
P (N=n)

= P (X1=x,X2=n−x)
P (N=n)

and from independence,

= P (X1=x)P (X2=n−x)
P (N=n)

=
(mx)φx(1−φ)m−x(t−mn−x)φn−x(1−φ)t−m−n+x

( tn)φn(1−φ)t−n

=
(mx)(t−mn−x)

( tn)
,

which is the hypergeometric probability mass function! This pmf can now be used
to make inferences about the unknown value of the total population size! Note that
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although we introduced a little bit more of realism by considering the capture proba-
bility φ, in the end, we didn’t need to specify this extra parameter as another unknown
parameter to be estimated with the sample at hand. Conditional distributions will
often help us to derive the likelihood function for various random sampling settings
that are common in ecology and in evolution.

Comparing the two sampling approaches:
Our two models of mark-recapture, the binomial and the hypergeometric models,
resulted in the same ML estimator of the total population size: t̂ = mn

x
. So, what

difference does it make to assume the first rather simple sampling model (with re-
placement) vs. the second, more realistic sampling setting (sampling without replace-
ment)? What do we gain by introducing a little more realism in our sampling model?
At first, these questions might take us aback because for a given sample, assuming
either model leads to the same estimate. Let’s try, however, to think a little more
about what does it mean to fit both models via ML.

When we fit a model using the likelihood function, we are computing a measure
of how likely it is to observe the sample at hand for a given parameter value, and an
assumed sampling model. Each hypothetical value of the unknown model parameter
has an associated value of the likelihood score. Finding the parameter value that
maximizes the likelihood function allows one to use the maximized likelihood score ˆ̀

as an evidence measure for our sampling model. This evidence comes directly from
the sample at hand. Comparing the maximized likelihood scores from two different
models then amounts to comparing the support in the data for each model. This
result is useful, because knowing which model better explains the data is the key
to better understand the biological processes generating the data. Thus, because in
science we seek to better understand and predict natural phenomena, it seems fair
to think that the process of finding the “most likely” value of our sampling model
parameter and its associated likelihood score is, as a whole, a scientifically relevant
process.

One of the most important factors that may shift the weight of the evidence
in favor of one model or the other is how well each sampling model recapitulates
the different (biological) dependencies present in the data. A better representation
of the structure of variability in the data results in statistical inferences that are
more reliable. It turns out that reliability, another desired qualification of proper
scientific inference, can be directly expressed as statistical properties of our parameter
estimates. So to answer our questions, all we need to do is to elucidate which of the
two sampling models leads to more reliable estimators of the parameter of interest
(the total population size).

How, then, do we measure the reliability of an estimator? The trick to find
out how reliable an estimator can be is to think of these not as point values, but
rather, as a realizations of the stochastic sampling process we are using as a model of
how the data arises. Consider the binomial mark-recapture sampling scheme, where
we sample with replacement. Suppose that we generate many data sets according
to such scheme, all under the same setting, i.e., assuming m individuals are initially
marked and n individuals are sampled during a second visit. In R, a large number of
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simulated samples of the number of marked animals captured in the second visit X
can be very easily simulated using the binomial random number generator. Just tell
R what the setting is (define m,n, t), and the number of simulations (say 20) and in
an instant, you can see all the realized values of t̂

n <- 20;

m <- 49;

tot <- 225; # True population size

nsims <- 20; # number of simulations

sim.samples <- rbinom(n=nsims, size=n, prob=m/tot);

t.hats <- (m*n)/sim.samples;

print(sim.samples)

print(t.hats)

And you’ll see something like this

> print(sim.samples)

[1] 6 1 7 2 5 7 3 5 5 3 2 3 4 2 2 8 6 5 6 4

> print(t.hats)

[1] 163.3333 980.0000 140.0000 490.0000 196.0000 140.0000

[7] 326.6667 196.0000 196.0000 326.6667 490.0000 326.6667

[13] 245.0000 490.0000 490.0000 122.5000 163.3333 196.0000

[19] 163.3333 245.0000

What is important here is to note that each random sample X of the number of
marked animals has an associated estimate of t. Because X varies randomly, so does
t̂. In a very real sense, our estimator ‘inherits’ its randomness from the random
sampling scheme. Suddenly, the sampling process that we designed to learn from the
natural world gets back at us with multiple answers!! What do we do as scientists?
Well, the first thing to do is to change the focus of our inquiry from ‘what is the
total population size?’ to ‘how reliable is it to adopt a particular random sampling
scheme and then use it to estimate the total population size?’. And here is where the
tools of probability and mathematical statistics become useful, because questioning
the reliability of our estimator can be phrased precisely in terms of the mean and the
variance of the resulting distribution of t̂:

1. Given that the estimator of t would change from sample to sample if I were to
repeat the experiment many times, on average how far apart would it be from
the true population size? In other words, given that the estimator t̂ can be
described with a probability distribution, how does the expected value of such
distribution compares to the true value of t?

2. What is the average departure of the estimator t̂ from t (e.g., what is the
variance of t̂)? A reliable estimator is an estimator that time after time results
in an estimate that isn’t too far apart from the true population size.
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The first question can be easily addressed using our simulation program. Just make
the number of simulations very, very large, compute the average of the resulting t̂’s
and compare it to the real value of the population size. Now, before we jump into
auto-pilot R-programming mode, note the following: the samples are being drawn
from a binomial probability distribution, and one of the possible outcomes is, of
course, 0 successes, or 0 marked animals in the sample. The probability of that event
is not negligible:

> pbinom(q=0, size=n, prob=m/tot)

[1] 0.007355344

Thus, if we do thousands of simulations, every 7000th simulation or so we would get
a 0 as an outcome. Then, computing t̂ as (mn)/x would return Inf in R. What do we
do? Well, this annoying numerical problem can be avoided altogether by thinking of
the task at hand in a slightly different way. In fact, this change of approach lead us
directly into an elegant, exact description of the long-run behavior of our estimator.
Here’s how:

Thus far, we have been concerned with the estimator of the total population
size, t̂ = (mn)/X, where X is random. Equivalently, we could be interested in cor-
rectly estimating the proportion of marked animals in the population, m/t. Dividing
both sides of the expression for t̂ by t̂ and multiplying it by X we get that such
proportion is

p̂ =
m

t̂
=
X

n
.

A direct answer to the questions 1 and 2 above, for each of our sampling settings
(with and without replacement) can now be given, when the estimator of interest is
not that for the total population size, but the estimator p̂ of the proportion of marked
animals in the population:

Question 1: On average, how would our estimator compare to the
true proportion of marked animals under repeated hypothetical sampling?
For either sampling scheme, the answer is the same, and is as follows: First note that
X, the number of marked animals in the sample, can be expressed as a sum of n
Bernoulli trials, X1, X2, . . . , Xn with success probability m/t:

X =
n∑
i=1

Xi

The average, or expected value of these Bernoulli trials is simply computed as:
E[Xi] = (1)m

t
+ (0)

(
1− m

t

)
= m

t
. The variance of these trials is in turn given
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by 2:
Var[Xi] = (1− E[Xi])

2m
t

+ (0− E[Xi])
2
(
1− m

t

)
=

(
1− m

t

)2 m
t

+
(
0− m

t

)2 (
1− m

t

)
= m

t

(
1− m

t

)
.

Regardless of whether these trials are independent (sampling with replacement) or
not (sampling without replacement), the following is true:

E[p̂] = E
[
X
n

]
= E

[∑n
i=1Xi
n

]
= 1

n

∑n
i=1 E[Xi] = 1

n
nE[Xi] = m

t
.

(1)

Wow! That is quite something! Do you see why the excitement? This result, although
simple, is very profound because it says that if we are confronted with the same
problem over and over, and if we were to estimate the proportion of marked animals
in the population, our estimates would be on average identical to the true proportion
of marked animals in the population! That’s quite a re-assurance for our scientific
inquiry, isn’t it?

Now, before we get too carried away, there is a ‘little’ detail that we need to
deal with. Although on average the estimates are identical to the true proportion, we
don’t know (yet) anything about the variability of such estimates. It may very well
be that these estimates, despite being on average identical to the truth, are highly
variable. If this is the scenario at hand, then for any given sample our estimate may
very well be far away from the true proportion (either to the left or to the right of
it). On average, however, these estimates would match the true proportion. This
scenario isn’t very re-assuring anymore, is it? Therefore, before we can say anything
regarding the reliability of our estimates, it seems prudent to elucidate what the
average departure of our estimator from its distributional mean is. This is what
question 2 above is about.

Before answering this question note the following: because our estimator p̂ =
X/n inherits its randomness from the sampling scheme that we adopt, it is this sam-
pling scheme what directly determines the probabilistic properties of our estimator.
Thus, a change in the sampling scheme can result in a change in the statistical prop-
erties of our estimator, like its variability. If the variance of our estimator differs
between our two sampling schemes, one being smaller than the other one, then intu-
itively it makes sense to choose the estimator for which the variance is the smallest. A
small variance of our estimator means that, if we were to repeat the experiment over
an over, under the same circumstances, all of our estimates of the true proportion
of marked animals would be close to each other. Not only that, but equation 1 tells
us that these estimates will be on average right smack on the money! Later on we

2By the way, now is a good time to check that you are familiar with the expected value and the
variance of a probability distribution, and elementary manipulations of these, as described in the
Appendix!
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will explore these issues all within the framework of maximum likelihood estimation
theory. For now, let’s have some fun with some simple calculations.

Question 2: What is the average departure of our estimator from the
true proportion of marked animals in the population? A straight forward
answer to this question is found when we compute the variance of p̂, which is, by
definition, the average squared departure of the estimator from its mean. Expressing
X as the sum of n Bernoulli trials with success probability m/t, as above, we get that

Var[p̂] = Var
[
X
n

]
= 1

n2 Var [
∑n

i=1Xi]

= 1
n2

∑n
i=1

∑n
j=1 Cov[Xi, Xj]

= 1
n2

(∑n
i=1 VarXi + 2

∑
1≤i<j≤n Cov[Xi, Xj]

)
.

(2)

Note that in the case of sampling with replacement, the Xi’s are not only identical,
but necessarily independent. Hence, the covariances for all i 6= j in the last line of
equation 2 are null, and we get that

Var[p̂] =
1

n2

n∑
i=1

VarXi =
m
t

(
1− m

t

)
n

, which converges to 0 asn→∞.

Now, what happens in the sampling without replacement case? Then, the Xi trials are
no longer independent, because removing one marked individual obviously affects the
number of remaining marked individuals. As a consequence, the remaining proportion
of marked animals also changes. Note however that, removing one individual, which
ever individual we pick, would result in exactly the same change in the proportion of
marked animals. Put in another way, the Xi’s are interchangeable. Thus, for every
i 6= j, the Cov[Xi, Xj] should be same. Let then, name Cov[Xi, Xj] for all i 6= j as
τ . Before substituting τ into equation 2, note that in the sum

∑
1≤i<j≤n Cov[Xi, Xj]

there are a total of
(
n
2

)
summands (convince yourself by using n = 4 and writing the

double sum in the second line of equation 2 in its entirety!), and hence the last line
of equation 2 becomes

Var[p̂] =
1

n2

(
n∑
i=1

VarXi + n(n− 1)τ

)
.

Let i = 1 and j = 2, for instance. Then

τ = Cov[X1, X2] = E[X1X2]− E[X1]E[X2]

=
∑1

x1=0

∑1
x2=0 x1x2P (X1 = x1, X2 = x2)− m

t
m
t

= (1)(1)P (X1 = 1, X2 = 1)− m
t
m
t

= P (X2 = 1|X1 = 1)P (X1 = 1)− m
t
m
t

= m−1
t−1

m
t
− m

t
m
t
.
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Plugging this expression for τ back in our variance calculation above yields (after a
little algebraic manipulation -go ahead and try it-):

Var[p̂] =
m
t

(
1− m

t

) (
t−n
t−1

)
n

,

which is always smaller than
m
t (1−m

t )
n

, the variance of p̂ under sampling with re-
placement! Hence, building a more realistic sampling model, one that captures the
dependencies among the samples, results in an estimator of the fraction of marked
animals in the sample that also takes into account these dependencies and, as a result,
has a smaller variance! Even without incorporating extra parameters, a better model
of the sampling structure results in a much more reliable (i.e., less variable) estimator
of our fraction of marked animals in the sample!
Therefore, even though the mathematical form of the estimator is the same in our
two mice sampling models, it is the sampling scheme (with or without replacement)
what ultimately dictates a crucial difference in the result of our reliability test. So
which estimator do we go with? With the estimator with the smaller variability (i.e.
greater reliability). The take home message of this exercise is that one should not
be fooled into thinking that the ultimate goal of our statistical analysis is parameter
estimation per se. Rather, our parameter estimates aren’t but the by-product of a
careful inferential process, and that we should always inquire about the reliability of
the very methods we use to learn from nature.
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1.1.2 A trap efficiency model

Fishing weirs are ancient forms of fish traps. Their use has been recorded in many dif-
ferent cultures by archaeologists and historians. Native Americans for instance, used
these traps to catch migrating salmonids. Nowadays, biologists use funnel-shapped
trap weirs to try to estimate the total number of Sokeye salmons out-migrating in a
river. To do that, they set a trap at a given point in the river and catch, mark and
release a given number of fish. Call that number m, for ‘marked’. Down-river, they
set a second trap and make a second catch. Now suppose that out of the total number
of fish marked during the first sampling, x are caught in that second catch. What is
the efficiency of the trap? If t denotes the total number of fish out-migrating at the
time of the first sample, then we can think of measuring trap efficiency by computing
the ratio of the number of fish caught in the first sample to the total number of fish,
m/t. However another way of assessing trap efficiency would be to calculate the ratio
x/m, that is, the number of marked fish caught in the second trap over the total
number of fish caught in the first trap. Yet, in this setting, t, the total population
size is an unknown constant. Can we find an estimate of t such that our assessment of
trap efficiency does not differ between the two ways of calculating it described above?
In other words, can we find t̂ such that m/t = x/m? Solving for t in that equality
we see that t̂ = m2

x
. In what follows, we’ll see that m2

x
is in fact identical to the ML

estimate of the total population size that results from a probabilistic description of
the trapping setting described above.

Let M be a random variable that counts the number of fish caught in the first
sample of the fishing experiment described above and let X be the random variable
that counts the number of marked fish caught in the second sample. If the probability
of capturing a given fish is an unknown constant p, we could assume that:

M ∼ Bin (t, p)

and that
(X|M = m) ∼ Bin (m, p) .

By the law of conditional probabilities, the joint distribution of M and X is:

P (X = x,M = m) = P (X = x|M = m)P (M = m)

=
(
m
x

)
px(1− p)m−x

(
t
m

)
pm(1− p)t−m

= `(p, t).

The ML estimates of p and t are the values that jointly maximize `(p, t). Four
questions about those estimates are in order:

1. Are these estimates biased?

2. What kind of distribution do they have?

3. How small is the variance of the distribution of the ML estimates?
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4. Does the estimates get closer and closer to the true values as the sample size
tends to infinity?

The answers to these questions, reviewed in detail later in the course, are summarized
as follows:

1. As sample size tends to infinity, the ML estimates are unbiased.

2. As sample size tends to infinity, the variance of the ML estimates is the smallest
possible. Later we’ll see the Cramer-Rao inequality which gives a lower bound
on the variance of any unbiased estimate. An unbiased estimate whose vari-
ance achieves this lower bound is said to be efficient. Since the asymptotic
variance of a ML estimate is equal to the lower bound, these estimates are said
to be asymptotically efficient. For finite sample sizes, ML estimates may not be
efficient (Rice 1995).

3. The distribution of the ML estimates is assymptotically normal and

4. the estimates are statistically consistent.

To calculate the ML estimates, we first compute the partial derivative of ln `(p, t)
with respect to p, set it equal to 0 and solve for p.

∂ln`(p,t)
∂p

= x
p
− m−x

1−p + m
p
− t−m

1−p = 0

= (m+ x)1
p
− (t− x) 1

1−p = 0,

and hence

(m+ x)
1

p
= (t− x)

1

1− p
⇒ p̂ =

m+ x

m+ t
.

With the ML estimate of p expressed in terms of the other parameter, we can substi-
tute it in the log-likelihood function and obtain an expression that is now a function
of just one unknown parameter, t:

`(p̂, t) =

(
t

m

)
p̂m(1− p̂)t−m

(
m

x

)
p̂x(1− p̂)m−x.

Now we can attempt maximizing the log-likelihood function with respect to the pa-
rameter t. However, note that just as in the hypergeometric model, a complicated
combinatorial term is involved in the derivative of the likelihood function with respect
to the parameter of interest t. So, even before substituting p by p̂, in order to avoid
the hassle of computing such derivative we do the integer trick used in the hyperge-
ometric mark-recapture model. After some algebra, we get that the ML estimate of
t is:

t̂ =
m

p
.
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Homework: Your task is to show that t̂ = m
p

is the integer ML estimate of t. Such
estimate is the value of t that satisfies

`(p̂, t)

`(p̂, t− 1)
= 1.

Now that we have the integer ML estimate of t as a function of p, we substitute p by
p̂ = m+x

t+m
and solving for t we get that

t̂ =
m.m

x
,

which matches our initial intuition!

1.1.3 Spatial and temporal randomness

Key ecological processes, such as competition, predation, survival and reproduction
occur randomly along the axis of time and space. Accounting for randomness in the
spatial component of such process has been key to achieve some understanding of
their functioning (Pielou, 1969). In what follows, we derive two models: a simple
spatial model of counts of individuals in a given number of sample quadrats and a
temporal model to account for the outcome of a fishing experiment.

