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Abstract 6	  

During the 20th century, population ecology and science in general relied on two very 7	  
different statistical paradigms to solve its inferential problems: error statistics (also 8	  
referred to as classical statistics and frequentist statistics) and Bayesian statistics.  A great 9	  
deal of good science was done using these tools, but both schools suffer from technical 10	  
and philosophical difficulties.  At the turning of the 21st century (Royall, 1997, Lele 11	  
2004), evidential statistics emerged as a seriously contending paradigm.  Drawing on and 12	  
refining elements from error statistics, likelihoodism, Bayesian statistics, information 13	  
criteria, and robust methods, evidential statistics is a statistical modern synthesis that 14	  
smoothly incorporates model identification, model uncertainty, model comparison, 15	  
parameter estimation, parameter uncertainty, pre-data control of error, and post-data 16	  
strength of evidence into a single coherent framework.  We argue that evidential statistics 17	  
is currently the most effective statistical paradigm to support 21st century science. 18	  
Despite the power of the evidential paradigm, we think that there is no substitute for 19	  
learning how to clarify scientific arguments with statistical arguments. In this paper we 20	  
sketch and relate the conceptual bases of error statistics, Bayesian statistics and evidential 21	  
statistics.  We also discuss a number of misconceptions about the paradigms that have 22	  
hindered practitioners, as well as some real problems with the error and Bayesian 23	  
statistical paradigms solved by evidential statistics.  24	  
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Introduction 29	  

We were very pleased when we were invited to present at the “Statistics in Population 30	  

Ecology” symposium.  The use of statistics in science is a topic dear to both of our hearts 31	  

and has been the focus of both of our research programs for years.  We were humbled and 32	  

frightened by the later request, that as the first presentation in the symposium we should 33	  

give an overview introducing not only our field of Evidential Statistics, but also Error 34	  

Statistics, and Bayesian Statistics.  We are well aware of the hubris of trying to define 35	  

essentially all of statistics in a single essay, but we ask the readers’ indulgence because 36	  

we are just following instructions.   37	  

These are our ideas that we have come to through decades of struggling to make 38	  

sense of ecology through statistics.  It will be clear from the other papers in this special 39	  

issue of Population Ecology that there are other viewpoints on the use of statistics in 40	  

ecology.  Nevertheless, we offer these ideas up to the readers in the hope that they may 41	  

help some with their own struggle to support their scientific endeavors through statistics. 42	  

Technological tools have historically expanded the horizons of science. The 43	  

telescope gave us the skies. The microscope gave us the world’s fine structure. The 44	  

cyclotron gave us the structure of matter. In our opinion, perhaps the ultimate 45	  

technological tool helping scientists see nature is statistics. As we will see, it is not an 46	  

exaggeration to state that statistics gives us all of science. Although mathematics, and in 47	  

particular, probability and statistics, have been recognized many times as a fundamental 48	  

tool ecologists can use to learn from the natural world (Underwood 1997, Cohen 2004), 49	  

our central tenet is that more than just technical facility, an effective use of this tool 50	  



requires learning to filter scientific arguments through the sieve of statistical 51	  

argumentation.   52	  

Despite its enormous power, there is great confusion about statistics among 53	  

ecologists, philosophers and even statisticians.  This confusion is terminological, 54	  

methodological, and philosophical.  As the statistician Richard Royall (2004) has said: 55	  

“Statistics today is in a conceptual and theoretical mess.”  That doesn’t mean that 56	  

statistics isn’t helpful, nor does it mean that scientific progress isn’t being made. 57	  

Scientists have a phenomenal ability to “muddle through” (Lindblom, 1959) with 58	  

whatever tools they have.  Our goal in this paper is to help working scientists understand 59	  

statistical science, and thereby help them muddle through more effectively.  60	  

More concretely the goals of this paper are: 1) To sketch the 3 major statistical 61	  

paradigms that can be used by researchers, and in so doing introduce to many readers 62	  

evidential statistics as a formal inferential paradigm that integrates control of error, model 63	  

identification, model uncertainty, parameter estimation and parameter uncertainty. 2) To 64	  

clarify some of the major confusions infesting arguments among paradigm adherents. 3) 65	  

To discuss a few real problems arising in the error statistical and Bayesian approaches.  66	  

And, 4) To raise some ideas about statistics and science which may help scientists use 67	  

statistics well. 68	  

For more than a century a scientist wanting to make inference from experimental 69	  

or observational data was stepping onto a battlefield strongly contested by two warring 70	  

factions.  These camps are generally referred to as frequentist and Bayesian statistics. In 71	  

order to understand these factions, and given that statistics’ foundation lies in probability 72	  

theory, one must be aware that the two camps have their roots in two widely different 73	  



definitions of probability (Lindley 2000).   Already then, confusion starts because, as we 74	  

shall see in the sequel, the labels “frequentist” and “Bayesian” confound two related but 75	  

distinct arguments: one on definitions of probability and another on styles of inference.   76	  

Here, we will characterize the inferential debate as between error statistics and 77	  

Bayesian statistics. Evidential statistics has arisen as a natural response to this tension, 78	  

and has been constructed, more or less consciously, from both paradigms by 79	  

appropriating good features and jettisoning problematic features (Lele 2004b, Royall, 80	  

2004)).  With three choices the debate can shift from a winner take all struggle to a 81	  

discussion of what is most useful when dealing with particular problems. Given the scope 82	  

of topics, the discussion we present will be largely conceptual, with indicators into the 83	  

scientific, statistical, and philosophical literatures for more technical treatment. 84	  

Interpretations of Probability 85	  

The idea of probability, chance or randomness is very old and rooted in the 86	  

analysis of gambling games. In mathematics, a random experiment is a process whose 87	  

outcome is not known in advance.  One of the most boring yet simple to understand 88	  

examples of a random experiment consists of (you guessed it) flipping a coin once. From 89	  

the coin flip, we could go onwards defining the sample space of an experiment as the set 90	  

of all possible outcomes in the sample (which in the coin flipping experiment is the set 91	  

{ },Head Tail  typically denoted as Ω ), and we could give an example of an event (like 92	  

getting a “Heads” after a single coin flip).  These definitions would then set the stage for 93	  

defining what models derived from probability theory are, and explaining how these are 94	  

useful because they can be applied to any situation in which the events occur randomly.   95	  



However, we caution that even the most apparently simple of these definitions 96	  

and concepts have subtle and hidden complexities. In 2010, for instance, professor Perci 97	  

Diaconis, the well known probabilist, gave a lecture entitled “The search for 98	  

randomness”.  In it, he took a close look at some of the most primitive examples of 99	  

randomness, and yes, flipping a coin was one of them.  He showed that what we are used 100	  

to call “random”, like a coin flip, can be quite non-random. What we call and model as 101	  

randomness comes from at least 4 different sources (Guttorp 1995): 1) Uncertainty about 102	  

initial conditions, 2) Sensitivity to initial conditions, 3) Incomplete process description, 103	  

and 4) Fundamental physical randomness.    104	  

Kolmogorov’s axioms and measure theory give the tools to work with many kinds 105	  

of probabilities.  These axioms state that a probability is a number between 0 and 1 106	  

associated with a particular event in the sample space of a random experiment.  This 107	  

number is in fact a (positive) measure of the chance that the event will occur.  If A is an 108	  

event, then ( )Pr A  measures the chance that the event will occur. Furthermore, if Ω  is 109	  

the sample space of our random experiment, ( )Pr 1Ω = . Finally, if two or more events 110	  

are disjoint (i.e., do not have any outcomes in common), the probability of either of these 111	  

events occurring, or all of them, is equal to the sum of the individual probabilities of each 112	  

of these events.    113	  

Any system that satisfies the requirements of the preceding paragraph is a 114	  

probability and can be manipulated according to the rules of probability theory. However, 115	  

what these manipulations mean will depend on how probability is interpreted. There are 5 116	  

major schools of interpretation of probability: classical (or Laplacian), logical, 117	  

frequentist, subjective, and propensity. All of them can be and have been critiqued (see 118	  



Hajek 2012).  When we think about science we use a combination of the frequentist, 119	  

propensity, and subjective interpretations so for the purposes of this essay, we will give a 120	  

brief introduction to only these three interpretations of probability. Laplacian probability 121	  

is discussed by Yamamura (2015). 122	  

The frequency interpretation of probability itself has two flavors. The finite 123	  

frequency interpretation of probability states that the probability of an event is just the 124	  

proportion of times that event occurs in some finite number of trials (Venn 1876). The 125	  

countable frequency interpretation of probability is as follows: if the random process is 126	  

hypothetically repeated, then the long-run proportion of times an event occurs is the 127	  

probability of the event (von Mises 1928). 128	  

Propensity probability (Peirce, 1878; Popper, 1959) is simply the innate or natural 129	  

tendency of an event to occur in an experimental or observational setting.  If you flip a 130	  

coin, there is an innate tendency for it land showing heads. Similarly, a radioactive atom 131	  

has an innate tendency to decay in a given time period.   132	  

In our opinion, combining these two frequency definitions of probability with the 133	  

propensity definition of probability creates an effective framework for learning from 134	  

nature. While we cannot know this propensity fully, we can approximate it using finite 135	  

frequencies.  On the other hand, if one has a model or models of the workings of nature, 136	  

one can calculate the long run frequency probabilities of events under the model.  It is the 137	  

matching of finite frequency approximations of event propensities with model based long 138	  

run frequency calculations of event probabilities that form the bases of inference. 139	  

The subjective interpretation of probability involves personal statements of belief 140	  

regarding the chance of a given event, with beliefs being constrained to vary between 0 141	  



and 1. Subjective probabilities vary from individual to individual. A betting scenario is an 142	  

ideal representation for this interpretation: if you bet ‘a’ dollars to my ‘b’ dollars that 143	  

your favorite horse will win a race, then your probability that this horse wins the race is 144	  

( )Pr / ( )win a a b= + . 	  145	  

The different interpretations of probability described constitute fundamentally 146	  

different approaches to representing the world.  Consequently they lead to intrinsically 147	  

different ways of carrying a statistical analysis in science.  Explicating these differences 148	  

is the goal of this article. 149	  

	  150	  

Fisher’s foundational contribution to statistics using probability 151	  

Fisher’s likelihood function lies at the very foundation of statistics as we know it 152	  

today, and extensive book-length treatments and papers have been written about it (e.g. 153	  

Edwards, 1992; Pawitan 2001). To introduce likelihood here, we consider the example 154	  

about a simple experiment in which a series of success/failure trials are carried and their 155	  

results recorded. These types of experiments arise often in a wide array of scientific 156	  

disciplines, such as medical trials where a drug is tested or wildlife management in mark-157	  

recapture studies. How do we go about writing a probability model for an experiment of 158	  

this type? Can we build a statistical model to explain how the data arose?  159	  

The data being the number of successes recorded in a given experiment, it is 160	  

natural to try to model these counts as the outcome of a binomial random variable X. By 161	  

so doing, the set of all possible outcomes, or sample space, is formally associated with a 162	  

set of probabilities.  These sample space probabilities naturally add up to one. Let n be 163	  

the number of (independent) trials carried out (set a priori) and x the number of successes 164	  



actually observed in one realization of the experiment. Assume that the probability of 165	  

success p in each trial remains unchanged. Hence, the probability of a particular sequence 166	  

of x successes and n-x failures is !!p
x(1− p)n−x  and it follows that 167	  

	   ( ) ( ) ( )Pr 1 n xxnX x p px
−= = − 	  	  168	  

The probabilities depend critically on the parameter p. Thus this model is useless for 169	  

prediction and understanding the nature of the trials in question if the value of p is not 170	  

estimated from real data. Once estimation is achieved, we may seek to answer questions 171	  

such as: can the success probability be assumed to be constant over a given array of 172	  

experimental settings? Using the same example, Fisher (1922) argued that, given an 173	  

outcome x, graphing 
!!
n
x

⎛

⎝⎜
⎞

⎠⎟
px 1− p( )n−x  as a function of the unknown p, would reveal how 174	  

likely the different values of p are in the face of the evidence. This is a switch in focus 175	  

from the descriptive inference about the data common at the time to inference about the 176	  

process generating the data. Noting that the word ‘probability’ implies a ratio of 177	  

frequencies of the values of p and that “about the frequencies of such values we can know 178	  

nothing whatever”, Fisher spoke instead of the likelihood of one value of the unknown 179	  

parameter p being a number of times bigger than the likelihood of another value. He then 180	  

decided to define the likelihood that any parameter should have any assigned value as 181	  

being proportional to the probability of observing the data at hand if this was so. Thus, 182	  

following Fisher, we refer to the function 183	  

	  
   