Spatial model:
Suppose for instance, that we want to make inferences about the mean number of
lodgepole pines per unit of area in a forest, and we sample 100 quadrats of size a
selected at random within an extense territory of size A. Since each time we sample a
quadrat we can potentially count a different number of trees, we will define “X = #
of plants in a randomly located quadrat” as our random variable of interest. Assume
further that the location of each quadrat is determined independently form each other.
Let n be the total number of plants in the study region. Then, a

A
may be taken as

the probability that any particular plant is in the sample plot and we can use again
the binomial distribution to define a model of spatial randomness, i.e.:

X ∼ Bin
(
n,
a

A

)
.

Under this model, the mean number of trees per unit area would be n
A

. As A and n
get very large such that n

A
→ λ, a constant,(

n

x

)( a
A

)x (
1− a

A

)n−x
→ e−λa(λa)x

x!
, x = 0, 1, 2, 3, . . . 3

Thus, under the assumption that p = a
A

is very small and n is very large, we can ap-
proximate the binomial distribution X defined above with a Poisson random variable

3It is a straightforward exercise to show that this is true, by taking into consideration the fact
that

lim
n→∞

(
1− b

n

)n

= e−b

for some finite number b (Go ahead and do it, but no fair peeking Wikipedia!).
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Table 1: Number of pines present in each of 100 quadrats and estimated expected
frequency of pines under the Poisson spatial model.

Data of # of pine trees/quadrat observed frequency estimated expected frequency

0 7 qP̂ (X = 0)

1 16 qP̂ (X = 1)

2 20 qP̂ (X = 2)

3 24 qP̂ (X = 3)

4 17 qP̂ (X = 4)

5 9 qP̂ (X = 5)

6 5 qP̂ (X = 6)

≥ 7 2 q
(

1−
∑6

x=0
̂P (X = x)

)

with mean λa. Suppose a field biologist actually goes out to a lodgepine forest and
counts the number of pines present in each of 100 quadrats of size a and then counts
the number of quadrats with 0, 1, 2, 3, 4, 5, 6 and ≥ 7 trees. The obtained counts are
summarized in the first two columns of table 1. Because n is potentially large with
respect to p = a/A, then the binomial model can be approximated with a Poisson
distribution. To estimate the parameter of interest λ, we first write down the joint
distribution of the data and substitute in the data to obtain the likelihood function:

P (X1 = x1, X2 = x2, . . . , Xq = xq) = e−λa(λa)x1

x1!
. . . e−λa(λa)xq

xq !

= e−λaq(λa)x1+x2+...+xq

x1!x2!...xq !

= `(λ).

As before, after doing that we maximize `(λ) by finding the point where the derivative
of ln `(t) is zero:

d ln `(t)

dλ
= −aq +

1

λ

q∑
i=1

xi = 0⇒ λ̂ =
1

aq

q∑
i=1

xi =
x̄

a
,

where x̄ is the sample mean of the number of trees per cuadrat and a is the cuadrats
area. Note that λ̂a = x̄. With the estimate of λ̂a in hand, we can readily calculate
the estimated expected frequency of observations of the value x in a sample of size
q, as shown in the third column of table 1. Later on we will see how to formally
compare the expected vs. the observed frequencies.

Temporal model:
In fisheries, it is a common task to estimate the average catch per unit of effort.
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day Total effort (hrs.) Total # of Steelheads caught

1 51.85 (t1) 2 (x1)
2 48.50 t2) 2 (x2)
3 50.20 (t3) 1(x3)
4 52.53 (t4) 1 (x4)
5 65.37 (t5) 4 (x5)
6 70.12 (t6) 5(x6)

Table 1.1.3 shows data from a fly-fishing experiment at a single site in LG River in
1988. We can extend the idea of using the Poisson distribution as a model for spatial
randomness to model the occurrences of the catches in time as a Poisson process with
a given mean per unit of time.

Exercises:

1. Your task is to find the ML estimator of the average catch per unit of effort λ̂
and compute it using the following Poisson model:

P (X = x) =
e−λt(λt)x

x!
,

where X = # of fish caught in t hours.

2. Calculate the ML estimate of λa for the Lodgepole pines example. Once you
do that, calculate the expected frequencies of the number of pines in a sample
of size q (i.e., fill in with values the third column of table 1) and graph the
observed vs. expected frequencies.

1.1.4 The likelihood function for continuous probability models

Modeling waiting times:
A fisherman is sitting in his boat at dawn, in the middle of a calm, small lake just
counting the number of fish caught during a period of time t (gosh, I wish I was in this
fisherman’s boots and t ≈ 12 hours!!). From our spatial and temporal randomness
lecture, we know that we could model the number of fish caught during a period of
time t as a Poisson process. That is, we let

P (X(t) = x) =
e−λt(λt)x

x!
, x = 0, 1, 2, . . .

The parameter λ is the average number of captures per unit of time. Now, let S be
the (random) waiting time until catching the first fish. S is a random variable defined
in the positive real line. Let s denote a waiting time value (a positive, real number)
and consider the following two events: [X(s) = 0] and [S > s]. The first event says
that the number of fish caught after waiting a period of time s is equal to 0 and the
second event says that the waiting time until catching the first fish is strictly greater
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than s. These two events are in fact the same event, so their probability has to be
the same. We therefore have that

P (X(s) = 0) = P (S > s),

which implies that

P (X(s) > 0) = 1− P (X(s) = 0) = P (S ≤ s).

Using our Poisson model for X(s), we then have that

F (s) = P (S ≤ s) = 1− P (X(s) = 0) = 1− e−λs, (0 < s <∞).

By definition (see Appendix), F (s) is the cumulative distribution function (cdf) of the
random variable s. When plotted, it is easy to see that the monotonous, continuous
and increasing function F (s) is telling us that if the fisherman waits long enough, he
is almost certain to catch a fish. Using the cdf we can answer many questions. For
instance, for two positive values a and b such that a < b we could use the cdf and the
additivity property of integrals to find out what’s the value of P (a < S ≤ b):

P (a < S ≤ b) = P (S ≤ b)− P (S ≤ a)
= F (b)− F (a)
= 1− e−λb − (1− e−λa)
= e−λa − e−λb.

Let ∆s represent a small positive change in a realized waiting time, so that (s, s+∆s)
is a small time interval. Then, according to the above calculation we have that

P (s < S ≤ s+ ∆s) = F (s+ ∆s)− F (s)

and dividing both sides of the equation by the length of this small interval we get a
measure of the density of probability over the interval (s, s+ ∆s).

P (s < S ≤ s+ ∆s)

∆s
=
F (s+ ∆s)− F (s)

∆s
.

As ∆s→ 0, the ratio above converges to the derivative of F (s), denoted by fS(s):

lim
∆s→0

P (s < S ≤ s+ ∆s)

∆s
=
dF (s)

ds
= fS(s) = λe−λs.

The derivative of F (s), fS(s) is the associated probability distribution function of the
random variable S. It is the continuous distribution’s equivalent to the probability
mass function (see Appendix). Thus, by analogy with the discrete case this is the
mathematical object that will be used to define the likelihood function, needed to
estimate the parameter λ. This is accomplished as follows:
Suppose that the fisherman in question is on vacations and records the time until
catching the first fish in each one of the n fishing occasions he has during his free
days (if he is lucky, n is a big number!). At the end of the n sampling (fishing)
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occasions he has the following list of waiting times until first capture: s1, s2, . . . , sn
and wishes to use this list to estimate his average number of captures per unit of
time. In the discrete case, we could actually plug in the data in the probability mass
function and evaluated it for different parameter values to plot the likelihood curve.
Here however, note that the probability of a particular observation is 0, since the
area under the curve along an interval of length 0 is 0. How do we write down the
likelihood function for this continuous case, then? Well, suppose that the precision
of the time measuring instrument is given by a small, positive number ε. What we
could do is to calculate what is known as the exact likelihood function for continous
data sets, which for a single observation s1 is the probability measure over a small
interval surrounding the observation. If you think of it, considering that many times
our data-measuring instruments can be thought of as bounded with a precision ε, if
the probability of an observation (a point value) is zero, then it does makes sense
to calculate the likelihood as the process’ probability measure evaluated at the small
interval (observation− ε

2
, observation + ε

2
). That is,

P
(
s1 −

ε

2
< S ≤ s1 +

ε

2

)
= F

(
s1 +

ε

2

)
− F

(
s1 −

ε

2

)
.

One of the most important calculus theorems, the mean-value theorem allows us to
approximate this exact probability calculation, provided ε is small enough with the
derivative of F (s), the probability density function as follows:

P
(
s1 −

ε

2
< S ≤ s1 +

ε

2

)
= F

(
s1 +

ε

2

)
− F

(
s1 −

ε

2

)
≈ εf(s1).

In various mathematical statistical books like Rice (1995) the likelihood function for
continuous models is defined as the pdf evaluated at the observations, period. The
above argument shows that such definition is in fact an approximation to the exact
likelihood function defined in terms of the cumulative distribution function. And
there are precise cases where this approximation does not work and then, this pdf
version of the likelihood function has serious mathematical problems (in particular,
it may have mathematical singularities). In those cases however, the exact likelihood
definition does not have problems, because being defined as a difference of probabili-
ties (evaluations of the cdf function) it is always a number bounded between 0 and 1.
This is a very important issue often ignored while doing maximum likelihood, to the
extent that some papers have stated that the method of maximum likelihood does
not work when in fact, it’s the approximation to the exact likelihood function the one
that does not work (a detailed account of this topic can be found in Montoya et al
2009).
For a discrete probability model, likelihood function for the set of observations is
expressed as the joint probability of the observations, which from the assumption of
independent samples can be written as the product of the individual probabilities for
each observation. By the same token, the likelihood for the set of recorded waiting
times until the first capture is written as the joint probability of the observations ± ε

2
,

which from the independence assumption becomes the product of the probabilities of
each one of these intervals:

P
(
s1 −

ε

2
< S1 ≤ s1 +

ε

2
, s2 −

ε

2
< S2 ≤ s2 +

ε

2
, . . . , sn −

ε

2
< Sn ≤ sn +

ε

2

)
=
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P
(
s1 −

ε

2
< S1 ≤ s1 +

ε

2

)
P
(
s2 −

ε

2
< S2 ≤ s2 +

ε

2

)
. . . P

(
sn −

ε

2
< Sn ≤ sn +

ε

2

)
.

Using the mean value theorem, this last product can be approximated with

fS(s1)fS(s2) . . . fS(sn)εn.

Therefore, the likelihood function used to estimate the unknown parameter λ is writ-
ten as

L(λ) = fS(s1)fS(s2) . . . fS(sn)εn = εn
(
λe−λs1

) (
λe−λs2

)
. . .
(
λe−λsn

)
.

The ML estimates are then found by maximizing this last expression in terms of
the parameter λ. Since ε does not depend on the parameter of interest λ, when we
compute the log-likelihood and then maximize it, the quantity εn does not play a role
in the estimation process and hence we may write

L(λ) ∝ fS(s1)fS(s2) . . . fS(sn).

Note that this approximation only works when the precision of the measuring instru-
ment does not depend in any way on the parameter of interest (here the parameter
λ, which stands for to the mean number of captures per unit of time). It is pre-
cisely when a dependence between ε and the parameter of interest exists that this
mean value theorem approximation breaks down. (In the context of this exponential
model, such dependence could occur if the precision of the instrument were to decay
a little bit each time an event is recorded. Then, if the events occur at a fast rate,
the precision of the instrument decays quickly). In this case, the correct approach
is to calculate the exact likelihood function via the cdf exact likelihood. This is a
very important problem often obviated in statistical analyses. Now, the log-likelihood
function is written as

lnL(λ) ∝ ln (λn exp−λ
∑n

i=1 si)

= nlnλ− λ
∑n

i=1 si,

which allows us to calculate the maximum likelihood estimate of λ after taking the
first derivative and set it equal to 0:

dln `(λ)
dλ

= n
λ
−
∑n

i=1 si = 0

⇒ λ̂ = n∑n
i=1 si

= 1
s̄
.

In other words, the ML estimate of the capture rate is the inverse of the average
waiting time until the first capture computed from the sample, s̄ = 1

n

∑n
i=1 si.

The preceding approach to model the waiting times until the 1st capture can
be readily extended to the case where we are interested in modeling the waiting times
until the kth capture: Let X(t) be the random variable that counts the number of fish
trapped during t time units. Let Sk be the continuous random variable measuring
the waiting time until trapping the kth fish. Again, let’s consider the following two
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events, [X(s) < k] and [Sk > s]. The first event says that the number of fish caught
up to time s is strictly less than k and the second event says that the waiting time
until the kth capture is strictly greater than s. Thus, these two events are telling the
same story, and hence, have the same probability, i.e.,

P (X(s) < k) = P (Sk > s) and therefore

1− P (X(s) < k) = P (Sk ≤ s) = Fk(s), which is the cdf of the random variableSk.

Here again, we can use the Poisson random variable as a probabilistic model for X(t),
that is

P (X(s) = x) =
e−λs(λs)x

x!
x = 0, 1, 2, 3, . . .

By adopting the Poisson model, we can readily write an expression for P (X(s) < k)
and hence solve for the the cdf of Sk:

Fk(s) = P (Sk ≤ s) = 1− P (X(s) < k) = 1−
k−1∑
x=0

e−(λs)(λs)x

x!
.

Just as with the exponential model, we can find the probability density function of
the waiting time until capturing the kth by taking the derivative of Fk(s) with respect
to s:

fS(s) = d
ds

[
1−

∑k−1
x=0

e−(λs)(λs)x

x!

]
= −

∑k−1
x=0

d
ds

[
e−(λs)(λs)x

x!

]
= −

∑k−1
x=0

[
−λe−(λs)(λs)x

x!
+ e−(λs)xsx−1λx

x!

]
=

∑k−1
x=0

[
λe−(λs)(λs)x

x!
− e−(λs)xsx−1λx

x!

]
=

∑k−1
x=0

[
λx+1e−(λs)sx

x!

]
−
∑k−1

x=1
λxsx−1e−λs

(x−1)!

Now, in the two summation terms above, we can factor out the term e−λs and explic-
itly write down the sums as follows:

fk(s) = e−λs


λ+ λ2s+ λ3s2

2!
+ . . .+ λk−1sk−2

(k−2)!
+ λksk−1

(k−1)!

−λ− λ2s− λ3s2

2!
− . . .− λk−1sk−2

(k−2)!

Note that all the terms of the first sum are canceled with one of the terms in the
second sum (this is an example of what in mathematics is known as a telescoping
sum), except for the last term. Therefore, the above equation reduces to

fk(s) =
e−λsλksk−1

(k − 1)!
, 0 < s <∞.
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The above expression corresponds to the probability density function of a gamma
distribution. Thus, the waiting time until the kth capture can be modeled with a
gamma distribution. In particular, if k = 1, the waiting time until the first capture is
exponentially distributed. Now consider the following scenario: starting at time t = 0
we start a clock and measure the time until the first fish capture. This waiting time
is exponentially distributed. Once the first fish is caught, we re-start the clock and
measure the time until the next capture. That time is also exponentially distributed
(the reason why this is so is because of the “memory-less” property of the exponential
distribution). Iterating this argument, it follows that if the events of interest are the
fish captures, then the inter-event times for this Poisson process can be modeled with
an exponential distribution. The preceding derivation of the gamma distribution
shows that the sum of k (independent) exponential distributions follows the gamma
distribution.
The use of the gamma distribution is certainly not constrained to modeling waiting
times until the kth event. In particular, the value of k can be different than an integer.
In that case, the factorial function (k − 1)! is not defined and the gamma function
Γ(.) is used instead. A note about the gamma function is in order. This function
can be seen as the continuous version of the factorial function, and indeed, if k is an
integer,

(k − 1)! = Γ(k).

When k is not an integer, yet still a number in (0,∞), then the gamma function is
given by

Γ(k) =

∫ ∞
0

uk−1e−udu. (3)

To see why this is so, consider the above expression for fk(s), the probability density
function. Because it is a probability density function, it has to integrate to 1 over the
interval of the values allowed for s which is (0,∞), that is∫ ∞

0

fk(s)ds =

∫ ∞
0

e−λsλksk−1

(k − 1)!
ds = 1

Hence, ∫ ∞
0

e−λssk−1ds =
(k − 1)!

λk
. (4)

The integral above can be conveniently manipulated to obtain eq. (4) by making a
change of variables. Let u = λs. Then, s = 1

λ
u and ds = 1

λ
du and the integral can be

re-written as: ∫∞
0
e−λssk−1ds =

∫∞
0
e−u

(
1
λ
u
)k−1 ( 1

λ

)
du

= 1
λk

∫∞
0
uk−1e−udu,

and it follows that
1

λk

∫ ∞
0

uk−1e−udu =
(k − 1)!

λk
,
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which implies that ∫ ∞
0

uk−1e−udu = (k − 1)!.

The mathematician Euler used the above equation to define that continuous version
of the factorial function and called it the Gamma function:∫ ∞

0

uk−1e−udu = (k − 1)! = Γ(k)

Fortunately, we can readily see how this function of k looks like by using R, so here’s
the code. Before you jump in the code, note that I show here how you can include
greek letter labels in your plots.