ℓ p( ) = c. n

x

⎛

⎝⎜
⎞

⎠⎟
px 1− p( )n−x

	  	  184	  

	   	  	  185	  

where ‘c’ is a constant that doesn’t depend on the parameter of interest as the likelihood 186	  



function of p (see for instance Kalbfleisch 1985).  This function uses the relative 187	  

frequencies (probabilities) that the values of the hypothetical quantity p would yield the 188	  

observed data as support for those hypothetical values (Fisher 1922). The distinction 189	  

between likelihood and probability is paramount, because as a function of p, 
! 
ℓ p( ) is not a 190	  

probability measure (i.e., it does not integrate to 1).  191	  

The value !!p̂  that maximizes this function is called the Maximum Likelihood 192	  

(ML) estimate of the parameter p. The graphing of the likelihood function supplies a 193	  

natural order of preference among the possibilities under consideration (Fisher 1922). 194	  

Such order of preference agrees with the inferential optimality concept that prefers a 195	  

given probability model if it renders the observed sample more probable that other 196	  

tentative explanations (i.e. models) do.  Thus, by maximizing the likelihood function 197	  

derived from multiple probability models (in this case values of p) as hypotheses of how 198	  

the data arises, one is in fact seeking to quantify the evidential support in favor of one 199	  

probabilistic model (value of p) over the others (other values of p  in our example. See 200	  

introductions to the likelihood function by Fisher 1922, Kalbfleisch 1985, Pawitan 2001, 201	  

Sprott 2000, Royall 2004).   202	  

Finally, because likelihood ratios are ratios of frequencies, they have an objective 203	  

frequency interpretation that can be verified by computer simulations.  Stating that the 204	  

relative likelihood of one value 1p  of the unknown parameter over another value 2p , 205	  

written as    ℓ p1( ) / ℓ p2( ) ,  is equal to a constant k means that the observed data will occur 206	  

k times more frequently in repeated samples from the population defined by the value 1p  207	  

than from the population defined by 2p  (Sprott 2000). Because of this meaningful 208	  



frequentist interpretation of likelihood ratios, authors like Barnard (1967), or Sprott 209	  

(2000) stated that the best way to express the order of preference among the different 210	  

values of the parameter of interest using Fisher’s likelihood is by working with the 211	  

relative likelihood function, given by 212	  

	  

   

R( p;x) =
ℓ p;x( )

sup
p
ℓ p;x( ) =

ℓ p;x( )
ℓ p̂;x( ) . 	  	  213	  

As we will see later, this frequency interpretation of the likelihood ratios is the 214	  

fundamental basis for likelihood inference and model selection. 215	  

At this point, it may be useful to expand on the understandings in this paper of the 216	  

terms “model”, “parameter”, and “hypothesis”.  For us, a model is a conceptual device 217	  

that explicitly specifies the distribution of data.  To say for instance that the data are 218	  

“gamma distributed” is a only a vague model, inasmuch the values of the shape and rate 219	  

parameters of this mathematical formulation of a hypothesis are not specified. Here, we 220	  

adhere to the formalism where biological hypotheses aren’t fully specified as a 221	  

mathematical model until the parameter values of the probabilistic model are themselves 222	  

explicitly defined. This requisite is not a mere formalism because different parameter 223	  

values, or sets of values, truly index different families of models. Hypotheses then, 224	  

become posited statements about features of the mathematical models that best describe 225	  

data. 226	  

	  227	  

Fisher’s principles of experimentation and testing assertions in science 228	  

In R.A. Fisher’s experimental design book (1971) there is a ten pages account of an 229	  

experiment where he laid out some of the most important principles of experimentation. 230	  



The experiment is famously known as “Fisher’s lady tasting tea experiment”. This 231	  

account tells the story of a lady that claimed to be able to distinguish between a tea cup 232	  

which was prepared by pouring the tea first and then the milk and another tea cup where 233	  

the milk was poured first. Fisher then wonders if there is there a good experiment that 234	  

could be devised in order to formally test the lady’s claim using logical and mathematical 235	  

argumentation. Although seemingly trivial, this setting where a scientist, and in 236	  

particular, an ecologist claims to be able to distinguish between two types of 237	  

experimental units is a daily reality.  238	  

Decades ago, in the late 80’s, one of us was faced with a similar experimental 239	  

problem.  While in Japan doing research on seed-beetles, MLT taught himself to visually 240	  

distinguish the eggs of Callosobruchus chinensis and C. maculatus to the point where he 241	  

asserted that he could indeed make such distinction. Doubting himself (as he should 242	  

have), MLT recruited the help of prof. Toquenaga to set up tea-lady like blind trials to 243	  

test his assertion (except there was no beverage involved and the subject certainly isn’t a 244	  

lady, and perhaps not even a gentleman). In this case, testing the researcher’s claim 245	  

involved giving the facts –the data– a chance of disproving a skeptic’s view (say, prof. 246	  

Toquenaga’s position) that the researcher had no ability whatsoever to distinguish 247	  

between the eggs of these two beetle species.  248	  

This tentative explanation of the data is what is generally called “the null 249	  

hypothesis”. To Fisher, the opposite hypothesis that some discrimination was possible 250	  

was too vague and ambiguous in nature to be subject to exact testing and stated that the 251	  

only testable expectations were “those which flow from the null hypothesis” (Fisher 252	  

1956). For him it was only natural to seek to formalize the skeptic’s view with an exact 253	  



probabilistic model of how the data arose and then ponder how tenable such model would 254	  

be in the face of the evidence.  By so doing, he was adopting one of the logic tricks that 255	  

mathematicians use while writing proofs: contradiction of an initial premise.  Applied to 256	  

this case, and given that MLT had correctly classified 44 out 48 eggs, the trick goes as 257	  

follows:  First we suppose that the skeptic is correct and that the researcher has no 258	  

discrimination ability whatsoever, and that his choices are done purely at random, 259	  

independently of each other. Then, because the seed-beetle experimental data is a series 260	  

of classification trials with one of two outcomes (success or failure), we naturally model 261	  

the skeptic’s hypothesis using a binomial distribution X counting the number of 262	  

successfully classified eggs, with a probability of success =0.50p . Next we ask, under 263	  

this model, what are the chances of the researcher being correct as often as 44 times out 264	  

of 48 (the observed count) or even more? According to the binomial model, that 265	  

probability is about 8*10-10. That is, if the skeptic is correct, a result as good or better 266	  

than the one actually recorded would be observed only about 0.000008% of the time 267	  

under the same circumstances.   Hence, either the null hypothesis is false, or an extremely 268	  

improbable event has occurred.  269	  

The proximity to 0 of the number 0.000008% (the P-value) is commonly taken as 270	  

a measure of the strength of the evidence against the null hypothesis. Such an 271	  

interpretation is fraught with difficulty, and we would advise against it. This account is 272	  

important insofar as it illustrates how the enumeration of the sample space probabilities 273	  

can be used to test via inductive inference the validity of an assertion. We also find the 274	  

researcher vs. skeptic setting (Dennis 2004) valuable in and of itself to explain Fisher’s 275	  

P-value.   276	  



 277	  

A Sketch of Error Statistics 278	  

Error Statistics (Mayo 1996) is the branch of statistics most familiar to ecologists, and 279	  

certainly to beginning ecologists.  All of the methods in this category share the 280	  

organizing principle that control of error is a paramount inferential goal. These 281	  

procedures are designed so that an analyst using them will make an error in inference no 282	  

more often than a pre specified proportion of the time. 283	  

Instead of focusing on testing a single assertion like Fisher, Neyman-Pearson 284	  

(NP) showed that it was possible to assess one statistical model (called the null 285	  

hypothesis) against another statistical model (called the “alternative hypothesis”).  A 286	  

function of potential data, T(X), is devised as a test statistic to indicate parameter 287	  

similarity to either the null hypothesis or the alternate. A critical value or threshold for T 288	  

is calculated so that if the null is true, the alternate will be indicated by T no more than a 289	  

pre-designated a proportion of the time α. The test is designed so that the null hypothesis 290	  

will be incorrectly rejected no more than a proportion α of the time.  The NP test was 291	  

designed as a data-driven choice between two competing statistical hypotheses of how 292	  

the data arose, and appears to be a straight ahead model comparison. 293	  

However, one can, as Fisher did, unravel its unexpected connections with the 294	  

Fisherian P-value.  NP’s model-choice strategy could indeed deal with vague alternatives 295	  

(or null hypotheses, for that matter), such as ``the researcher has indeed some 296	  

discrimination ability”. NP termed these “composite hypotheses”, as opposed to fully 297	  

defined “simple” statistical models. 298	  



NP’s approach proceeds as follow: the researcher implicitly concedes that the null 299	  

hypothesis could be true.  If that is the case, then the probability distribution of the test 300	  

statistic can readily be computed (either analytically or computationally).  This 301	  

computation is possible because the test statistic, by being a function of the potential 302	  

outcomes, inherits randomness from sample space probabilities.  The difference between 303	  

NP and Fisher resides in what questions they would seek to answer with this distribution. 304	  

Fisher would ask here: if the null hypothesis is true, what is the probability of observing a 305	  

value of the test statistic as extreme or more extreme (in the direction of the research 306	  

hypothesis) than the test statistic actually observed? Fisher maintained that if such 307	  

probability (the P-value) is very small, then the null model should be deemed untenable.	  308	  

NP recognized on the other hand that in order to make a decision one could 309	  

simply assume that the skeptic has a fixed threshold for such probability. If, say, the 310	  

probability of observing a value of the test statistic as large or larger than the one 311	  

recorded is smaller than 1%, then that would be enough to convince the skeptic to decide 312	  

against her/his model.  Adopting such threshold comes with the recognition that 313	  

whichever decision is made, two possible errors arise: first, the null hypothesis could be 314	  

true, but it is rejected. The probability of such rejection is simply given by the value of 315	  

the adopted threshold, since we reject the null hypothesis whenever we observe a P-value 316	  

smaller than it (after having assumed that the null is true). That error, for lack of a better 317	  

name, was called an “error of the first type”, or “Type I error” and the probability of this 318	  

kind of error is denoted asα . Second, it may be possible that we fail to reject the null, 319	  

even if it is false.  This type of error is called “Type II” error.  The probability of this 320	  

error is usually denoted by β  and can be computed from the probabilistic definition of 321	  



the alternative hypothesis via its complement, !1−β . This is the probability of rejecting 322	  

the null when it is indeed false. Thus, by considering these two errors, NP tied the testing 323	  

of the tenability of a null hypothesis to an alternative hypothesis.  324	  

Let us return to our seed-beetles eggs classification problem. The null hypothesis 325	  

is that the counts X, are binomially distributed with an n=48 and p=0.5. Suppose that 326	  

before starting the test, professor Toquenaga (our skeptic) would have stated that he 327	  

would only have conceded if MLT correctly classified 85% or more of the eggs. That is, 328	  

a number of successful classification events greater or equal to 41/48 would represent a 329	  

rejection of the null. Under such null the skeptic threshold α is 330	  

( ) ( )
48

48 07

41

48
Pr 41 0.5 1 0.5 3.120204*10xx

x
X

x
α − −

=

⎛ ⎞
= ≥ = − =⎜ ⎟

⎝ ⎠
∑ . If in fact, MLT’s 331	  

probability of success is, say, p=0.90, then the power of the test is computed by 332	  

calculating the probability that the observed count will be greater than or equal to 41/48 333	  

under the true model is
!!
1−β =Pr(X ≥41)= 48

x
⎛

⎝⎜
⎞

⎠⎟
0.9x 1−0.9( )48−x ≈0.89.