### Gamma function plot:

ks <- seq(from=0.05,to=5.2, by=0.001)

gamma.ftn <- gamma(ks)

yylab <- expression(Gamma*"(k)")

mmain <- "Plotting the gamma function"

plot(ks,gamma.ftn,type="l",col="red",xlab="values of k",ylab=yylab,main=mmain)

points(c(0.5,1.0:5.0),gamma(c(0.5,1.0:5.0)), pch=16)

The plot is shown in figure 2. One last useful feature of the gamma function is that
it can be used to compute the combinatorial terms that occur so often when working
with discrete probability distributions. Using the fact that

Γ(k + 1) = kΓ(k),

and letting a and b be two positive integers, we may write(
a

b

)
=
a(a− 1)(a− 2) . . . (a− b+ 1)

b!
=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
. (5)

In the mark-recapture examples we mentioned that calculating functions such as
(
a
b

)
using R involve multiplying many numbers, something that can be computationally
expensive. A better (most efficient computationally) way to compute such functions
is to take the logarithm of the expression and then exponentiate it, because then
all the products become sums, a far easier task for the computer. For example, to
compute

(
a
b

)
we first take the log, which yields

ln

[(
a

b

)]
= ln Γ(a+ 1)− ln Γ(b+ 1)− ln (a− b+ 1),

and then exponentiate the result. In R we would type

a <- 30

b <- 5

ln.achooseb <- lgamma(a+1) -lgamma(b+1) - lgamma(a-b+1)

achooseb <- exp(ln.achooseb)

print(achooseb)
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Figure 2: Plot of the gamma function Γ(k), where 0 < k < ∞. Solid dots indicate
the values of the gamma function for the integers 1, 2, 3, . . . Also shown with a solid
dot is the value of the gamma function for k = 1

2
, which is

√
π ≈ 1.772454.

With the gamma function in our toolbox, we may now define the general formulation
of the gamma distribution’s pdf:

f(s) =
λk

Γ(k)
sk−1e−λs, where

0 < s < ∞, 0 < λ < ∞ and 0 < k < ∞. This general version of the gamma
distribution is extremely versatile, as shown in figure 3. Here is the code for that
plot:

svec <- seq(from=0.35,to=40.0, by=0.01)

lambda <- 0.5 # a mean of 0.5 fish per hour

pdfk0.5 <- dgamma(x=svec,shape=0.50,scale=(1/lambda))

svec.exp <- seq(from=0.0,to=40.0, by=0.01)

pdfk1 <- dgamma(x=svec.exp,shape=1,scale=(1/lambda))

pdfk2.5 <- dgamma(x=svec,shape=2.5,scale=(1/lambda))

pdfk15 <- dgamma(x=svec,shape=10,scale=(1/lambda))

plot(svec,pdfk0.5, xlab="s",type="l", ylab="Prob. density")

text(x=2.3,y=0.02,"k=0.5")

points(svec.exp,pdfk1, type="l")
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text(x=5.5,y=0.065,"k=1")

text(x=3.0,y=0.5025,expression(lambda*"=0.5"))

points(svec,pdfk2.5, type="l")

text(x=8.0,y=0.1,"k=2.5")

points(svec,pdfk15, type="l")

text(x=23,y=0.065,"k=10")

points(0.0,0.5,pch=16,cex=0.75)

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

s

P
ro

b.
 d

en
si

ty

k=0.5

k=1

λ=0.5

k=2.5
k=10

Figure 3: Plot of the probability density function of the gamma distribution for
various values of k, the shape parameter.

A couple of points about figure 3 are worth mentioning. First, when k = 1, f(s) =
λe−λs, and so the value of the intercept is f(0) = λe−λ0 = λ. Second, when k is
very large, the gamma distribution approaches the normal distribution, and we get a
hint at this fact from figure 3. Besides the exponential distribution, another notable
particular case of the gamma distribution is the chi-square distribution with r degrees
of freedom, which is obtained by making λ = 1

2
and k = r

2
in the above pdf. Formally,

if S is chi-square distributed with r degrees of freedom, we write

S ∼ χ2
r.

Another interesting fact of the gamma distribution is the following: if k = 1, 2, 3, . . .
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and if S ∼ gamma (α, k) then,

P (S ≤ s) =
∫ s

0
λk

Γ(k)
sk−1e−λsds

= 1−
∑k−1

x=0
e−sλ(λs)

x!

=
∑∞

x=k
e−sλ(λs)

x!
, which is the right tail of the initial Poisson model.

Thus, the right tail (i.e. from k to∞) of our initial probabilistic model of the number
of fish caught during a period of time s is in fact identical to the left tail of the resulting
gamma model of the waiting time until catching the kth fish.
Since the publication of a seminal paper by Fisher, Corbet and Williams in 1943 (J.
of Animal Ecology, 12:42), the gamma distribution has played a key role in modeling
heterogeneity in ecology. In 1969, the statistical ecologist Evelyn Christine Pielou
laid out in her book entitled “Introduction to mathematical biology” some of the
fundamental concepts and ideas along the formal statistical framework to model het-
erogeneity in ecology. Of those ideas, some of the most influential come from the
spatial and temporal models for randomness. The Poisson model of animal abun-
dance explained above is in fact, one of these influential models. One of her models
for heterogeneity is based on the use of the gamma distribution. Explaining and
illustrating the details of this model are the contents of the next section.

1.1.5 Heterogeneity in ecology: a spatial model (Pielou, 1969)

Recall our Poisson spatial model of animal or plant abundances, where it is assumed
that if all spatial units available to them were identical, then their distribution pat-
tern would be homogeneous. Then, the total number of individuals appearing in a
randomly located quadrat of size s can be modeled with a Poisson random variable
X(s) with mean λs. That is,

P (X(s) = x) =
e−λs(λs)x

x!
, x = 0, 1, 2, 3, . . .

Now, suppose that habitable units are dissimilar among them. The dissimilarities
between these spatial units could arise simply because some of these units provide
more favorable environments than others. As a consequence, the mean number of
individuals per unit area λ may change dramatically from one spatial unit to the
other. Thus, accounting for spatial heterogeneity while modeling animal or plant
abundances, amounts to specifying a quantitative framework for these changes in λ.
A first, naive approach would be to try to estimate as many values of λ as habit-
able units are available for sampling. Such scheme however can easily lend itself to
a case where we have more parameters than data available for estimation. Instead,
we consider a probabilistic mechanism modeling the patterns of variation of the mean
number of individuals per unit area. Such task involves specifying a probability dis-
tribution for the mean number of individuals per unit area. To be consistent with our
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previous notation, we let Λ (capital λ) denote the random variable modeling the val-
ues of the mean number of individuals per unit area. Based on biological grounds, it
is difficult to justify the use of one particular probability distribution in this case. The
only thing we know is that such random variable should take on positive, real values.
When confronted with such problem, Pielou (1969) proposed using the gamma dis-
tribution (also known as Pearson type III distribution). The reason for choosing this
distribution, she wrote, “is that whatever λ’s true distribution it is likely that some
type III curve can be found to approximate it closely”. Indeed, as it is shown in figure
3, the gamma distribution can adopt many different shapes. The argument brought
forth by Pielou had been used before by Fisher, Corbet and Williams’ 1943 paper.
Such modeling argument seems at first a somewhat phenomenological approach be-
cause we try to match a pattern in nature (the pattern of variation of the mean
number of individuals per unit area) based on a particular mathematical model’s
shape. Whenever possible, the modeling efforts should instead be directed towards
the formulation of a probabilistic model starting from first biological principles. This
second approach focuses on modeling the (biological) processes that generate varia-
tion, not on the patterns. Accordingly, in our example such approach would consist of
modeling the variability in the mean number of individuals per unit area as a result of
a hypothetical biological mechanism that generates heterogeneity in the habitability
of the spatial units. Such mechanisms could be very diverse and one must decide be-
fore hand which alternatives are of more interest, given the system, data and nature
of the problem. If however, one can think of a myriad of biological mechanisms (or
interactions between them) that may generate heterogeneity in habitability, then the
approach taken by Pielou is a nice compromise between getting a somewhat realistic
representation of the patterns of variability in λ and model simplicity.
Let the gamma probability distribution function (pdf) of Λ be

gΛ(λ) =
αk

Γ(k)
λk−1e−αλ, 0 < λ <∞.

If dλ denotes a small (positive) change in the value of λ, then the probability of
picking a value of the mean number of individuals per unit area between λ and λ+dλ
is given by

P (λ < Λ ≤ λ+ dλ) ≈ gΛ(λ)dλ.

For a particular habitable unit, once we draw a value of λ at random from our gamma
model above, the number of individuals in a quadrat can be modeled with a Poisson
distribution. Mathematically, this is expressed by writing the conditional distribution
of X(s) given Λ = λ as a Poisson distributed random variable,i.e.

P (X(s) = x|Λ = λ) = f(x|λ) =
e−λs(λs)x

x!
.

However, given a data set like the Lodgepole pines quadrat samples, the way to con-
nect our probabilistic model with the data is by means of the marginal, unconditional
distribution of X(s). To find it, we average (X(s) = x|Λ = λ) over all the possible
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values that λ can take on. To write down this average, we use the definition of the ex-
pected value of a function of a random variable (see appendix), which is the following
integral:

P (X(s) = x) = f(x) =
∫∞

0
f(x|λ)g(λ)dλ

= Eg [f(x|λ)] .

Thus, the integral above says that in order to find the probabilistic law of the number
X(s) of individuals found in a sample quadrat that takes into account the heterogene-
ity in λ, we have to average each of the Poisson probabilities over all the λ values. The
average, or expectation, is taken with respect to the distribution g(λ) of the mean
number of individuals per unit area (This is why we write Eg[. . .]). The integral above
is readily solved, by considering eq(4) re-written using the gamma function. Let κ
and β be two positive constants. Then,∫ ∞

0

xκ−1e−
x
β dx = Γ(κ)βκ,

which allows us to solve the integral directly as follows:

P (X(s) = x) =
∫∞

0
f(x|λ)g(λ)dλ

=
∫∞

0
e−λs(λs)x

x!
αk

Γ(k)
λk−1e−αλdλ

= αksx

Γ(k)x!

∫∞
0
e−λ(α+s)λx+k−1dλ

= αksx

Γ(k)x!
Γ(x+ k)

(
1

α+s

)x+k

Γ(x+k)
Γ(k)x!

(
s

s+α

)x ( α
s+α

)k
, x = 0, 1, 2, 3, . . .

(6)

Note that (see eq. (5))

Γ(x+k)
Γ(k)x!

= (x+k−1)Γ(x+k−1)
Γ(k)x!

= (x+k−1)(x+k−2)Γ(x+k−2)
Γ(k)x!

= (x+k−1)(x+k−2)Γ(x+k−2)...kΓ(k)
Γ(k)x!

= (x+k−1)((x+k−1)−1)((x+k−1)−2)...((x+k−1)−(x−1))
x!

= (x+k−1)((x+k−1)−1)((x+k−1)−2)...((x+k−1)−x+1)((x+k−1)−x)!
x!((x+k−1)−x)!

=
(
k+x−1
x

)
,

and therefore

P (X(s) = x) =

(
k + x− 1

x

)(
s

s+ α

)x(
α

s+ α

)k
, x = 0, 1, 2, 3, . . . (7)
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Expression (7) is the probability mass function of the Negative Binomial distribu-
tion. The parameters of the Negative binomial distribution are the over-dispersion
parameter k and the fraction

p =
α

s+ α
= 1− q,

where q = s/(s+ α). Formally we write

X(s) ∼ NegBin

(
k, p =

α

s+ α

)
, and 0 < p < 1.

The properties of the Negative Binomial distribution of X(s) are determined by the
values of α and k, which are the two parameters of the gamma distribution used to
model heterogeneity in the values of λ. To see why, consider first the expressions for
the mean and the variance of the gamma distribution Λ, which are:

E[Λ] =
k

α
and Var[Λ] =

k

α2
. (8)

Now, let’s take a look at the mean and variance of the Negative Binomial distribution:

E[X(s)] =
kq

p
=

(
k

α

)
s = E[Λ]s, and (9)

Var[X(s)] =
kq

p2
=
ks(s+ α)

α2
=

(
k

α2

)
s2 +

(
k

α

)
s = Var[Λ]s2 + E[Λ]s. (10)

From equations (8), (9) and (10) we may conclude the following:

1. In the Negative Bionomial distribution, the variance is greater than the mean.
The expression for the variance of the Negative Binomial distribution is com-
posed of two terms. The first one, ks2

α2 , is positive. The second one is identical
to the expression for the mean eq. (9). Thus, the variance of the Negative
Binomial distribution is equal to the mean plus an extra, positive quantity. If
this term is null, then the expression for the variance eq. (10) is identical to the
expression for the mean eq. (9). When this term is not null and the variance
is greater than the mean, we say that the counts modeled are over-dispersed
(In general, when dealing with random variables in the positive integers, in any
instance were the variance of the process of interest is bigger than the mean it
is said that the process is overdispersed).

2. The amount of over-dispersion is given by the size of the term ks2

α2 which is in fact
s2 times the variance of the gamma distribution used to model heterogeneity
in the values of λ, k

α2 . As the variance of this gamma distribution converges to
0, the amount of heterogeneity in the values of λ decreases, which results in a
decrease in the over-dispersion of the counts. In the limit, a variance of 0 in the
gamma distribution is equivalent to assume that there is no heterogeneity and
thus, that the Poisson model with a fixed value of λ can be used to model the
counts X(s).
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3. As k and α grow large so that k/α converges to a finite constant, k/α2 converges
to 0 and the Negative Binomial distribution converges to a Poisson distribution.
In fact, it can be easily shown that as k → ∞, α → ∞, p = α

s+α
→ 1 (hence

q → 0) and kq → β (where β is a positive quantity), then the probability mass
function

f(x) =

(
k + x− 1

x

)
pkqx

of the Negative Binomial distribution converges to the probability mass function
of the Poisson distribution

f(x) =
e−ββx

x!
.

In her book, Pielou presented yet another way in which over-dispersion can arise
in a spatial model of animal/plant abundance. Pielou asked the following question:
what if the spatial units in the study area could be split into habitable and non-
habitable units (habitable/non-habitable with respect of the species of interest)? In
the habitable units, the counts X(s) observed in a quadrat of size s could be modeled
with our (homogeneous) Poisson model with mean λs. Let θ be the proportion of
non-habitable units in the study area. So, if we place a quadrat at random in this
study area and count the number of individuals observed in the quadrat, there are
two ways in which these counts can be 0: first, a sampled quadrat may simply fall
in an un-habitable unit and hence, no individual is going to appear in the sample.
This event happens with probability θ. Second, a quadrat may fall into a habitable
unit but just by chance, we do not observe any individual in the sample. Thus, if X
denotes the random variable counting the number of individuals in a quadrat of size
s placed at random in such study area,

P (X = 0) = P (quadrat falls in un-habitable unit)
+P (quadrat falls in habitable unit and Poisson count = 0)

= θ + (1− θ)P (X(s) = 0)

= θ + (1− θ)e−λs,
and for all x > 0 we have that

P (X = x) = P (quadrat falls in habitable unit and Poisson count = x)

= (1− θ) e
−λs(λs)x

x!

Such model is known in the statistics literature as a “Poisson model with added
zeros”, or the “Zero Inflated Poisson (ZIP)” distribution. Later on, we will formally
confront the Poisson, Negative-Binomial and Poisson model with added zeros to a
data set were we will model horseshoe crab abundances.

1.1.6 Probability generating functions: a brief overview

A probability generating function is yet another very special expected value. As its
name implies it, this expectation generates the probabilities for any discrete prob-
ability distribution. It is also a great instrument used to compute quite easily and
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without painstaking algebraic manipulations the mean and variance of any discrete
probability distribution. In Ecology and Evolution, we often model a natural process,
such as population growth, or the evolution of allele frequencies in a population, as a
stochastic process. Stochastic processes are easily amenable to model the departure
of the population trend from an expectation elicited from biological principles. It
is in these situations that the probability generating function can guide our calcu-
lations. The coolest (by far) use of probability generating functions, or pgf’s as we
will call them from now on, consists of deriving probability distributions from other
probability distributions when it is not obvious at first which distribution should be
used. Starting with the derivation of its definition, we will illustrate some of the basic
properties of the pgf, followed by a series of examples.

We start with a population of an herbivorous insect that lay eggs in the leafs
of the plant its larvae feeds on. Furthermore, assume that such insect possess a
characteristic quantitative trait of interest, which happens to be the focus of our
study. Suppose that such trait is encoded by two alleles A and a. The genotypic
proportion of the genotypes AA and Aa is z, while that of the genotype aa is 1− z.
That is:

Genotype: AA Aa︸ ︷︷ ︸ aa︸︷︷︸
Phenotype: z 1− z

In the field, we count the
number of insects per leaf.

Figure 4: Insect eggs on a leaf (that would be my garden’s lettuces, by the way).

Now, assume that the number of insects on a leaf, X, can be modeled with
a Poisson random variable. Suppose, then, that X ∼ Poisson(λ). Now we ask
ourselves: what is the probability of finding 0 individuals with the genotype aa on
one leaf? Using the law of total probability, such probability is simply the sum of the
probabilities of all the ways that event can happen. Because 0 insects can be found
in any one leaf if by chance, the Poisson count is 0, or if that count is exactly 1 but
that insect is not of genotype aa, or if that count is 2 but both insects are not of type
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aa, etc . . ., if follows that

P (No insects of type aa are found on a leaf)

= P (No insects on the leaf or 1 insect of type z or 2 insects of type z . . .)