x=41

48

∑  In closing this 334	  

account, note that an ideal test would of course have a pre-defined !α = β =0  but this can 335	  

only be achieved for certain non-practical cases.  Because of the way these error 336	  

probability calculations are set up, to increase the value of one error means the value of 337	  

the other one needs to decrease. In practice, before the experiment starts, the researcher 338	  

fixes the value of α  in advance and then changes the sampling space probabilities by 339	  

increasing the sample size and thus adjustsβ  to a desired level.  Although NP require 340	  

setting the Type I error in advance, the magnitude of acceptable error is left to the 341	  

researcher.                  342	  



Thus, Neyman and Pearson took Fisher’s logic to test assertions and formalized 343	  

the scenario where a data-driven choice between two tentative explanations of the data 344	  

needed to be made.  Although their approach resulted in a well-defined rule of action 345	  

with respect to such decision that quickly became the workhorse of scientific inquiry, 346	  

Fisher quickly pointed out how such paradigm had unfortunately lost track of the strength 347	  

of the evidence and also, that the possibility existed that such evidence would, with 348	  

further experimentation, very well become stronger or even weaker.  349	  

The NP test requires a prespecification of hypotheses (i.e. parameter values).  350	  

Often however, data are collected before knowledge of parameter values is in hand.  The 351	  

error statistical approach to inference is still feasible. Confidence intervals, do not pre-352	  

specify the hypotheses, data are collected, a parameter value estimated, and an interval 353	  

constructed around the estimate to represent plausible values of the parameter in such a 354	  

fashion that under repeated sampling, the true parameter will be outside of the interval no 355	  

more than a pre-specified  α proportion of the time.  Nevertheless, the connection 356	  

between hypothesis tests and confidence intervals is very close.  Confidence intervals can 357	  

be conceived of, and calculated as, inverted hypothesis tests. 358	  

 Fisher’s P-value wears many hats in statistics. But, one of its interpretations lands 359	  

it squarely in the Error Statistics category.  The Fisherian significance test does not 360	  

compare multiple models as do the NP-test and confidence intervals.  A single null 361	  

hypothesis is assumed, and a test statistic is devised to be sensitive to deviations from the 362	  

hypothesis.  If data are observed and the calculated test statistic is more dissimilar to the 363	  

null hypothesis than a prespecified P-value proportion of data randomly generated from 364	  

the null, then the null hypothesis is rejected, otherwise one fails to reject it. If the P-value 365	  



is not pre-specified, but only observed post-sampling then it does not control error in the 366	  

same fashion the NP-test and confidence interval do, yet it is regarded by many as a 367	  

quantitative measure of the evidence or against the null hypothesis. 368	  

The mathematical statistics theory concerning the distribution of likelihood ratios 369	  

made possible connecting Fisher’s maximum likelihood with hypotheses tests, and gave 370	  

rise to many of the tests that are nowadays the workhorse of statistical testing in science 371	  

(Rice 1995). The idea of evaluating the likelihood of one set of parameters vis-à-vis the 372	  

maximum likelihood gave rise not only to confidence intervals, but to relative profile 373	  

likelihoods where the likelihood of every value of the parameter of interest is divided by 374	  

the maximum of this curve.  And this idea in turn motivated the use of likelihood ratios to 375	  

carry model selection via likelihood ratio tests.  Sample space probabilities pass on 376	  

randomness not only to the test statistic, but also, to the likelihood profile and of course, 377	  

likelihood ratios. 	  378	  

 379	  

A Sketch of Bayesian Statistics 380	  

A discussion of Bayesian statistics has to begin with a description of what probability is 381	  

to a Bayesian.  Formally, Bayesian probabilities are measures of belief by an agent in a 382	  

model or parameter value. The agent learns by adjusting her beliefs. Personal beliefs are 383	  

adjusted by mixing belief in the model with the probability of the data under the model.  384	  

This is done with an application of a formula from conditional probability known as 385	  

Baye’s rule: If A and C are two events and their joint probability is defined, then 386	  

 = =Pr( and ) Pr( | )Pr( )Pr( | ) .
Pr( ) Pr( )
A C C A AA C
C C

 	  387	  



The application of Bayes rule in Bayesian statistics runs as follows. Given the conditional 388	  

probability of observing the data x  under the model iM written as ( )| if x M , and if our 389	  

prior opinion about such model is quantified with a prior probability distribution,390	  

( )prior if M , then the updated, conditional probability of a model given the observed data 391	  

becomes: 	  392	  

( ) ( ) ( )
( ) ( )=

∑
|

| .
|
i prior i

post i
j prior jj

f x M f M
f M x

f x M f M
	  

393	  

In English this equation reads that your belief in a model Mi after you have collected data 394	  

x (that is your posterior probability) is a conditional probability, given by the product of 395	  

the probability of the data under the model of interest and the prior probability of the 396	  

model of interest, normalized so that the resulting ratios (posterior probabilities) of all of 397	  

the models under consideration sum to one.  This is a pretty important constraint.  If they 398	  

don’t sum to one, then they are not probabilities and you cannot employ Baye’s rule. If 399	  

the models lie in a continuum, that is the models are indexed by a continuous parameter, 400	  

then the sum in the denominator is replaced by an integral. 401	  

While the notation in Baye’s rule treats all the probabilities as the same, they are 402	  

not the same.  The prior distribution, ( )prior if M , quantifies the degree of belief, a 403	  

personal opinion, in model i. The model or parameter of interest is then seen as a random 404	  

variable. By so doing, a key inferential change has been introduced: probability has been 405	  

defined as a measure of beliefs. Let’s call, for the time being, these probabilities “b-406	  

probabilities”.  Now the term ( )| if x M  is taken as a conditional measure of the 407	  

frequency with which data like the observed data x would be generated by the model. It is 408	  



taken to be equal to the likelihood function (aside from the constant ‘c’, which cancels 409	  

out with the same constant appearing in the denominator of the posterior probability).  410	  

This is not a belief based probability, it is the same probability used to define likelihood 411	  

ratios and carry frequentist inference. Let’s call it an “f-probability” to distinguish it from 412	  

the beliefs-derived probabilities. In the application of Bayes formula above, probability 413	  

of the data appears as multiplying the prior beliefs in the numerator. The resulting 414	  

product, after proper normalization becomes the posterior probability of the model at 415	  

hand, given the observations.  It is true that both, f-probabilities and b-probabilities are 416	  

true probabilities because they both satisfy Kolmorgorov’s axioms (Kolmorogorov 1933), 417	  

but to think that they are the same is to think that cats and dogs are the same because they 418	  

are both mammals: one is a beliefs probability whereas the other one is a sample space 419	  

probability. It is important to note that when you mix an f-probability with a b-probability 420	  

using Bayes Theorem, one ends up with a b-probability, an updated beliefs probability. 421	  

To make these ideas concrete, we work out our binomial egg classification 422	  

problem using Bayesian statistics. Our general model of how the data arises for this 423	  

experiment is given by the binomial formula with n trials, x successes and a probability p 424	  

of success.  Changing p in such formula changes the hypothesized model of how the data 425	  

arises. Because binomial formula accepts for p any value between 0 and 1, changing p 426	  

amounts to changing models along a continuum. Let our prior beliefs about this 427	  

parameters be quantified with the probability distribution ( )g p . The beta distribution 428	  

with parameters a and b is a convenient distribution for ( )g p  . The posterior distribution 429	  

of p given the data x is proportional to: 	  430	  



  
f post p | x( )∝ f x | p( )g p( ) = n

x

⎛

⎝⎜
⎞

⎠⎟
px 1− p( )n−x

pa−1 1− p( )b−1
∝ pa+x−1 1− p( )n+b−x−1

. 	  431	  

Note that the resulting expression of the posterior distribution shown above is in fact, 432	  

after proper normalization, another beta distribution with parameters +a x  and + −b n x . 433	  

Note also that, the mean of our prior distribution is by definition +/( )a a b . By the same 434	  

token, the mean of the posterior distribution is: 435	  

+ + ⎛ ⎞= +⎜ ⎟+ + + − + + + + +⎝ ⎠
,

( ) ( )
a x a b a n x

a x b n x a b n a b a b n
 436	  

where = /x x n  is the sample mean.  Therefore, the posterior mean is seen to be a 437	  

weighted average of the prior mean and the sample mean.  In a very real sense, the 438	  

posterior mean is a mixture of the data and the prior beliefs. As the sample size gets 439	  

large, however, the weight of the first term in this sum goes to 0 while the weight of the 440	  

second one converges to 1. In that case, the influence of the prior beliefs gets “swamped” 441	  

by the information in the data.  Dorazio (2015) claims that the Bayesian posterior is valid 442	  

at any sample size.  That doesn’t mean that anything useful has been learned from the 443	  

data, as this author also later suggests (Dorazio 2015, this volume).  We can see from the 444	  

above expression that the Bayesian posterior may well be dominated by the prior at low 445	  

sample sizes.  446	  

In any case, however, Bayesian learning occurs when this process is iterated upon 447	  

collecting new data. The posterior distribution becomes the instrument for inference: if 448	  

the parameter of interest is assumed to be a random variable, then the posterior 449	  

distribution instantly gives the probability that such value lies between any two limits, 450	  

say plow and phigh. Hence, although for estimation purposes either the posterior mean or 451	  



mode are given as estimates of the unknown parameter, the entire distribution can be 452	  

used for statistical inference. 453	  

The Bayes Factor (Kass and Raftery, 1995; Raftery, 1995) is used Bayesian 454	  

statistics to measure the evidence in the data for one model over another.  Written as 455	  

( ) ( )1 2Pr | Pr |D M D M  where D  denotes the data and iM  the ith model, the Bayes 456	  

factor looks very similar to the ratio of likelihoods evaluated under the two different 457	  

models, and in fact serves a similar function.  For models with specified parameter 458	  

values, the two are the same.  But, for the more common situation where the parameter 459	  

values are yet to be determined by the analysis, the likelihood ratio and the Bayes factor 460	  

are not the same.  In this latter case, the Bayes Factor is computed as the ratio of two 461	  

averaged likelihoods each averaged (integrated) over the prior b-probability of the 462	  

parameters, whereas the likelihood ratio is calculated as the ratio of the two likelihood 463	  

functions evaluated at the ML estimates (i.e., at the maximum, see the account by A. 464	  

Raftery 1995, section 3.2).  Consequently, the Bayes Factor is not a measure of evidence 465	  

independent of prior belief. 466	  

The above description of Bayesianism perhaps gives the impression that it is a 467	  

monolithic school.  It is not.  In the interests of brevity we will speak of only three 468	  

different Bayesian schools that focus each on different interpretation of the prior 469	  

distribution. In Subjective Bayesianism the prior is a quantitative representation of your 470	  

personal beliefs.  This makes sense as a statistics of personal learning. Although the 471	  

subjectivity involved has made many scientists uncomfortable, subjective Bayesians posit 472	  

that it is the prior distribution that conveys initial information and thus provides the 473	  

starting point for the Bayesian learning process (Lindley 2000, Rannala 2002). Indeed, an 474	  



often repeated justification for using the Bayesian solution in intricate biological 475	  

problems is the ability to bring into the analysis external, prior information concerning 476	  

the parameters of interest (Rannala 2002).    477	  

 Objective Bayesianism on the other hand was developed to respond to the 478	  

discomfort introduced by subjective priors.  Under that school of thought, the prior 479	  

distribution is a quantitative representation of a declaration of ignorance about the 480	  

parameters of interest.  Prior probabilities are assigned to alternative models/parameter 481	  

values so as favor one individual model over another as little as possible given 482	  

mathematical constraints. These priors are called non-informative.  Royle and Dorazio 483	  

(2008) present an ecologically oriented introduction statistical analysis emphasizing 484	  

objective priors.   485	  

Another kind of analysis often falling under the Bayesian rubric is empirical 486	  

Bayesianism. Here the prior probabilities are estimated from external empirical 487	  

information.  Clearly this is a different beast from either forms of belief based 488	  