= P (X = 0) + P (X = 1)z + P (X = 2)z2 + P (X = 3)z3 + . . .

= f(0) + f(1)z + f(2)z2 + . . . =
∑∞

x=0 f(x)zx

=
∑∞

x=0
e−λλx

x!
zx

= e−λ

e−λz

∑∞
x=0

e−λz(λz)x

x!

= e−λ(1−z).

Note that the resulting function e−λ(1−z) is in fact, another special expected value,
it’s E[zX ], where z is a number between 0 and 1. This is the probability generating
function of the random variable X. In general, if X is any discrete random variable
taking on values in the set S, then the probability generating function, denoted as
φ(z) is:

E
[
zX
]

= φ(z) =
∑
x∈S

f(x)zx, (0 ≤ z ≤ 1).

In particular, if X is a random variable defined in the non-negative integers,
then,

φ(z) = E
[
zX
]

= z0f(0) + z1f(1) + z2f(2) + z3f(3) + . . .

=
∑∞

x=0 f(x)zx.

We now list some of its properties, which result from evaluating the pgf at 0 or 1, or
taking its derivative and evaluating it at 0 or 1.

• Property 1:
φ(0) = f(0)
φ(1) = f(0) + f(1) + f(2) + . . . = 1

• Property 2:

φ′(z) = f(1) + 2zf(2) + 3z2f(3) + 4z3f(4) + . . .

=
∑∞

x=1 xz
x−1f(x)

φ′(0) = f(1).

φ′(1) = 0 + 1f(1) + 2f(2) + 3f(3) + . . . = E[X] = µ′(1).
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Thus, the first derivative of the pgf evaluated at 0 is equal to P (X = 1) =
f(1) and the first derivative evaluated at 1 is equal to the expected value of
the random variable X. The expected value is also called the “first factorial
moment”, or “first moment”, for simplicity.

• Property 3: When we evaluate this second derivative at 0, we find 2P (X =
2). Also, the “second factorial moment”, defined as E[X(X − 1)] is found by
evaluating the second derivative at 1. Together with the first factorial moment,
the second factorial moment help us find very easily the variance of X. Thus,

φ′′(z) = 2f(2) + 3× 2zf(3) + 4× 3z2f(4) + . . .

=
∑∞

x=2 x(x− 1)zx−2f(x), and it follows that

φ′′(0) = 2f(2), and

φ′′(1) = 0(−1)f(0) + 1(0)f(1) + 2(1)(1)f(2) + 3(2)f(3) + 4(3)f(4) + . . .

=
∑∞

x=0 x(x− 1)f(x) = E[X(X − 1)] = µ′(2).

Since φ′(1) = E[X] = µ′(1) and φ′′(1) = E[X(X − 1)] = µ′(2),

Var[X] = E[X2]− E[X] + E[X]− {E[X]}2

= E[X(X − 1)] + E[X]− {E[X]}2

= φ′′(1) + φ′(1)− [φ′(1)]2.

In general the rth moment of X can be easily found using

φ(r)(1) =
∞∑
x=0

x(x− 1) . . . (x− r + 1)f(x) = µ′(r).

• Property 4: The pgf “generates” the probabilities for any discrete random
variable X: Doing a Taylor Series expansion of φ(z) around 0 we get:

φ(z) = φ(0) + zφ′(0) + z2

2!
φ′′(0) + z3

3!
φ′′′(0) + . . .

Because by definition, φ(z) is also equal to

φ(z) = z0f(0) + z1f(1) + z2f(2) + z3f(3) + . . . ,

it follows that we can equate each one of the terms in both sums, i.e.:

φ(0) = f(0)

φ′(0) = f(1)

φ′′(0)
2!

= f(2)
...
φ(x)(0)
x!

= f(x),
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and it also follows that we can write φ(z) = f(0) + zf(1) + z2f(2) + z3f(3) + . . .

and f(x) = P (X = x) = φ(x)(0)
x!

. So yes indeed, φ(z) generates the probabilities
f(x) = P (X = x)!!

• Property 5: The moment generating function of the random variable X is
given by m(t) = E[etX ], and is defined not only for discrete distributions but
also for continuous distributions. For any random variable X, if it exists, this
special expected value is related to the probability generating function φ(z) in
the following way:

φ(z) = E(zX)

= E
[(
eln z
)X]

= E
[
(et)

X
]

= m(ln z).

Hence, the pgf of a random variable X is equal to its moment generating func-
tion, evaluated at ln z. Likewise,

m(t) = E
[(
et
)X]

= E[zX ] = φ(et).

So the moment generating function is equal to the pgf evaluated at et. Finally,
as its name implies, the moment generating function (mgf) is very useful to
derive the moments in a very similar way (see Rice, 1995): the moments are
given by evaluating the derivatives of the mgf at 0 (not 1, as in the pgf. This
fact becomes evident when you think of the transformation between the mgf
and the pgf stated above -indeed-, e(0) = 1!!.

Below are some examples using the five properties above.

Example 1.1. The pgf of a Poisson random variable: Recall that we found
that the pgf for the Poisson distribution with parameter λ is φ(z) = e−λ(1−z). Then,
according to the calculations above, we can easily find the mean and the variance of
the Poisson distribution using the first two factorial moments. Accordingly, we set

φ(z) = e−λ(1−z). The first derivative of the pgf is then

φ′(z) = λe−λ(1−z), and the second derivative is

φ′′(z) = λ2e−λ(1−z). Iterating the derivatives we get that the xthderivative is
...
φ(x) = λxe−λ(1−z)

and

f(x) =
φ(x)(0)

x!
=
λxe−λ(1−z)

x!

∣∣∣
z=0

=
λxe−λ

x!
.
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Thus, we recovered the Poisson probabilities form its pgf. Also, from these calcula-
tions it follows that both, the mean and the variance of the Poisson random variable
can be obtained in a single line each:

E[X] = φ′(1) = λe−λ(0) = λ

Var[X] = φ′′(1) + φ′(1)− (φ′(1))2 = λ2 + λ− λ2 = λ.

Example 1.2. The sum of two independent Poisson r.v.’s is also Poisson
distributed:
Suppose that X1 and X2 are two independent Poisson random variables such that
X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2). What is the distribution of Y = X1 +X2?
By definition, the pgf of Y , φ(z) is given by:

φ(z) = E[zY ] = E[zX1+X2 ] = E[zX1 ]E[zX2 ].

The last equality results from the independence between X1 and X2. Also, note that,
from the calculations above, E[zXi ] = e−λi(1−z). Hence,

φ(z) = e−λ1(1−z)e−λ2(1−z) = e−(λ1+λ2)(1−z),

which corresponds exactly to the pgf of a Poisson random variable with parameter
λ1 + λ2. Therefore,

Y ∼ Poisson(λ1 + λ2).

In population dynamics this trick is used to compute the probability distribu-
tion of the total number of offspring produced in a single generation: suppose that
in a population of birds that reproduces once a year, we model the number of off-
spring produced by a single female with a Poisson random variable with parameter
λ. If there are n females present, then the total number of offspring produced can be
modeled with another Poisson random variable whose mean is

λ+ λ+ . . .+ λ︸ ︷︷ ︸
n times

= nλ.

This result assumes that, independently from each other, all females have the same
offspring distribution.

Example 1.3. Suppose that X ∼ Binomial(n, p). That is, P (X = x) =
(
n
x

)
px(1 −

p)n−x, x = 0, 1, 2, . . . , n. Then, using the binomial theorem, we find that the pgf of X
is given by

φ(z) = E[zX ] =
n∑
x=0

zx
(
n

x

)
px(1− p)n−x = (zp+ (1− p))n.

To find the mean and variance of the Binomial distribution, it is enough to take the
first and second derivatives of this pgf and evaluate it at 1. That is

φ′(z) = n(q + zp)n−1p.
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Hence, E[X] = φ′(1) = n(q + p)n−1p = np.
The second derivative of the pgf is φ′′(z) = n(n− 1)(q + zp)n−2p2, and therefore

E[X(X − 1)] = φ′′(1) = n(n− 1)p2, from which we get that

V ar(X) = φ′′(1) + φ(1)− [φ′(1)]2

= n(n− 1)p2 + np− [n2p2]
= n2p2 − np2 + np− n2p2

= np(1− p).

Example 1.4. The negative binomial distribution as a sum of Geometric
distributions:
In probability, the Negative Binomial distribution is commonly employed to count the
(random) number of failures before the kth success. Here we’ll see that this distribu-
tion arises as a sum of k geometric distributions. It is important to mention that the
geometric distribution, in turn, can be written in two different ways: as the number
of independent Bernoulli trials needed to get one success, or as the number of failures
before the first success. Let p be the probability of success of such Bernoulli trials
and q = 1− p. Let X denote the first parameterization of the geometric distribution.
That is, X = the number of Bernoulli trials needed to get 1 success. X can take on
the values {1, 2, 3, . . .} and

P (X = 1) = p,
P (X = 2) = (1− p)p,
P (X = 3) = (1− p)2p,
...
P (X = x) = (1− p)x−1p.

We write X ∼ Geo1(p). Now, let Y = X− 1 be the number of failures before the first
success. Then, the random variable Y takes on values in {0, 1, 2, 3, . . .} and

P (Y = 0) = p,
P (Y = 1) = (1− p)p,
P (Y = 2) = (1− p)2p,
...
P (Y = y) = (1− p)yp.

We write Y ∼ Geo2(p). Suppose we are running a series of Bernoulli trials with
probability of success p and count the number of failures before the first success.
This random variable, call it Y1 is distributed Geo2(p). However, we don’t stop the
experiment there and, as soon as we get the first success, we start the counting again
and record the number of failures until the second success. This second count, denoted
Y2, is also Geo2(p). Continuing with the experiment, we get that the kth count, Yk, is
also distributed Geo2(p). Therefore, the random variable counting the total number
of failures before the kth success, call it W , is found by summing all the Yi counts.
That is,

W = Y1 + Y2 + . . .+ Yk.
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Knowing the pgf of the Yi and this result, we can easily find the pgf of W , and see
if it matches the form of the pgf of a known random variable. To do that, first note
that since

P (Yi = yi) = (1− p)yip,
it follows that the Yi’s pgf α(z) is given by

α(z) = p

∞∑
x=0

(zq)x = p
1

1− qz
=

1− q
1− qz

.

The above equality results from noting that, if q + p = 1,∑∞
x=0 q

xp = p(1 + q + q2 + q3 + . . .) = 1
⇔ 1 + q + q2 + q3 + . . . = 1

p
= 1

1−q .

Next, since W is the sum of the Yi’s, we can write it’s pgf φ(z) = E[zW ] as

φ(z) = E[zY1+Y2+...+Yk ], which from the independence assumption becomes

E[zY1 ]E[zY2 ] . . . E[zYk ] =

(
1− q
1− qz

)(
1− q
1− qz

)
. . .

(
1− q
1− qz

)
=

(
1− q
1− qz

)k
,

which matches, as it turns out, the pgf of a Negative Binomial distribution with
parameters k and p. That is,

P (W = w) =

(
k + w − 1

w

)
pkqw, w = 0, 1, 2, 3, . . .

Example 1.5. Clustering: The pgf and compound distributions
Let’s return for a moment to our example where we count the number of insects on
a leaf. Look at figure 4, which depicts a cluster of eggs on a leaf. Had we taken
a picture of the entire leaf, we would have seen many such clusters. Now, within
each cluster of eggs, it is possible that not all of them hatch, just a few. It is even
possible that out of each bunch of eggs, only one successfully hatches. Suppose that
we are interested in counting the total number of larvae per leaf, T . Let Xi be
the random variable counting the number of larvae hatching from egg mass i. Let N
denote the random variable counting the total number of egg masses per leaf. Assume
that X1, X2, . . . , XN are independent and identical. Then, T can be expressed as a
randomly stopped sum:

T = X1 +X2 + . . .+XN

This sum is randomly stopped because the total number of egg masses found on a leaf
is itself a random variable. Let the pmf and pgf of Xi be given by

P (Xi = x) = f(x), andα(z) = E[zXi ] =
∑∞

x=0 z
xf(x), respectively.

Likewise, let the pmf and pgf of N be given by

P (N = n) = g(n), andφ(z) = E[zN ] =
∑∞

n=0 z
ng(n), respectively.
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Suppose now that we specify the distribution of Xi and the distribution of N (i.e.
suppose that we know the explicit forms of f(x), g(x), α(z) and φ(z)). Finally, let
h(t) = P (T = t) and ψ(z) = E[zT ] =

∑∞
t=0 z

th(t) denote the pmf and the pgf of
T . Using the same population genetics interpretation of the pgf, we have that the
P (one egg mass does not have any bugs with genotype aa) is given by

α(z) = f(0)z0 + f(1)z1 + f(2)z2 + . . . , just as before.

Furthermore, P (a leaf has no aa bugs) = ψ(z), which by definition is written as

ψ(z) = h(0)z0 + h(1)z1 + . . .

Note however that ψ(z) can also be written as

ψ(z) = g(0) + g(1)α(z) + g(2)[α(z)]2 + g(3)[α(z)]3 + . . . ,

because g(0) = the probability of finding no egg masses in the leaf, g(1)α(z) is the
probability of finding 1 egg mass on the leaf and that such egg mass doesn’t contain a
single aa bugs, g(2)[α(z)]2 is in fact the probability of finding 2 egg masses on the leaf,
but none of these contain aa bugs, and so on. This sum can be written compactly as

ψ(z) =
∑∞

n=0 g(n)[α(z)]n,

which it is immediately recognizable as the pgf of N evaluated at α(z). Therefore, we
get that

ψ(z) =
∑∞

n=0 g(n)[α(z)]n = E[(α(z))N ] = φ(α(z)).

If, for instance, each egg mass produces at most one larvae, then the number of larva
per egg mass can be modeled with a Bernoulli distribution. That is,

P (Xi = x) =

{
1 with probability p
0 with probability q = 1− p.

In that case α(z) = z0f(0)+z1f(1) = q+zp. If, we also assume that N ∼ Poisson(λ)
so that φ(z) = exp−λ(1−z), then it immediately follows that

ψ(z) = E[zT ] = φ(α(z)) = e−λ(1−(q+zp))

= e−λ+qλ−λzp

= e−λp(1−z), i.e. T ∼ Poisson(λp)

So in an instant, because the pgf uniquely determines the pmf, we can identify the dis-
tribution of T . The random variable T is an example of a “contagion” or “compound”
distribution.

Assume now that, as opposed to the previous example where at most one
egg hatches, at least one egg hatches. Thus, Xi is distributed according to a random
variable that takes on integers, excluding the 0. One such distribution can be obtained
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from the Taylor Series expansion around 0 of −ln(1 − q), where q ∈ (0, 1). Such
expansion is given by

−ln(1− q) = q +
q2

2
+
q3

3
+ . . .

Dividing both sides of the equation by −ln(1− q) we get that

1 =
q1

−1ln(1− q)
+

q2

−2ln(1− q)
+

q3

−3ln(1− q)
+ . . .

Since every term on the right hand side corresponds to an integer, starting at 1,
and that the sum of the terms is equal to 1, we can define a discrete probability
distribution Xi having as pmf

P (Xi = x) =
qx

−xln(1− q)
, x = 1, 2, 3, . . .

This distribution is known as the log-series distribution. The pgf of such distribution
is given by

α(z) =
ln(1− qz)

ln(1− q)
.

Now that we have a probability distribution for the case where at least one egg hatches
from the egg mass, let’s assume again that N ∼ Poisson(λ) so that φ(z) = exp−λ(1−z).
Then, the pgf of T is found to be

ψ(z) = φ(α(z)) = e−λ(1−α(z))

= e−λ(1− ln(1−qz)
ln(1−q) )

=
(

1−q
1−qz

)−λ/ln(1−q)

=
(

1−q
1−qz

)k
, where k = −λ/ln(1− q) > 0

The resulting expression is immediately recognizable as the pgf of a Negative Binomial
random variable (see example above with the geometric distribution). Therefore,

T ∼ NegBin(k, p = 1− q),

and we found yet another way of deriving the Negative Binomial probability distri-
bution. In Ecology, contagion distributions as sampling models of counts are useful
because many spatial phenomena match the general setting of the eggs within an egg
mass, and egg masses within leafs.
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1.1.7 The multinomial distribution

The multinomial distribution is a generalization of the Binomial distribution for cat-
egorical variables with more than two response types. Suppose that our statistical
population of interest is composed of k = 5 different types. Accordingly, let π1 be the
proportion of individuals of type 1 in the population, π2 the proportion of individuals
of type 2 in the population, and so on. Then, necessarily, π1 + π2 + . . . + πk = 1.
Suppose further that we take a random sample of size n from the population. Such
sample would be composed of a random number of individuals of each type. Let

Y1 = the random number of individuals of type 1 in the sample,

Y2 = the random number of individuals of type 2 in the sample,

Y3 = the random number of individuals of type 3 in the sample,

Y4 = the random number of individuals of type 4 in the sample,

Y5 = the random number of individuals of type 5 in the sample.

Because necessarily Y1 +Y2 +Y3 +Y4 +Y5 = n for any n, the random variables Yi are
dependent. The joint probability distribution of the Y ′i s is given by

P (Y1 = y1, Y2 = Y2, . . . , Yk = yk) =
n!

y1!y2! . . . yk!
πy11 π

y2
2 . . . πykk ,

where the yi’s are non-negative integers that add up to n. This is the pmf of the
multinomial distribution. If we let k = 2 so that only two possible types exist, then
Y2 = n− Y1, π2 = 1− π1, and

P (Y1 = y1, Y2 = y2) =
n!

y1!(n− y1)!
πy11 π

n−y1
2 .

Thus, the binomial distribution is indeed a special case of the Multinomial distribu-
tion.

• Reduced parameter multinomial models

• Generalized likelihood ratio tests

• Samuel Wilks’ Generalized likelihood ratio tests for reduced param-
eter multinomial models

• Confidence intervals and likelihood ratio tests

• Abraham Wald’s theorem
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1.1.8 Hypothesis tests: a review of basic concepts

Some of the very basic concepts and ideas about hypothesis tests can be reviewed
by means of simple examples, without dwelling into likelihood theory. This is the
purpose of this section. In the next section, we will present the theoretical details
of likelihood inference along with detailed examples of biological relevance. These
lectures will be the founding blocks of the rest of our course.

Fisher’s tea lady:

In R.A. Fisher’s experimental designs book there is a ten pages account of an
experiment where he basically laid out the most important principles of experimen-
tation. The experiment is known as “Fisher’s tea lady experiment”. This experiment
was also later described by Fisher’s daughter, who wrote his biography. A pdf file
of this textbook fragment is posted in the course web page. This account tells the
story of a lady that claimed to be able to distinguish between a tea cup which was
prepared by pouring the tea first and then the milk and another tea cup where the
milk was poured first. Fisher then wonders if there is there a good experiment that
could be devised in order to formally test the lady’s claim. The null hypothesis of this
purported experiment would then be that the lady has no selection ability whatso-
ever. A logical experiment would consist of offering the lady a set of “tea-first” cups
and another set of “milk-first” cups and let her guess the tea cup type (milk-first
or tea-first) of each one. The question is -Fisher noted- that it is not evident how
many of each type and in what order shall this be done in order to carry a convincing
experiment. Fisher begins by noting that, the more cups are offered to the lady, the
harder it is to achieve a perfect classification of all the tea cups. Also, note that
by giving her the same number of tea-first cups than milk-first cups we would allow
each of the 2 types to get the same simultaneous presentation (i.e. opportunity to
be chosen). Suppose that we ask the lady to select 4 milk-first from a total of 8 cups
(That is, we offer her 4 milk-first and 4 tea-first cups). In how many ways can she
make the 4 choices? Fisher noted that for the first cup there are 8 choices, for the
second there are 7 choices, 6 choices for the third and finally, 5 choices for the fourth
milk-first cup. Therefore, this succession of choices can be made in 8×7×6×5 = 1680
number of ways. But this takes into account not only every possible set of 4, but also
every possible set in every possible order. Now, 4 objects can be arranged in order in
4× 3× 2× 1 = 24 ways and therefore, since the 4 cups are assumed to be identical in
every respect and we do not care about the order in which these 4 cups were given,
then the number of ways of picking 4 cups out of 8 is

# number of ways of assigning 4 cups as milk-first among the 8 cups
# of ways that 4 cups can be ordered

= 8×7×6×5
4×3×2×1

= 8!
4!(8−4)!

,

which is
(

8
4

)
= 70. So if the lady was picking purely at random and didn’t have any

distinguishing ability whatsoever, she would have a probability of 1/70 of picking
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up a particular sequence of cups assigned by her as milk-first that happens to be
the correct one. What if we set 3 milk-first cups and 3 tea-first cups? Then, since(

6
3

)
= 20 the lady would have a 1/20 probability of picking the correct sequence

just by chance. Fisher decided to go for the harder test and decided to give her 4
milk-first and 4 tea-first cups. Now that we have decided on the number of cups,
we can compute the probability of each possible outcome if the lady was picking
purely at random (that is, if she had no ability to distinguish between a tea-first and
a milk-first cup). The possible outcomes of the experiment are the following: the
lady could pick 4 right out of the 4 of one type and therefore get 0 wrong out of the
other type. We will denote this event 4R/0W . She could also get three right of the
first type and one wrong of the second type. This event will be denoted by 3R/1W .
According to this notation scheme, the other possible events are 2R/2W , 1R/3W
and 0R/4W . Computing the probabilities of each of these events is a straightforward
counting exercise. Considering the event 3R/1W for instance, we note that there are(

4
3

)
number of ways of picking 3 right out of 4 of the first type and independently of

that, there are
(

4
1

)
ways of choosing 1 wrong out of the other 4 cups of the second

type. Iterating this argument for the other events we get that,

P (3R/1W ) =

(
4
3

)
×
(

4
1

)(
8
4

) =
16

70
.

Likewise,

P (4R/0W ) =

(
4
4

)
×
(

4
0

)(
8
4

) =
1

70
,

P (2R/2W ) =

(
4
2

)
×
(

4
2

)(
8
4

) =
36

70
,

P (1R/3W ) =

(
4
1

)
×
(

4
3

)(
8
4

) =
16

70
,

and

P (0R/4W ) =

(
4
0

)
×
(

4
4

)(
8
4

) =
1

70
.

These probabilities completely specify the probability mass function of the outcomes
of the experiment where the picking was done purely at random, that is, assuming
that the lady has no detection ability. Therefore, this is the distribution of outcomes
under the null hypothesis. Suppose that the experiment is carried and the lady picks
3 right of the first type and 1 wrong of the second type (3R/1W ). Is this evidence
enough to convince ourselves that she is not picking the cups at random and that she
indeed has a detection ability? So we ask ourselves, if the null hypothesis is correct
and the lady is picking purely at random, how unlikely it is to get an outcome as
extreme or more more than the one we actually observed. This amounts to specify
the probability of making only one error or less by pure dumb luck. According to the
calculations above, that probability is

P (3R/1W ) + P (4R/0W ) =
17

70
≈ 0.24.
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So if the null hypothesis is true, then there is a chance that we would have observed
a choice as good or better than the one we saw about 24% (about a fifth) of the time!
That chance is way too big to convince our skeptic (Fisher) that his null hypothesis
is wrong. 0.24 is in fact, the p-value of the test of the lady’s claim. Compare that
value to what we are used to think of what a good skeptic’s convincing threshold is:
0.05 (or 5% of the time). Hence, here we blatantly failed to reject the null hypothesis!
Fisher’s account is important in many ways and the most notable is the description
of the value of randomization in experimentation (which I explicitly left out in here)
as well as his careful elaboration of the logics of hypothesis testing.
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Exercise 1.1. Suppose we ask the lady to select 4 milk-first from a total of 8 cups
(that is, we offer her 4 milk-first and 4 tea-first cups). In how many ways can she
make the four choices? Fisher noted that for the first cup there are 8 choices, for the
second there are 7 choices, 6 choices for the third and finally, 5 choices for the fourth
milk-first cup. Therefore, this succession of choices can be made in 8×7×6×5 = 1680
number of ways. But this takes into account not only every possible set of 4, but also
every possible set in every possible order. Now, 4 objects can be arranged in order in
4× 3× 2× 1 = 24 ways and therefore, since the 4 cups are assumed to be identical in
every respect and we do not care about the order in which these 4 cups were given,
then the number of ways of picking 4 cups out of 8 is

# number of ways of assigning 4 cups as milk-first among the 8 cups
# of ways that 4 cups can be ordered

= 8×7×6×5
4×3×2×1

= 8!
4!(8−4)!

,

which is
(

8
4

)
= 70. So if the lady is picking purely at random, she can assign four

cups as “milk-first” in 70 different ways.

1. What is the probability that the lady doesn’t make any mistake and correctly
chooses the 4 milk-first cups?

2. Had Fisher given her 3 milk-first cups and 3 tea-first cups, what would the
probability of correctly picking the 3 milk-first cups had been?

3. In fact, when he was thinking how to design the experiment, Fisher chose the
number of cups after computing the probability of making no mistakes in two
cases: when she is given to select 4 cups out of a total of 8 and when she is
given 3 cups out of a total of 6. Given your answers to the two questions above,
which number of cups do you think Fisher picked: 4 and 4 or 3 and 3? Why?

4. Enumerate all the possible outcomes of the experiment when a total of 8 cups
are given to her (4 of each type). Hint: for instance, one outcome is as follows:
she can pick 4 right out of the 4 of one type and therefore get 0 wrong out of
the other type. Denote this event as 4R/0W , where R stands for ‘right’ and W
for ‘wrong’. Use the same notation for all the other events.

5. Compute the relative frequency with which every single one of these possible
outcomes occurs.
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Hypothesis test for the sample mean (known variance):

Suppose that an education researcher suspects that college students at UF have
a higher IQ than the population at large. The average IQ score from the population
at large is 100. Because the IQ score can be though as a continuous phenotypic trait,
to model its distributional properties this researcher should use a continuous random
variable. In particular, here we’ll use a Normal distribution, which is symmetric
around the mean. Now, suppose that the standard deviation σ of the IQ scores
distribution is known and equal to 15. To confront his suspicion with data, the
researcher takes a random sample of n = 30 IQ tests from the population of UF
students and obtains a sample mean score x̄ equal to 105.3. A colleague of the
education researcher is very skeptic of this suspicion and in fact, tells him that an IQ
sample mean of 105.3 is not really an unlikely outcome if these 30 samples really came
from a population of scores that is normally distributed around a mean µ = µ0 =
100. The value µ0 = 100 embodies the skeptic’s point of view, it corresponds to his
hypothesized value of the mean of the distribution of IQ scores from which our random
sample was drawn. In statistical terms, this is called the null hypothesis. Conducting
a hypothesis test in this case amounts to convincing the skeptic that the researcher’s
suspicion (that is, the alternative hypothesis) that µ > 100 is indeed supported by
the data. In response to his colleague’s questioning, the researcher starts by asking
himself how unusual a sample mean of 105.3 would be if it really came from the IQ
distribution of the population at large. Repeated independent random sampling from
the population at large of IQ scores generates a series of sample means. Each time
a sample of IQ scores is taken, a new sample mean is obtained. Thus, the computed
sample mean IQ score can be considered as the outcome of a random variable. Let’s
denote this random variable X̄ (remember that capital letters in this notes denote
a random variable, unless otherwise specified). From the Appendix review (and a
bit of common sense) we know that if the samples are really random, independent
and drawn from a population with mean µ0 = 100 (the skeptic’s hypothesis), the
distribution of the sample mean is again Normal, with mean equal to µ = µ0 and
variance σ2/n. We write:

X̄ ∼ N

(
µ0,

σ2

n

)
.

Asking how unusual would a sample mean of 105.3 be if the null hypothesis were to
be true then amounts to compute an integral, the area to the right of x̄ = 105.3 under
a normal curve whose mean is µ0 = 100 and variance is σ2

n
= 152

30
. This area is in fact

a probability. It is the probability that X̄ ≥ 105.3 which is given by

P (X̄ ≥ 105.3) =

∫ ∞
105.3

1√
2πσ2/n

exp−(x̄− µ0)2

2σ2/n
dx̄.

Fortunately, we can ask R to compute that integral for us with the following line:

> 1-pnorm(q=105.3, mean=100, sd= 15/sqrt(30))

[1] 0.02647758



48

Alternatively, we could go the old ways and standardize our normal distribu-
tion of sample means X̄ and get the equivalent quantile value of x̄ = 105.3 in the
standard normal distribution Z. Because X̄ can be thought of as the following linear
transformation of the standard normal distribution

X̄ =
σ√
n
Z + µ0,

solving for Z in this equation allows us to find the standardized value of x̄ = 105.3.
That is, since

Z =
X̄ − µ0

σ/
√
n
,

the standardized value of x̄ = 105.3 is found to be

zobs =
x̄− µ0

σ/
√
n

=
105.3− 100

15/
√

30
= 1.935280.

Then, knowing that P (X̄ ≥ 105.3) = P (Z ≥ 1.935280) we just have to do a table
look up to find out this probability, or, if we don’t have our “Z-table” at hand, just
ask R again:

> 1-pnorm(q=1.935280, mean=0, sd= 1)

[1] 0.02647797

which happily corresponds to the previous value found before (besides some numer-
ical round-off error). What does the 0.02647797 means? It simply means that if
the skeptic’s hypothesis was true and the 30 sampled IQ scores came from a dis-
tribution with mean 100, then the probability of observing a sample mean as big
or bigger than 105.3 is slightly less than 0.03. In other words, if the skeptic’s hy-
pothesis was true and we were to repeat the experiment of drawing a sample of size
n = 30 student’s IQ scores and each time compute the sample mean, less than 3%
of the time we would actually observe sample means as high or higher than 105.3.
So our researcher now has computed a value, 0.02647797, that makes his colleague’s
hypothesis untenable. Given the evidence against his hypothesis, the skeptic con-
cedes and admits to be convinced. How small has the value of P (X̄ ≥ x̄) to be in
order to convince a skeptic? Well, in a typical statistical analysis, the threshold to
reject the skeptic’s null hypothesis is set to be less than 5%, or 0.05. Very serious
scientific experiments set the convincing threshold to 0.01. In any case however, that
threshold is what is known as α and the probability of observing a test statistic as
extreme (extreme in the direction of the research hypothesis) or more than the value
actually observed is known as the p-value. So this skeptic vs. researcher argument
is really where the famous quasi-robotic “Decision rule: Reject H0 if p-value < α”
comes from. Also, note that whenever a decision is made, two possible errors arise:
first, the null hypothesis could be true, but it is rejected. Since we reject the null
hypothesis whenever we observe a p-value less than α, given that the null hypothe-
sis is true, that probability is just given by α. Second, it may be possible that we
fail to reject H0 even if it is false. The probability of that happening is denoted by
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β. 1 − β is therefore the probability of making the correct choice and it is known
is statistics as the power of the test. In future lectures we will deal with trying to
compute the power for our ANOVAS. Finally, note that I’ve written “Failing to reject
H0”. Why? Why not simply “accepting H0”? Well, it can be argued that accepting
the null hypothesis may suggest that it has been proved simply because it has not
been disproved yet. This is a logical fallacy known as “the argument from ignorance”.

The duality between Confidence Intervals and Hypothesis Tests:

Suppose we were conducting a hypothesis test of

H0 : µ = µ0 = 500
Ha : µ 6= µ0.

We go out and take a random sample of size n = 60 knowing that σ = 100. Look
at the graph below and locate the rejection region and the acceptance region for this
example of a two-sided hypothesis test.

450 460 470 480 490 500 510 520 530 540 550
0

0.5

1

1.5

2

2.5
x 10 3

Rejection Region =
/2= 0.025

Rejection region = 

/2 =0.025

Critical value: 474.69=

500 (1.96)*100/(sqrt(60)) Critical value: 525.30 = 
500 + (1.96)*100/(sqrt(60))

Remember:

 = 0.05 implies
z /2 = 1.96
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Figure 5: Probability distribution for X̄: Depicted are the rejection and the accep-
tance regions for the two-sided hypothesis test.

What’s the size of the acceptance region? That’s a probability, it’s the area
between the two critical quantile values of the distribution of X̄. This area is found
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to be:

P

(
µ− zα/2

σ√
n
< X̄ < µ+ zα/2

σ√
n

)
= P

(
−zα/2

σ√
n
< X̄ − µ < zα/2

σ√
n

)
(subtracting µ everywhere)

= P

(
−X̄ − zα/2

σ√
n
< −µ < −X̄ + zα/2

σ√
n

)
(subtracting X̄ everywhere)

= P

(
X̄ − zα/2

σ√
n
< µ < X̄ + zα/2

σ√
n

)
(×− 1).

(11)

So what this is showing is that, in fact, the confidence interval for µ is just the set of
all values of µ0 for which the null hypothesis µ = µ0 would not be rejected in a test
against the alternative hypothesis µ 6= µ0. Note that because x̄ is the realized value
(that is, one fixed quantity) from the probability distribution of X̄, it doesn’t make
sense to ask

P

(
x̄− zα/2

σ√
n
< µ < x̄+ zα/2

σ√
n

)
=?

For a particular random sample, the realized confidence interval(
x̄− zα/2

σ√
n
, x̄+ zα/2

σ√
n

)
.

either contains or does not contains the true mean µ and we actually do not know
which of these two outcomes occurred. If we were to repeat the experiment many
many times however, and each time after taking a random sample of size n, we com-
puted the sample mean and its realized confidence interval, then (1 − α) × 100% of
the time the realized confidence interval would contain the true mean µ. For each
individual confidence interval, the true mean would either be inside or it would not.
Thus, repeating this experiment many many times and computing a confidence inter-
val each time can be though of as a horse shoe game where we have our eyes closed.
We shoot the horse shoe many many times (i.e. we get the random sample, compute
its mean and confidence interval) and each time we either make a stake (i.e. the true
mean is contained in our realized confidence interval) or we miss the stake (the true
mean is not contained in our realized confidence interval), but we do not know for
sure what happened (we have our eyes closed!). The only thing we know from the
probability calculations above is that (1−α)× 100% (= 95% if α = 0.05) of the time
the true mean value will be contained in the confidence interval. This is a very hard
concept to understand and it is not commonly understood properly.
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1.2 An introduction to some theoretical properties of Maxi-
mum Likelihood estimation and testing

Parameter estimation is really the beginning point (if not a by-product) of a much
more rich activity in terms of science: trying to distinguish between competing models
-tentative explanations- of natural phenomena. Mathematical statistics theory gives
us a very elegant (-sorry, I had to use the word ‘elegant’ here, however I promise I’ll
never use the word “obvious” while describing how I go from one equation to another-
) framework to achieve such undertaking. In this section, I’ll summarize some of the
most important statistical results useful to carry inference by maximum likelihood.