Bayesianism described above, and extensive discussions about this approach and the 489	  

other two Bayesian views presented here can be found in the statistical literature.  The 490	  

critiques of Bayesianism found below are not directed at empirical Bayes. An excellent 491	  

introduction to empirical Bayes can be found in Efron (2010).  492	  

 493	  

A Sketch of Evidential Statistics 494	  

Richard Royall begins his 1997 book Statistical Evidence: A likelihood paradigm with 3 495	  

questions:   496	  

1) What do I believe, now that I have this observation? 497	  



2) What should I do, now that I have this observation?  498	  

3) What does this observation tell me about model/hypothesis A versus B?  (How 499	  

should I interpret this observation as evidence regarding A versus B?).   500	  

This third question is not clearly addressed by error statistics.  Nor is it addressed 501	  

by Bayesian statistics, because belief and confirmation are actually quite distinct from 502	  

evidence, as is argued forcefully in Bandyophadyay et al. (2015).  Following Hacking 503	  

(1965) and Edwards (1992), Royall axiomatically takes the likelihood ratio as his 504	  

measure of evidence and proceeds to develop a very powerful inferential frame work. 505	  

Royall divides the result space of an experiment differently than the Neyman-506	  

Pearson paradigm.  The NP test has two regions: one where you accept A, and another 507	  

region where you accept B.  For Royall, there are 3 regions: one where evidence is strong 508	  

for A over B, another where evidence is strong for B over A, and a region between where 509	  

evidence (whether leaning towards A or towards B) is weak.  The advantage of this in the 510	  

actual interpretation of scientific results is obvious.  First, no decision is made only the 511	  

strength of evidence is determined.  Second, there is a region of indeterminacy, where the 512	  

primary conclusion is that not enough data have been obtained.   513	  

 514	  

Figure 1: A graphical representation of evidence in the likelihood ratio for one 515	  

model over another.  The numbers reflect Royall’s treatment of evidence as a ratio, while 516	  



the actual scale of the figure reflects our preference to representing evidence by a log of 517	  

the likelihood ratio. 518	  

Neyman-Pearson hypothesis tests have two important error rates, the probability 519	  

of type I error, α, and the probability of type II error, β.  With evidential statistics you 520	  

never actually make an error, because you are not making a decision, only determining 521	  

the strength of evidence.  Nevertheless, evidence even properly interpreted can be 522	  

misleading – one may find strong evidence for one model when in fact the data was 523	  

generated by the other.  This allows for two interesting probabilities reminiscent (but 524	  

superior) to α and β.  These are: the probability of misleading evidence, M, and the 525	  

probability of weak evidence, W. This distinction will be discussed further later. 526	  

This approach immediately combines strengths from the Neyman-Pearson 527	  

hypothesis tests, and from Fisherian pure significance tests.   Requiring evidence to pass 528	  

an a priori threshold gives a control of error.  Royall (1997) shows that if the threshold 529	  

for strong evidence is k, the probability of misleading evidence is M ≤ 1/k. The basis for 530	  

such conclusion stems from the frequency interpretation of Royall’s measure of evidence: 531	  

the likelihood ratio between any two models. As we mention above, writing that 532	  

   

ℓ p1( )
ℓ p2( ) = k  means that the observed data will occur k times more frequently in repeated 533	  

samples from the population defined by the value 1p  than from the population defined by 534	  

2p  . Hence, this ratio can be interpreted as a random variable, one which happens to be 535	  

on average (over hypothetical repeated sampling) equal to 1 if in fact, the two models 536	  

(parameter values in our example) explain the data equally well. If we deem as most 537	  



likely the first model only when the likelihood ratio exceeds a value k, then, a direct 538	  

application of Markov’s Theorem allows us to write that  539	  

	  

   
Pr
ℓ p1( )
ℓ p2( ) ≥ k

⎛

⎝
⎜

⎞

⎠
⎟ ≤

1
k

. 	  	  540	  

  Therefore, the chance of observing a misleading likelihood ratio, one greater than the 541	  

cut-off for strong evidence k, is in fact less than or equal to 1/k.  542	  

The strong evidence threshold is a pre-data control of error, very much like NP’s 543	  

Type I error rate.  Post data the actually observed evidence (likelihood ratio for Royall) is 544	  

a fine grained measure.  Thus, evidential statistics allows researchers to simultaneously 545	  

make pre and post data inferences in a coherent framework, as so long craved by 546	  

practitioners. 547	  

The mathematical treatment in Royall (1997) makes a true model assumption (i.e. 548	  

one of the models in the evidential comparison is true).   For the most honest and 549	  

effective inference, the true model assumption needs to be relaxed. Lele (2004a) 550	  

eliminates this assumption when he generalizes the likelihood ratio to evidence functions 551	  

which are conceptualized as the relative generalized discrepancy between two models 552	  

and reality.   Relaxing the true model assumption creates a great philosophical advantage 553	  

for the evidential approach, but because the focus of this essay is practical, we direct 554	  

interested readers to Bandyophadyay et al. (2015) for a fuller discussion. 555	  

Rather than presenting a single monolithic evidence function, Lele sets out a 556	  

structure for constructing evidence functions.  Lele (2004a) and Taper and Lele (2011) 557	  

discuss desirable features for evidence functions.   These desiderata include:  558	  

D1) Evidence should be a data based estimate of the relative distance between two 559	  

models and reality.   560	  



D2) Evidence should be a continuous function of data. This means that there is no 561	  

threshold that must be passed before something is counted as evidence.  562	  

D3) The reliability of evidential statements should be quantifiable.   563	  

D4) Evidence should be public not private or personal.   564	  

D5) Evidence should be portable, that is it should be transferable from person to 565	  

person.  566	  

D6) Evidence should be accumulable: If two data sets relate the same pair of models, 567	  

then the evidence should be combinable in some fashion, and any evidence collected 568	  

should bear on any future inferences regarding the models in question.  569	  

D7) Evidence should not depend on the personal idiosyncrasies of model formulation. 570	  

By this we mean that evidence functions should be both scale and transformation 571	  

invariant.    572	  

D8) Consistency, that is as M+W→0 as n→ ∞. Or stated verbally, evidence for the 573	  

true model/parameter is maximized at the true value only if the true model is in the 574	  

model set, or at the best projection into the model set if it is not. 575	  

Although the formal structure of evidence functions is relatively new, a number of 576	  

evidence functions have long been proving their utility. Likelihood ratio and log 577	  

likelihood ratios, for instance, are evidence functions. Other evidence functions include 578	  

order consistent information criteria, such as Schwarz’s (1978) information criterion, SIC 579	  

also known as the BIC (Bayesian Information Criterion), the consistent AIC, CAIC, (see 580	  