1.2.1 Fisher’s Information

Let X1, X2, . . . , Xn be a sample of size n modeled using a discrete probability distribu-
tion. The likelihood function for the realized observations is the joint pmf evaluated
at the observations x1, x2, . . . , xn:

P (X1 = x1, X2 = x2, . . . , Xn = xn) = f(x1, x2, . . . , xn; θ),

where θ is the parameter characterizing the probability mass function of Xi, i =
1, . . . , n. When Fisher defined the likelihood, he noted that when this joint pmf
evaluated at the observations is graphed as a function of the parameter of interest,
not only can we find the most likely value of the parameter given the data and
probabilistic sampling model at hand, but also, that the steepness of the likelihood
function around the ML estimate is a surrogate of how much information the data
contains about θ. Indeed, the steepness of the likelihood function around the ML
estimate is in fact telling us how fast the verisimilitude of one value of the parameter
of interest decays with respect to the verisimilitude of the ML estimate, as we move
further apart from it. A steep decrease in likelihood f(x; θ) will result in a small set of
parameter values around the ML estimate θ̂ being favored as “very likely”, while the
rest of the parameter space is deemed as “not very likely” (relative the ML estimate).
Therefore, highly peaked likelihoods are in fact telling us that given the data and the
probabilistic model at hand, there is enough information in the data to narrow down
quite precisely our inferences about the parameter of interest. Mathematically, the
amount of information in the likelihood function for both, discrete and continuous
probability models, is quantified using Fisher’s information I(θ):

I(θ) = EX

([
∂

∂θ
ln f(x; θ)

]2
)
. (12)

Under adequate smoothness conditions on f (we will discuss this later), Fisher’s
information can be written as

I(θ) = −EX
([

∂2

∂θ2
ln f(x; θ)

])
. (13)

A short proof of why equations 12 and 13 can be written is shown towards the
end of this lecture. However, before dealing with such proof, it is important to
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note that the definition of Fisher’s information using a second derivative (eq. 13) is
readily interpretable: the information in the likelihood function can be measured as
the average of the rate of change of the slope of the likelihood function. Since the
likelihood is a function of the data, which are realizations of the random sampling
scheme, this rate of change of the slope of the likelihood function also changes from
one data set to another. Therefore, Fisher’s definition is in fact proposing to use
this average curvature as a measure of how much information about the parameter of
interest is conveyed by a random sampling experiment. In particular, for a particular
data set, the information conveyed by the likelihood function about the parameter θ
can be estimated by plugging-in the definition of I(θ) the ML estimate θ̂. Because
any function of a ML estimate is also a ML estimate, then the resulting estimate of

Fisher’s information, Î(θ) is also a ML estimate. Î(θ) is needed in order to compute
what are known as “Wald’s confidence intervals”. We now state Abraham Wald’s
theorem (1948, The Annals of Mathematical Statistics 19(1):40-46):

Theorem 1.1. Under regularity conditions on the likelihood function f(x; θ), the

random variable Θ̂ (the ML estimate) converges in distribution to a Normal random
variable with mean θ and variance I(θ)−1. A 100× (1− α)% confidence interval for
θ is given by

θ̂ ± zα/2
√
I(θ̂)−1,

where I(θ̂)−1 is the inverse of Fishers’ information (eqs 12 and 13) evaluated at the
ML estimate θ̂ of θ and the observed data.

The regularity conditions above roughly say that θ cannot lie on the boundary of the
parameter space for the inference to be valid and that the range of the Xi’s cannot
depend on θ. Also, the appearance of multi-modal likelihoods at low sample sizes
compromises the validity of these results (more on these reg. conditions later).

Example 1.6. Suppose X1, X2, . . . , Xn are iid random samples from a Normal dis-
tribution with known variance σ2. Then, the likelihood function is written as

`(µ) = (2πσ2)−
n
2 exp−

n∑
i=1

(xi − µ)2

2σ2
and the log likelihood is

ln`(µ) = −n
2

ln(2π)− n

2
− n

2
ln(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2.

Taking the derivative of the log-likelihood with respect to µ, setting it equal to 0 and
solving for µ gives

µ̂ =
1

n

n∑
i=1

xi = x̄.

Having found that the ML estimate of µ is the sample mean, we set out to compute the
confidence interval for the sample mean given by Wald’s theorem above. Accordingly,
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we need to evaluate the expectation of the second derivative of the log-likelihood and
evaluate such expression at the ML estimate:

d2

dµ
[ln `(µ)] = d2

dµ

[
− 1

2σ2

∑n
i=1(xi − µ)2

]
= − d

dµ

[
d
dµ

1
2σ2

∑n
i=1(xi − µ)2

]
= d

dµ

[
1
σ2

∑n
i=1(xi − µ)

]
= d

dµ

[
(
∑n

i=1 xi)
1
σ2 − nµ

σ2

]
= − n

σ2 .

Therefore I(θ̂) = −EX
(
−n

2

)
= n

σ2 and Wald’s 100(1 − α)% confidence interval for
the mean would be given by

x̄± zα/2

√(
I(θ̂)

)−1

⇒ x̄± zα/2

√(
σ2

n

)
,

which is exactly the confidence interval shown in the simple hypothesis test of UF
student’s IQ. This example is very revealing, since we can see right away that the
inverse of Fisher’s information is none other than the variance characterizing the
distribution of the ML estimate!!! Indeed, the random variable X̄ is the ML estimate
of the mean µ and we’ve seen before that under this normal sampling scheme, the
sample mean X̄ is normally distributed with mean µ and variance σ2/n.

To see why equations 12 and 13 are equivalent, first note that the joint pmf
(pdf) of the observations has to integrate to 1 by definition, that is∫

f(x; θ)dx = 1.

Furthermore, the expected value of any function h(X) of the joint random vector of
the observations X is written as

Ef [h(X)] =

∫
h(X)f(x; θ)dx.

Finally, we will define the score function u(x; θ)

u(x; θ) =
∂

∂θ
ln f(x; θ) =

1

f(x; θ)

∂

∂θ
f(x; θ).

With these definitions in hand, we note that

0 =
∂

∂θ

∫
f(x; θ)dx =

∫
∂

∂θ
f(x; θ)dx. (14)
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The integration and the differentiation in the right hand side of the above equation
have been interchanged (which requires some continuity assumptions about f(.)).
Using the definition of u(x; θ) we write ∂

∂θ
f(x; θ) as

∂

∂θ
f(x; θ) =

[
∂

∂θ
ln(f(x; θ))

]
f(x; θ) (15)

and substitute the right hand side into equation (14) to get

0 =

∫
∂

∂θ
f(x; θ)dx =

∫ [
∂

∂θ
ln(f(x; θ))

]
f(x; θ)dx.

Derivating a second time we get

0 = ∂
∂θ

∫ [
∂
∂θ

ln(f(x; θ))
]
f(x; θ)dx

=
∫

∂
∂θ

[
∂
∂θ

ln(f(x; θ))
]
f(x; θ)dx

=
∫ [

∂2

∂θ2
ln(f(x; θ))

]
f(x; θ)dx+

∫
∂
∂θ
f(x; θ) ∂

∂θ
ln(f(x; θ))dx.

The integrand of the rightmost term in the RHS (Right Hand Side) of the last line
can be re-written using eq. 15 as

0 =

∫ [
∂2

∂θ2
ln(f(x; θ))

]
f(x; θ)dx+

∫ [
∂

∂θ
ln(f(x; θ))

]2

f(x; θ)dx,

or

−
∫ [

∂2

∂θ2
ln(f(x; θ))

]
f(x; θ)dx =

∫ [
∂

∂θ
ln(f(x; θ))

]2

f(x; θ)dx. (16)

Both sides of equation 16 are integrals of a function of x times the joint pdf
f(x; θ), and thus correspond to the definition of the expectation of those functions
with respect to the distribution of the random vector of observations X (see definition
of the expected value of a function of a random variable in the appendix). It follows
that equation can be re-written as

−EX
[
∂2

∂θ2
ln(f(x; θ))

]
= EX

[[
∂

∂θ
ln(f(x; θ))

]2
]

which is the equality we wanted to prove.
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Appendix 1:

a basic probability review
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1.3 Basic Probability review: Random experiments and events

The idea of probability, chance or randomness is very old and is deeply rooted in the
analysis of gambling games. The models derived from probability theory are used
for any situation for which the outcomes occur randomly. A random experiment
is a process whose outcome is not known in advance (yes, -flipping a coin- is one of
them. . . ).The sample space associated with an experiment is the set of all possible
outcomes in the sample, often denoted Ω. An event is a subset of the sample space.

Example 1.7. Flipping a coin once, Ω = {H,T}. H is an event.

Example 1.8. To come to class, you drive through a sequence of 3 intersections with
traffic lights, each time you either stop (s), or continue (c).

Ω = {sss, ssc, scc, ccc, ccs, css, scs, csc}.

Let A be the event “stopping at the first light” and B the event “stopping at the the
third light”.

A probability is a number between 0 and 1 associated with a particular event in the
sample space of a random experiment. This number measures the chance that the
event will occur. If A is an event, we write P (A) for the probability of the event A.
There are various operational interpretations of probability. The classical inter-
pretation arose from games of chance. If a sample space consist of equally likely
outcomes, then the probability of an event is defined as the ratio of the number of
outcomes favorable to the event to the total number of possible outcomes. These
equally likely events are also known as “elementary events”.

P (A) =
number of outcomes favorable to the event

Total number of possible outcomes

Example 1.9. Conduct the random experiment of flipping a coin 4 times and list all
the possible outcomes. There are 16 possible outcomes. All these events are equally
likely, so the probability of any of these events is simply 1/16. If the event A is defined
as “getting a head in both the first and second flip”, then the outcomes favorable to
the event A are

HHHH, HHHT, HHTH, HHTT.

All the other outcomes are not favorable to the event A. Thus, P (A) = 4/16 = 1/4.

The frequency interpretation of probability is as follows: if the random process is
hypothetically repeated, then the long-run proportion of times an event occurs is the
probability of the event.

Example 1.10. Consider the experiment of flipping a coin 1, 2, 3, . . . , 10000 times
using the software R. For each coin flip, we record the proportion of heads. Then plot
the proportion of heads vs. the number of trials. Here is the code:
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nflips <- 10000

Head <- TRUE

Tail <- FALSE

flips <- sample(c(Tail,Head),size=nflips,replace=T,prob=c(0.5,0.5))

length(flips)

tot.trials <- 1:nflips # or seq(1,nflips,1)

prop.heads <- rep(0,nflips)

for(i in 1:nflips){

outcomes <- flips[1:i]

num.heads<- sum(outcomes)

flips.sofar <- i

prop.heads[i] <- num.heads/flips.sofar

}

plot(1:nflips,prop.heads, ylab="Proportion of heads", xlab="Number of trials",

col="red",type="l",main="Proportion of heads vs. the number of trials",ylim=c(0,1))

abline(h=0.5)

And here is the figure
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Figure 6: Illustration of the frequency interpretation of probability. The probability
of a head is conceived as the long-run relative frequency of heads in a very large
number of trials. As the number of trials approaches infinity, the relative frequency
of heads approaches exactly 1/2
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The subjective interpretation of probability involves personal statements
of belief regarding the chance of a given event. Subjective probabilities vary from
individual to individual. A betting scenario is an ideal representation for this inter-
pretation:

Example 1.11. UF basketball team will play this saturday. If you bet a dollars to
my b dollars that UF will win, your probability that UF wins is

P (UF wins) =
a

a+ b

The odds refers to the ratio of a probability to 1 minus that probabiity

your odds in favor of UF =
P (UF wins)

1− P (UF wins)

If an event has probability 2/3 of happening, the odds are (2/3)/(1/3) = 2. Usually
this is reported as “the odds of the event happening are 2 to 1”. Later on, when
studying bayesian statistics, we will talk more about odds.

The different interpretations of probability briefly described above lead to in-
trinsically different ways of carrying a statistical analysis in science.

1.3.1 Probability properties

1. For any event A, 0 ≤ P (A) ≤ 1.

2. If Ω is the sample space, P (Ω) = 1.

Before stating the third, we need one definition: the complement of the event
A, denoted Ac is defined as the event that A does not occur. Ac includes all the
elementary events that are not in A. If Ω = {A,Ac} then, the thrid property is

3. P (Ac) = 1− P (A) or P (Ac) + P (A) = P (Ω) = 1

The next item is the definition of disjoint events: two events A and B are disjoint
if they have no outcomes in common. Disjoint events are also defined as “mutually
exclusive” events because the occurrence of one of the events excludes the possibility
of the occurrence of the other event.

Example 1.12. Consider the experiment: “rolling two dice”. Let A be the event:
a total of 7 shows. Let B be the event: a total of 11 shows. Then, A and B are
mutually exclusive. If A occurs, B cannot occur (and viceversa): if you observe event
A, a total of 7, you could not at the same time observe event B, a total of 11.

Note: The case above where Ω = {A,Ac} is a special situation where the events A
and B = Ac are both complementary to each other and disjoint, because the sample
space consists of only two events. That is not always true: in the example above, A
and B are disjoint but not complementary to each other.
We now move to the next property:
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4. addition rule for disjoint events: if A and B are disjoint events, then

P (A orB) = P (A) + P (B)

Example 1.13. Consider the example above with elementary events, where we
flipped a coin four times in a row. One event consisting of 4 disjoint, elementary
outcomes is A = {HHHT, HHTH, HTHH, THHH}. Then, by the addition rule

P (A) =
1

16
+

1

16
+

1

16
+

1

16
=

4

16
.

Another event, B is defined asB = {HHTT, HTHT, HTTH, THHT THTH, TTHH}.
Then

P (B) =
1

16
+

1

16
+

1

16
+

1

16
+

1

16
+

1

16
=

6

16
and using the addition rule again

P (A orB) =
4

16
+

6

16
=

10

16

Suppose that the probability of event A is the same whether event B has or
has not occurred, that is

P (A givenB) = P (A|B) = P (A).

Then we say that the occurrence of event A is not dependent on the occurrence of
event B, that is, A and B are independent events.

Example 1.14. Consider the experiment “draw two balls from a urn”. Let B = red
on first draw and A = red on second draw. If we draw two with replacement -that is
returning each ball to the urn after drawing them-, then A and B are independent.
If we draw two without replacement then A and B are dependent (not independent).
When sampling without replacement, if the event B occurs, then the ratio of the
number of ways we could obtain A to the total number of possible draws changes.
Thus, in that case the event B changes the probability of the event A.

The next property of probability refers to independent events:

5. Multiplication rule for independent events: if A and B are independent
events, then

P (A andB) = P (A)P (B)

Example 1.15. Flip a coin 2 times and let A = H on first flip, B = H on second
flip. Then

P (HH) = P (A andB) = P (A)P (B) =
1

2
× 1

2
=

1

4

Example 1.16. flip a coin n times

P (all heads) =

(
1

2

)(
1

2

)
. . .

(
1

2

)
=

(
1

2

)n
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Example 1.17. Suppose we have a urn with three red balls and one blue ball and
draw 2 with replacement. Let A = red on the first draw, B = blue on the second
draw

P (A andB) = P (picking red#1 or #2 or #3 on 1st draw) andP (picking blue on the 2nd draw),

so

P (A andB) =

(
1

4
+

1

4
+

1

4

)
×
(

1

4

)
=

3

4
× 1

4
=

3

16

If two events are not disjoint, we use the

6. Addition rule for any two events:

P (A orB) = P (A) + P (B)− P (A andB)

Example 1.18. Flip a coin 3 times. Let A = 2 or 3 H and B = 1 or 2 T . Then
P (A orB) = 4

8
+ 6

8
− 3

8
= 7

8

Example 1.19. A = 2 or moreH, B = 3 T . A and B are disjoint. Hence P (A orB) =
4
8

+ 1
8
− 0 = 5

8
.

Just as we extended the addition rule for any two events, we can extend the multi-
plication rule for any two events:

7. Multiplication rule for any two events

P (A andB) = P (B)P (A|B) = P (A)P (B|A),

and

P (B|A) =
P (A andB)

P (A)
=
P (B)P (A|B)

P (A)
,

P (A|B) =
P (A andB)

P (B)
=
P (A)P (B|A)

P (B)
.

The last two equations are known as Bayes rule.

Example 1.20. Consider the following experiment, where we flip three identical coins
and record the outcome. There are 8 equally likely outcomes of this coin flipping
experiment:

HHH, HHT, HTH, THH, HTT, THT, TTH, TTT.

Let A be the event “one or more H” were obtained and B “one or more T” were
obtained. Then, P (A) = 7/8 and P (B) = 7/8 , and

P (A|B) =
P (A andB)

P (B)
=

6/8

7/8
= 6/7

P (B|A) =
P (A andB)

P (A)
=

6/8

7/8
= 6/7
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Table 2:

BS Master Professional phD Total
Female 616 194 30 16 856
Male 529 171 44 26 770
Total 1145 365 74 42 1626

Exercise 1.2. If the events A and B in the coin flipping experiment above are
now defined as A = “one or more heads” and B = “on tail exactly”, show that
P (B|A) = 3/7 and P (A|B) = 1

Example 1.21. Consider the data cross-tabulating the different educational degrees
vs. the gender of the degree recipient (see table 2)

Following the definition of conditional probability we have that,

P (Female) =
856

1626
≈ 0.53.

P (Master|Female) =
P (Master and Female)

P (Female)
=

194/1626

856/1626
=

194

856
,

which you could have guessed by intuition. To check if the events “Professional” and
“Female” are independent, we do

P (Professional|Female) =
30

856
≈ 0.0350467

P (Professional) =
74

1626
≈ 0.0455104.

Hence, since P (Professional|Female) 6= P (Professional) these two events are not
independent!

Example 1.22. Testing the test: Medical diagnosis tests are rigorously tested
themselves using conditional probabilities. The objective then is to compute the
probabilities of an incorrect diagnosis as well as the probabilities of a correct diagnosis.
A given diagnosis can be wrong if the patient is healthy but the test yields a positive (a
false positive) or if the patient has the disease but the test yields a negative (a false
negative). On the other hand, there are two ways in which a correct diagnosis can
happen: if the patient has the disease and the test yields a positive, or if the patient
is healthy and the test yields a negative. The probabilities of each one of these correct
diagnosis types are called the test sensitivity and the test specificity respectively.
Using conditional probabilities and simple notation, we can easily keep track of all the
probabilities involved. Denote the outcome of the diagnosis test as P for positive and
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N for negative, and the state of the patient as D when the disease is present and as
Dc when it is not. Then, we can easily write down the correct diagnosis probabilities
as a function of the probabilities of a false negative and of a false positive:

test sensitivity = P (P|D) = 1− P (N|D), and the

test specificity = P (N|Dc) = 1− P (P|Dc).

Here’s an example: suppose that we are testing a new test that attempts to diagnose
if a pregnant woman is carrying a fetus with the Down Syndrome. 5282 pregnant
women where tested using both, a costly yet perfect testing method and the test of
interest. Using a completely reliable test and the test of interest allows evaluating the
quality of this new test. Below (see table 3) I cross-tabulated the test diagnosis and
the real Down Syndrome status for these 5282 women and their child: The conditional

Table 3:

P N Total
D 48 6 54
Dc 1307 3921 5228

Total 1355 3927 5282

probabilities of interest can then be quickly computed using R :

# Entering the data, with row and column names

test.results <- matrix(c(48,6,1307,3921), nrow=2,ncol=2,byrow=TRUE);

row.names(test.results) <- c("D", "Dc");

colnames(test.results) <- c("Pos", "Neg");

print(test.results)

# Computing totals

rowtotals <- apply(test.results,2,sum);

coltotals <- apply(test.results,1,sum);

grand.tot <- sum(test.results);

print(rowtotals)

print(coltotals)

print(grand.tot)

# Notation:

# Pos = positive test; Neg = negative test

# D = Disease present; Dc = Disease absent

# False Positive rate: P(Pos|Dc) = P(Pos AND Dc)/P(Dc)

Ppos.G.Dc <- test.results[2,1]/coltotals[2]
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# False Negative rate: P(Neg|D) = P(Neg AND D)/P(D)

Pneg.G.D <- test.results[1,2]/coltotals[1]

# True Negative rate, Specificity = P(Neg|Dc) = 1- P(Pos|Dc)

Pneg.G.Dc <- 1 - Ppos.G.Dc

# True Positive rate, Sensitivity = P(Pos|D) = 1- P(Neg|D)

Ppos.G.D <- 1 - Pneg.G.D

print(Pneg.G.Dc)

print(Ppos.G.D)

8. Law of total probability: In what follows we use the symbol ∪ to the denote
the union of two events, that is, the set of all outcomes that are included in
either the first or the second event. Hence P (A orB) is written as P (A ∪ B).
The intersection of two events is the set of all outcomes that are included
in both events and is the noted by the symbol ∩. Hence P (A andB) is written
as P (A ∩B). Let B1, B2, . . . , Bn be n mutually exclusive events such that

n⋃
i=1

Bi = Ω and P (Bi) > 0 for all i.

Furthermore, let A be any event in Ω. Then:

P (A) =
n∑

1=1

P (A ∩Bi) =
n∑

1=1

P (A|Bi)P (Bi).

It follows that Bayes rule can be extended to the law of total probability:

P (Bj|A) =
P (A|Bj)P (Bj)∑n
1=1 P (A|Bi)P (Bi)

.

Example 1.23. First, here’s a simple example that illustrates the law of total
probability: A drawer has 2 white socks and 2 blue socks. Daniel reaches in and
draws out 2 socks in succession without replacement. Let W1 = “white on the
first draw”, W2 = “white on the second draw. Likewise, let B1 = “Blue on the
first draw” and B2 =“Blue on the second draw”. A tree diagram illustrating
the events and conditional probabilities is shown in Figure 1.23

Then,

P (two white socks) = P (W1 andW2) = P (W2|W1)P (W1) =
1

3

1

2
=

1

6
,

P (two socks of the same color) = P (W1 andW2)+P (B1 andB2) =
1

6
+

1

6
=

1

3
,

P (second sock is blue) = P (B2) = P (B2|B1)P (B1)+P (B2|W1)P (W1) =
1

3

1

2
+

1

2

2

3
=

1

2
.
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Figure 7: Tree diagram for the experiment of drawing 2 socks in succession from a
drawer

Finally, using the law of total probability we can compute the probability of
getting a white sock on the first draw given that on the second draw we got a
blue sock:

P (W1|B2) = P (B2|W1)P (W1)
P (B2)

= P (B2|W1)P (W1)
P (B2|B1)P (B1)+P (B2|W1)P (W1)

=
2
3

1
2

1
3

1
2

+ 1
2

2
3

= 1/3
1/2

= 2
3

Exercise 1.3. Recall the Down syndrome example from above. Solve for the
specificity or true negative rate (P (N|Dc)) and the sensitivity or true posi-
tive rate (P (P|D)) using the law of total probability (I want a formula, not a
number). The R code for this calculation is below. Use it to find these formulae

# Another way of doing these calculations:

# Get the table of probabilities by

# elementwise division of all counts by the grand total:

probs.table <- test.results/grand.tot

print(probs.table)

# False Positive rate P(Pos | DisAb) = P(Pos AND DisAb)/P(DisAb)

P.posGdisab <- probs.table[2,1]/(probs.table[2,1]+ probs.table[2,2])

# False Negative rate

P.NegGdis <- probs.table[1,2]/(probs.table[1,1]+probs.table[1,2])
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# True Positive rate: P(Pos|Dis) = P(Pos AND Dis)/P(Dis)

P.posGdis <- probs.table[1,1]/(probs.table[1,1]+probs.table[1,2])

# True Negative rate: P(N|DisAb) = P(N AND DisAb)/P(DisAb)

P.NegGdisab <- probs.table[2,2]/(probs.table[2,1]+probs.table[2,2])

# And just to check:

print(P.posGdis)

print(1-P.NegGdis)

print(P.NegGdisab)

print(1-P.posGdisab)

Exercise 1.4. Suppose that the company that produces these tests makes pub-
licly available these results. Now, suppose also that a government inspector
must decide whether a new, randomly picked positive sample of the test be-
longs to a patient with the disease. That is, for the sample at hand, he needs
to know P (D|P). How would you compute such probability using the law of
total probability?
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1.4 Probability distributions

1.4.1 discrete case

A random variable is a numerical outcome of a random experiment (usually denoted
with an upper case letter, like X). Examples of random variables are:

• Roll two dice and let X = the sum of the two numbers that appear.

• 1 day’s growth in dry weight of a plant.

• Number of Democrats in a random sample of voters (small here in Idaho!).

The Probability Distribution of a random variable is the collection of all of
its possible outcomes and their associated probabilities i.e., for all possible outcomes
x (lower case for outcomes) we give a value to P (X = x). It is said to be a discrete
random variable if there is a finite or countable sequence of possible values x.

Example 1.24. Flip three coins and let X be the number of heads (H) that we see.
There are 8 equally likely outcomes of this coin flipping experiment:

HHH, HHT, HTH, THH, HTT, THT, TTH, TTT.

Out of these 8 outcomes, only one contains no heads (TTT ). The event TTT thus
occurs with probability 1/8. Likewise, the event HHH of having 3 heads in a row,
occurs with probability 1/8. The event of having only 1 head occurs in 3 instances
(HTT, THT, TTH) and hence, P (one head) = 3/8. Finally, the event of having two
heads also occurs in 3 out of the 8 outcomes and thus, P (two heads) = 3/8. Thus,
the number of heads after flipping a coin 3 times in a row can be modeled with a
random variable X that can take on the values 0, 1, 2 and 3 heads with probabili-
ties 1/8, 3/8, 3/8 and 1/8 respectively. The probability mass function for the random
variable X is therefore given by:

x 0 1 2 3
P (X = x) 1/8 3/8 3/8 1/8

The cumulative distribution function of any random variable (discrete,
continuous or in between) is given by:

F (x) = P (X ≤ x).

In this case we have:

F (x) =


0 if x < 0

1/8 if 0 ≤ x < 1
4/8 if 1 ≤ x < 2
7/8 if 2 ≤ x < 3
1 if 3 ≤ x

To check this, note for example that for 1 ≤ x < 2, P (X ≤ x) = P (X ∈ {0, 1}) =
1/8 + 3/8.



67

Often, more than one random variable can be defined on the same sample
space. Suppose that two discrete random variables X and Y are defined on the
same sample space and that they take on values x1, x2 . . . and y1, y2 . . . Their joint
frequency function p(xi, yj), or joint probability mass function is defined as

p(xi, yj) = P (X = xi andY = yj) = P (X = xi, Y = yj).

The following example illustrate the calculation of such joint probability mass func-
tion.

Example 1.25. A fair coin is tossed 3 times. Let X be the number of heads on the
first toss and Y the total number of heads. Then, the sample space is:

Ω = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

and the joint frequency function of X and Y is given by:

y
x 0 1 2 3
0 1/8 2/8 1/8 0
1 0 1/8 2/8 1/8

Thus, for example P (X = 0, Y = 2) = 1/8. If we wish to find the frequency function
of Y from the joint frequency function, then in general, we simply have to sum
down the appropriate column of the table.pY (y) = P (Y = y) is called the marginal
frequency function of Y :

P (Y = 0) = P (Y = 0, X = 0) + P (Y = 0, X = 1) = 1
8

+ 0 = 1
8

P (Y = 1) = P (Y = 1, X = 0) + P (Y = 1, X = 1) = 2
8

+ 1
8

= 3
8

P (Y = 2) = P (Y = 2, X = 0) + P (Y = 2, X = 1) = 1
8

+ 2
8

= 3
8

P (Y = 3) = P (Y = 3, X = 0) + P (Y = 3, X = 1) = 0 + 1
8

= 1
8

Two discrete random variables X and Y are said to be independent if:

P (X = x, Y = y) = P (X = x)× P (Y = y).

Example 1.26. Consider the following joint distribution of X and Y :

Y=
X= 1 2 Tot

1 .3 .1 .4
2 .4 .2 .6

Tot .7 .3 1

Are X and Y independent? Well, let’s check if the definition above holds: First,
note that the probability that X = 1 and that at the same time Y = 2 is 0.1. That
is, P (X = 1, Y = 2) = 0.1. Now, P (X = 1) × P (Y = 2) = 0.4 × 0.3 = 0.12 6= 0.1.
Therefore we conclude that the random variables are not independent.
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Exercise 1.5. Now let the distribution function be:

Y=
X= 1 2 Tot

1 .28 .12 .4
2 .42 .18 .6

Tot .7 .3 1

Are X and Y independent?

The independence concept for a collection of events can be extended when we are
dealing with jointly distributed random variables. Consider the first example above
(example 1.26) with two jointly distributed random variables X and Y . Then the
multiplication rule for any two events written in the context of these two jointly
distributed random variables is written as:

P (X = x, Y = y) = P (X = x|Y = y)P (Y = y) = P (Y = y|X = x)P (X = x).

Example 1.27.

P (X = 1, Y = 2) = P (Y = 2|X = 1)P (X = 1) =
0.1

0.4
× 0.4 = 0.1.

convince yourselves that using P (X = x, Y = y) = P (X = x|Y = y)P (Y = y) with
x = 1 and y = 2 leads to the same result.

If we fix y and look at P (X = x|Y = y) as a function of x, what we have is the
conditional distribution of X given that Y = y.

Example 1.28. Consider the following joint probability distribution for the random
variables X and Y :

Y=
X= 100 125 150 175 Tot

5 .08 .08 .06 0 .22
5.5 .08 .16 .16 .08 .48

6 0 .08 .10 .12 .30
Tot .16 .32 .32 .2 1

Then,

P (X = 5|Y = 150) =
P (X = 5, Y = 150)

P (Y = 150)
=

0.06

0.32
,

P (X = 5.5|Y = 150) =
P (X = 5.5, Y = 150)

P (Y = 150)
=

0.16

0.32
,

P (X = 6|Y = 150) =
P (X = 6, Y = 150)

P (Y = 150)
=

0.10

0.32
,

or in other words we take the third column of the table and divide it by its sum to
make it a probability distribution.
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1.4.2 Mean and variance of a discrete random variable

Suppose X is a discrete random variable that takes on the values in S = 0, 1, 2, 3, . . . , n
with probabilities P (X = 0), P (X = 1), . . . , P (X = n). Then, the mean of X,
denoted E[X] (Expected value of X) is defined to be:

E[X] =
∑
x∈S

xp(x)

= 0× P (X = 0) + 1× P (X = 1) + . . .× P (X = n). (17)

Example 1.29. For the random variable X = “Flip three coins and let x be the
number we get”, the mean is computed as follows:

E[X] = 0× 1

8
+ 1× 3

8
+ 2× 3

8
+ 3× 1

8
=

12

8
=

3

2
.

Generally, if h(X) is a function of a discrete random variable X, then

E[h(X)] =
∑
x∈S

h(x)P (X = x). (18)

In particular, if h(X) = X2, then E[X2] =
∑

x∈S x
2P (X = x). (Watch out, E[X2] 6=

E[X]2!).
The variance of X, Var[X] it’s a measure of the average square departures from the
mean of X, E[X] = µ. That is, it is the E[h(X)] where h(X) = (X − µ)2.

Var[X] = E
[
(X − E[X])2

]
=

∑
x∈S

(x− µ)2P (X = x). (19)

Example 1.30. For the above example, we had E[X] = µ = 3
2
, so the variance of X

is:
Var[X] =

(
0− 3

2

)2 1
8

+
(
1− 3

2

)2 3
8

+
(
2− 3

2

)2 3
8

+
(
3− 3

2

)2 1
8

= 2
(

3
2

)2 1
8

+ 2
(

1
2

)2 1
8

= 3
4

Now, in the above definition of the variance, replace µ by E[X] and develop
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the square in the sum to get:

Var[X] =
∑
x∈S

(x− E[X])2 P (X = x)

=
∑
x∈S

(
x2P (X = x)− 2xE[X]P (X = x) + E[X]2P (X = x)

)
=
∑
x∈S

x2P (X = x)−
∑
x∈S

2xE[X]P (X = x) +
∑
x∈S

E[X]2P (X = x)

=

E[X2]︷ ︸︸ ︷∑
x∈S

x2P (X = x)−2E[X]

E[X]︷ ︸︸ ︷∑
x∈S

xP (X = x) +E[X]2

1︷ ︸︸ ︷∑
x∈S

P (X = x)

= E
[
X2
]
− 2E[X].E[X] + E[X]2

= E
[
X2
]
− E[X]2.

(20)

Hence, another way to compute the variance of X, if it exists, is:

Var[X] = E
[
X2
]
− E[X]2. (21)

Exercise 1.6. Use eq. 21 to compute the variance of X.

1.4.3 Rules for expected values and variances

Here are some useful facts about means and variances. Most of them are illustrated
using discrete random variables for simplicity, but these rules are also valid for con-
tinuous random variables. If a and b are constants, then:

E[aX + b] = aE[X] + b. (22)

For example, if E[X] = 0 and Y = X+b, then E[Y ] = E[X]+b = b. In general,
if Xi, i = 1, 2, . . . n are jointly distributed random variables with expectations E[Xi]
and Y is a linear function of the Xi, Y = a+

∑n
i=1 biXi, then

E[Y ] = a+
n∑
i=1

biE [Xi] . (23)

Using the same arguments to derive eq. (21), one can show that, if a and b are
constants, then

Var[aX + b] = a2Var[X]. (24)

Proof: Let Y = aX + b. Since E[Y ] = aE[X] + b, then

E[(Y − E[Y ])2] = E
{

[aX + b− aE[X]− b]2
}

= E
{
a2 [X − E[X]]2

}
= a2E

{
[X − E[X]]2

}
= a2Var[X]
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Now, let X and Y be two random variables with means µX and µY respectively.
Furthermore, let σ2

X and σ2
Y denote their variances. Then, ifX and Y are independent,

Var[X + Y ] = Var[X] + Var[Y ]. (25)

However, if they are not independent,

Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X, Y ], (26)

where
Cov[X, Y ] = E [(X − µX)(Y − µY )] (27)

is the covariance of the two random variables X and Y .The covariance between
these two random variables is a measure of their joint variability, or their degree of
association. Eq.27 can be expanded and re-written as

Cov[X, Y ] = E[XY ]− E[X]E[Y ], (28)

where E[XY ] =
∑

x

∑
y xyP (X = x, Y = y). In particular, note that if X and Y are

independent, then E[XY ] = E[X]E[Y ] and the covariance is 0. The converse however
is not true in general.

The correlation coefficient, usually denoted ρ, is a dimensionless quantity
that varies between −1 and 1 that is defined in terms of the covariance. From the rules
from variances and expected values, it is easily seen that ifX and Y are both subjected
to linear transformations (such as changing their units from inches to meters), the
covariance value can change but the correlation coefficient does not change, since it
does not depend on the units of measurement. It follows that ρ is in many cases a
more useful measure of association than the covariance (Rice 1995). ρ is defined to
be:

ρ =
Cov(X, Y )√
Var[X]Var[Y ]

. (29)

It then follows that eq. (26) can be re-written as:

Var[X + Y ] = Var[X] + Var[Y ] + 2ρσXσY . (30)

If we have more than two random variables and we need to compute the covariance of
a linear combination of those random variables, the following facts are needed: first,
suppose that U = a +

∑n
i=1 biXi, V = c +

∑n
j=1 djYi, where X ′is and the Y ′j s are

random variables and a, the bj’s and the dj’s are all constants. Then,

Cov(U, V ) =
n∑
i=1

n∑
j=1

bidjCov(Xi, Yj).

The formula above leads to a general way to compute the variance of a linear combi-
nation of random variables:

Var

(
a+

n∑
i=1

biXi

)
=

n∑
i=1

n∑
j=1

bibjCov(Xi, Xj).
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Finally, if the Xi are all independent, then Cov(Xi, Xj) = 0 for i 6= j and

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi).

1.4.4 Elements of counting

First, we do a little bit of counting to understand the binomial formula

Example 1.31. A man has 4 pairs of pants and 6 shirts. In how many ways can
he get dressed? 4 × 6. To see this, just make a 2 by 2 table listing all the possible
outcomes.

Multiplication rule: In general, suppose that m experiments are performed
in order and that no matter what the outcomes of experiments 1, . . . , k − 1 are,
experiment k has nk possible outcomes. Then, the total number of outcomes is
n1 × n1 × . . .× nk . . .× nm.

Exercise 1.7. A restaurant offers soup or salad to start, and has 11 entrees to choose
from, each of which is served with rice, baked potato or zuchini. How many meals
can you have if you can choose to eat one of their 4 desserts or have no dessert?

First of all, note that we have here 4 experiments: choosing a start, an entrée,
a side dish and a dessert. So, to get the answer we just apply the multiplication rule

number of meals = 2× 11× 3× 5 = 330.

Q: How many ways can 5 people stand in line?
To answer this question, we think about building the line up one person at a

time starting from the front. There are 5 people we can choose to put at the front
of the line. Having made the first choice, we have 4 possible choices for the second
position. Similarly, we have 3 possible choices for the third position, 2 for the fourth
and 1 for the last. Invoking the multiplication rule we get:

5× 4× 3× 2× 1 = 5!

and in general, with n items we define n factorial as

n(n− 1).(n− 2) . . . 2.1 = n!

Example 1.32. Twelve people belong to a club. How many ways can they pick a
president, vice-president, secretary and treasurer? We have 12 choices for president.
Once this choice has been done, we have 11 choices for vice-president, then we have
10 positions for secretary and finally only 9 left for treasurer. Therefore:

number of ways to pick the 4 offices = 12× 11× 10× 9.
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In general, if we have k offices and n club members, then the answer is:

n.(n− 1).(n− 2) . . . (n− k + 1) (31)

Multiplying and dividing the above by (n− k)! we have:

n.(n− 1).(n− 2) . . . (n− k + 1)
(n− k)!

(n− k)!
=

n!

(n− k)!
,

which is the expession for the permutation of n things taken k at a time. We’re
almost there. Here is an exercise to practice the above formula:

Exercise 1.8. In a horse race, the first three finishers are said to “Win”, “Place”
and “Show”. How many finishes are possible for a race with 11 horses?

In the problem above, the order in which the choices were made was important
(show example). Next we consider the case in which the choice made is not important:

Example 1.33. A club has 23 members. How many ways can they pick 4 people to
be on a committee to plan a party?

By the previous example we imagine making the committee members stand
in line which by eq. 31 can be done in 23.22.21.20 ways. However the number
of different committees is less than that, because here we are not interested in the
individual positions. Hence, noting that each committee can stand in line in 4! ways,
to get the total number of committees we divide 23.22.21.20 by 4!, that is:

23.22.21.20

4!
= 23.11.7.5 = 8855.

In general, suppose we want to pick k people out of a group of n, then, the
number of combinations of n things taken k at a time is

n.(n− 1).(n− 2) . . . (n− k + 1)

k!
=

n!

k!(n− k)!
(32)

1.4.5 Continuous random variables

Although in this course a lot of time is spent developing the most important contin-
uous distributions and its applications through examples in ecology and genetics, in
what follows some of the most basic facts about two continuous probability distribu-
tions are outlined. These distributions are the uniform distribution and the normal
distribution.
A continuous random variable X is real-valued. The possible values for Y, form
intervals of real numbers (which are uncountable infinite sets of possible values).
Probability density function (pdf, or probability curve): The probability that
the continuous random variable X takes a value in the interval (a, b) is the area under
the pdf f(x) between a and b:

P (a ≤ Y ≤ b) =)

∫ b

a

f(x)dx = area under the pdf curve between a and b.
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Note two things. First, the area under the entire pdf is 1. If the random variable X
has support from −∞ to +∞, then∫ +∞

−∞
f(x)dx = 1.

Second, P (X = x) = 0 for any x in the support of X.
The expected value of mean of X is a measure of the center of the distribution of X.
It is a constant indicating where the pdf would balance on a fulcrum, where the value
of x acts as weights. If X is a continuous random variable with support in −∞,∞,
then

E[X] =

∫ ∞
−∞

xf(x)dx.

(33)

The variance of a continuous random variable X is also an expectation: it measures
the spread of the distribution and is computed as the expected value of a squared
deviation of X from its mean µ = E[X]:

Var[X] =

∫ ∞
∞

(x− µ)2f(x)dx

= E[(X − µ)2] = E[X2]− E[X]2. (34)

The concept of expectation is also important to describe other two well known quan-
tities describing the shape of a continuous distribution: the skewness and the kur-
tosis. The skewness is a measure of asymmetry of the distribution and the kurtosis
is a measure of the peakedness of the distribution. If µ = E[X] and
sigma2 = V[X], then the skewness is given by

E

[(
X − µ
σ

)3
]

and the kurtosis is given by
E [X4]

σ2
.

Example 1.34. The pdf of the Uniform distribution on (a, b) is given by

f(x) =
1

b− a
for a ≤ x ≤ b and 0 otherwise.

Since dx2

dx
= 2x, it is easy to see that the expected value of the uniform distribution

X between 0 and 1 is:

E(X) =

∫ 1

0

xf(x)dx =

∫ 1

0

x(1)dx =

[
1

2
x2

] ∣∣∣∣∣
1

0

=

[
1

2
(1)2 − 1

2
(0)2

]
=

1

2
.
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If X ∼ Unif(0, 1), then Y = (b − a)X + a is uniformly distributed between a and b.
From the expected value of a uniform distribution in (0, 1) we can easily move to the
expected value of a uniform distribution Y between a and b:

E(Y ) = E [(b− a)X + a] = (b− a)E[X] + a = (b− a)
1

2
+ a =

a+ b

2
.

The variance of the uniform distribution in (0, 1) is given by

Var[X] =

∫ 1

0

(
x− 1

2

)2

(1)dx

=

∫ 1

0

[
x2 − x+

(
1

2

)2
]
dx

=

∫ 1

0

x2dx−
∫ 1

0

xdx+

∫ 1

0

1

4
dx

=

[
1

3
x3

] ∣∣∣∣∣
1

0

−
[

1

2
x2

] ∣∣∣∣∣
1

0

+

[
1

4
x

] ∣∣∣∣∣
1

0

=
1

3
− 1

2
+

1

4
=

1

12
. (35)

In the homework we will work with the Normal distribution.

1.4.6 Sampling distributions

Definitions and concepts:

1. A statistical universe is a defined set of elements in which you are interested.
Ex.: Adult women in the US.

2. A statistical population is the set of values associated with each of the
elements of the universe. Ex. the height of women in the US. Note that this is
a collection of values, not individuals.

3. A probability distribution serves as a model for a population of quantities. Ex.
The normal distribution serves as a model for the collection of all heights of
adult women in the US:
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4. Parameters are fixed quantities (usually unknown) that characterize the prop-
erties of the distribution. Ex. The true mean µ and variance σ2 of the heights
of adult women in the US. Usually a researcher is interested in making the best
guess about the value of these parameters.

5. It is often impossible to measure all the values of the population of interest.
A sample is a collection of measured values from that population. A Simple
Random Sample (SRS hereafter) is a sample selected in such a way that all
possible samples were equally likely to be selected.

Ex.: Let our universe be the last 6 individuals of a bird population. Let our statistical
population (the quantities associated with the birds that we are interested in) be their
tail length in cms. Let these lengths be, for the sake of simplicity, 1, 2, 3, 4, 5, 6 cms.
Assume each individual value is equally likely to be sampled and its tail can be
measured exactly. Then, since each value occurs once, the population of tail lengths
is described by the distribution Y below:
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Outcome of rolling a dice
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Figure 8: Probability distribution for Y : this is identical to the pmf of the outcome
of rolling a dice.

What are the Expected value and variance of Y ?

E[Y ] =
6∑

k=1

k × P (Y = k)

= 1(1/6) + 2(1/6) + 3(1/6) + 4(1/6) + 5(1/6) + 6(1/6)
= 3.5
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and

V ar[Y ] =
6∑

k=1

(k − 3.5)2 × P (Y = k)

= (1− 3.5)2(1/6) + (2− 3.5)2(1/6) + . . .+ (6− 3.5)2(1/6)
= 2.916667

Then E[Y ] = µ = 3.5 and V ar[Y ] = σ2 = 2.916667.
Now, suppose we take a SRS of size n. Then, the experiment “I capture a

bird in the ith occasion, measure (exactly) its tail length and put it back where it
was”, will be an outcome from the random variable Yi, and the outcome of sampling
n times will be the outcome of the random variables Y1, Y2, . . . , Yn, which are pairwise
independent and identically distributed to Y above.

Now suppose that we take k samples of size 2. That is, we reach into our
universe and sample 2 individual values, one after the other, k times. Each time I
repeat the experiment, we expect to get different outcomes. Then, how many different
samples of size n = 2 can I take? Well, I have 6 possible choices for the first sample
and 6 possible choices for the second sample, then the answer is 36. Suppose that for
each of these 36 different samples of size 2 we average the measurements. Then we
have:

1+1
2 = 1 2+1

2 = 1.5 3+1
2 = 2 4+1

2 = 2.5 5+1
2 = 3 6+1

2 = 3.5
1+2
2 = 1.5 2+2

2 = 2 3+2
2 = 2.5 4+2

2 = 3 5+2
2 = 3.5 6+2

2 = 4
1+3
2 = 2 2+3

2 = 2.5 3+3
2 = 3 4+3

2 = 3.5 5+3
2 = 4 6+3

2 = 4.5
1+4
2 = 2.5 2+4

2 = 3 3+4
2 = 3.5 4+4

2 = 4 5+4
2 = 4.5 6+4

2 = 5
1+5
2 = 3 2+5

2 = 3.5 3+5
2 = 4 4+5

2 = 4.5 5+5
2 = 5 6+5

2 = 5.5
1+6
2 = 3.5 2+6

2 = 4 3+6
2 = 4.5 4+6

2 = 5 5+6
2 = 5.5 6+6

2 = 6

Each of these means is a statistic: a quantity calculated from the sample,
usually for the purpose of estimating an unknown parameter. Furthermore, note that
each possible value of the statistic has an associated probability of occurrence. For
example, the value 1.5 occurs 2 out of the 36 total number of different outcomes.
So its associated probability is 2/36. Hence, the statistics, such as the sample
mean are themselves random variables!!!. The probability distribution defined
by the possible values of the sample mean and their associated probabilities define
the exact sampling distribution of the sample mean Ȳn:
This is why using capital letter for random variables is important! Not doing it keeps
us from fully understanding that a statistic is a random variable!!!
Examples of statistics: If a sample of size n is modeled using n independent and
identically distributed (iid) random variables Y1 . . . Yn, then

• The sample mean of size n:

Ȳn =
1

n
(Y1 + Y2 + . . .+ Yn) .
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Ȳn P (Ȳn = ȳ)
1 1/36

1.5 2/36
2 3/36

2.5 4/36
3 5/36

3.5 6/36
4 5/36

4.5 4/36
5 3/36

5.5 2/36
6 1/36

• The sample variance for a size n:

S2 =
1

(n− 1)

[(
Y1 − Ȳn

)2
+
(
Y2 − Ȳn

)2
+ . . .+

(
Yn − Ȳn

)2
]

Note that, here, because our population was very small, we could easily list all
the possible values of a sample mean of size n = 2. However, it is often the
case that the population is large enough so that it is virtually impossible to list all
the possible values of the sample mean, for a particular n. In that case, we can at
best make an Estimate of the sampling distribution of the sample mean. A
very important theorem, the Law of Large Numbers, tells us that the estimation of
that sampling distribution improves as the sample size increase.

Now, because we are trying to make inferences about the population, it is of
interest to know the properties of the sampling distribution of the sample mean.

Exercise 1.9. Compute the expected value and the variance of Ȳn above. These
values should be equal to E[Ȳn] = 3.5 = µ and Var[Ȳn] = 1.4583 = 2.9166667

2
= σ2

n
.

Here are the 4 most important properties of the sampling distribution of the
sample mean:

1. Let Y1, Y2, . . . , Yn be iid random variables with mean µ and variance σ2. Let
Ȳn = Y1+Y2+...+Yn

n
, then E

[
Ȳn
]

= µ :

E
[
Ȳn
]

= E

[
Y1 + Y2 + . . .+ Yn

n

]

=
1

n
E [Y1 + Y2 + . . .+ Yn]

=
1

n
E [nYi]

=
1

n
nE [Yi]

= µ.
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2.

Var
[
Ȳn
]

=
σ2

n
.

Var
[
Ȳn
]

= Var

(
1

n

n∑
i=1

Yi

)

=

(
1

n

)2

Var

(
n∑
i=1

Yi

)

=

(
1

n

)2

nVar (Y1)

=
σ2

n

(36)

3. The Law of large numbers says that the sample mean X̄n is close to the
mean µ of the underlying population when the sample size n is large. This
implies, that, if we want to determine the average height of the 21 year old
males in the US, we do not have to measure the height of all of the more than
1 million people in that category, but instead, we can estimate this quantity
by measuring the heights of say, 1000 individuals. How close will the mean of a
sample of size 1000 will be to the mean of the underlying population? We will
deal with this question in a bit. Formally, the Weak Law of Large Numbers
is:

Suppose X1, X2, . . . , Xn are independent and identically distributed random
variables with common mean EXi = µ, and E|Xi| <∞. Then, as n→∞,

P
(
|X̄n − µ| > ε

)
→ 0, for all ε > 0.

(We say then that X̄n converges to µ in probability). If X̄n is thought of as an
estimate of µ, this property is called statistical consistency.

Now, Chebyshev’s inequality let us put a bound on the probability that the
sample mean will be ε units apart from the true population mean given a sample
of size n:

P
(
|X̄n − µ| ≥ ε

)
≤ VarX̄n

ε2
=

σ2

nε2

Example 1.35. How large does my sample size needs to be? Chebyshev’s
inequality let us find the answer to that very common question in biological
experiments. Suppose we flip a coin n = 10000 times and let Xi be 1 if the
ith toss is a Head or 0 otherwise, so that X̄n is the fraction of the first n
tosses that result in Heads. The Xi are Bernoulli trials with success probability
P (Xi = 1) = p = 1

2
mean and variance:
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E[Xi] = P (Xi = 1) =
1

2
; Var[Xi] = p(1− p) =

1

4
.

Taking ε = 0.01 and using Chebyshev’s inequality we get:

P

(∣∣∣∣X̄n −
1

2

∣∣∣∣ ≥ 0.01

)
≤ 1/4

(0.01)2104
=

1

4
.

Since a fourth seems too high for a bound on the probability that the sample
mean will be ε units apart from the true population mean given a sample of
size n, we have to keep flipping coins to get a tighter distribution of the sample
mean! In particular, since that bound is exactly σ2

nε2
, and if we want to have a

probability bound of, say δ = 0.10 that the sample mean will be within ε units
apart from the true population mean, we can easily solve for what the sample
size needs to be in order to reach that bound:

n =
σ2

δε2
=

1/4

(0.10)(0.01)2
= 25000

The next theorem is motivated by the question: If X1, X2 . . . are iid random
variables, what’s the distribution of X1 +X2? of X1+X2

2
?

4. The Central Limit Theorem

Suppose X1, X2, . . . , Xn are any independent and identically distributed random
variables with common mean EXi = µ, and variance σ2 <∞. Then, as n→∞,

P

(
X̄n − µ
σ/
√
n
≤ z

)
→ P (Z ≤ z), where Z ∼ N(0, 1).

In other words,X̄n will converge to a normal distribution N
(
µ, σ

2

n

)
.

Let Sn = X1 + X2 + . . . + Xn. Then, E[Sn] = nµ and V ar[Sn] = nσ2. Then,
the CLT also says that, if Xi has any distribution, then

Sn → N(nµ, nσ2).

In fact, note that often n does not have to be very large for that convergence to
occur. If X̄n is thought of as an estimate of µ, this property is called asymptotic
normality