Bozdogan 1987), and the information critierion of Hannan and Quinn (1979), ICHQ. 581	  

These information criteria are all functions of the log-likelihood maximized under the 582	  



model at hand plus a penalty term. As a result, the difference in the values of a given 583	  

information criteria between two models is always a function of the likelihood ratio.  584	  

Because the likelihood ratio is an evidence function, maximum likelihood 585	  

parameter estimation is an evidential procedure.  Furthermore, likelihood ratio based 586	  

confidence intervals can also be interpreted as evidential support intervals. 587	  

Not all information criteria are sensu stricto evidence functions (Lele 2004).  588	  

There is a class of information criteria, strongly advocated by Burnham and Anderson 589	  

(2002) that are not. These forms can be designated Minimum Total Discrepancy (MTD) 590	  

forms (Taper, 2004). They meet desiderata D1)-D7), but not D8). The very commonly 591	  

employed Akaike (1974) information criterion, the biased corrected AIC (AICc, Hurvich 592	  

and Tsai, 1989) are MTD criteria. That these forms are not strict evidence functions is not 593	  

to say that these forms are wrong per se, or that they shouldn’t be used evidentially, but 594	  

that these criteria are evaluating models with a slightly different goal than are evidence 595	  

functions.  The design goal of these forms is to select models so as to minimize 596	  

prediction error, while the design goal for evidence functions is to understand underlying 597	  

causal structure (see discussion in Bozdogan, 1987, Taper 2004, and Aho et al., 2014).  598	  

The consequence of this is that asymptotically, all MTD forms will over fit the data by 599	  

tending to include variables with no real association with the response.  But at smaller 600	  

sample sizes the differences between the classes is not clear cut.  The AIC tends to over 601	  

fit at all sample sizes, while the AICc can actually have a stronger complexity penalty 602	  

than the order consistent forms.   603	  

A small conceptual leap that needs to be made to recognize information criteria as 604	  

evidence functions is the change of scale involved.  Royall uses the likelihood ratio as his 605	  



evidence measure while the difference of information criterion values can be thought of 606	  

as a log likelihood ratio with bias corrections. Take for instance the difference in the 607	  

score given by an information criterion (IC) between a model deemed as best among a set 608	  

of models and any other model i within that set, and denote it as i i bestIC IC ICΔ = − . Note 609	  

that because the IC of the best model is the smallest, by necessity this difference is 610	  

positive. Because all information criteria can be written as twice the negative log-611	  

likelihood maximized under the model at hand plus a complexity penalty that can be a 612	  

function of both, the sample size and the number of parameters in the model, we can 613	  

write a general equation for the difference in any IC score.  Denote the complexity 614	  

penalty for model i as ( ),icp d n , where id  is the dimension (number of estimated 615	  

parameters) under model i and n is the sample size.  For example, in the case of AIC, 616	  

( ), 2i incp d d= whereas for SIC, ( ) ln( ),i icp d dn n= . Accordingly,     617	  

 

   

ΔICi = −2ln ℓ̂ i + cp di ,n( )− −2ln ℓ̂best + cp dbest ,n( )( )
= −2ln

ℓ̂ i

ℓ̂best

⎛

⎝⎜
⎞
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+ Δcp,

  618	  

where 
ˆ
ˆ
i

best

l
l

  is the ratio of maximized likelihoods under each model, and 619	  

( ) ( ), ,besticp cp d n cp d nΔ = −  denotes the difference in the complexity penalties from model i 620	  

and the best model. For instance, in the case of the SIC, ( )ln( ) ,i bestcp d dnΔ −=  and in the case 621	  

of the AIC, ( )2 i bestcp d dΔ −= . Writing the difference in this fashion makes it clear that a ICΔ  622	  

is indeed a log-likelihood ratio plus a bias correction constant that depends on the sample size and 623	  

the difference in the number of parameters between the two models. In the case of the AIC and 624	  



the SIC, depending on whether the best model is or not the most parameter rich, one would be 625	  

either subtracting or adding a penalty to the log-likelihood ratio.  626	  

Finding the probability of misleading evidence given a strong evidence threshold k  if in 627	  

fact the two models explain the data equally well amounts to finding ( )Pr iIC kΔ ≥ , which is 628	  

equal to ( )1 Pr iIC kΔ− ≤ . This quantity is readily recognized as one minus the cumulative 629	  

density function (cdf) of the iICΔ  evaluated at k . And yes, talking about the difference in IC 630	  

having an associated cdf implies that one should be able to say something about the long-run 631	  

distribution of such difference.  Indeed, because iICΔ  is written as the log likelihood ratio plus a 632	  

constant, we can use the frequency interpretation of likelihood ratios, find the probability 633	  

distribution of 
  
Λ = −2ln

ℓ̂ i

ℓ̂ best

⎛

⎝⎜
⎞

⎠⎟
  under hypothetical repeated sampling and then express the 634	  

distribution of the iICΔ  as that of Λ  shifted by the constant cpΔ .  Operationally however, the 635	  

pre-data control of error is achieved by fixing first the size of the probability of misleading 636	  

evidence M , and then solving for the value of the threshold k that leads to ( )Pr iIC k MΔ ≥ = .  637	  

Upon substituting the expression for iICΔ  in this equation we get that 638	  

	   ( ) ( )Pr Pr ,cp k M k cp MΛ+Δ ≥ = ⇔ Λ≥ −Δ = 	  	  639	  

or ( )1 Pr k cp MΛ ≤ −Δ =− . From this calculation, it is readily seen that the pre-data control of 640	  

the probability of misleading evidence strongly depends on the form of the complexity penalty. 641	  

 We now turn to an example, one where we give a closer look to the assumptions behind 642	  

the now ubiquitous cut-off of two points in iICΔ . The cut-off of two points of difference in IC is 643	  

readily derived from the calculations above, yet it implies that the user is facing a rather stringent 644	  

model selection scenario.  To see why, it is important to know first that the long-run distribution 645	  



of the log-likelihood ratio is in general very difficult to approximate analytically. Samuel Wilks 646	  

(1938) provided for the first time the approximate distribution of Λ  for various statistical 647	  

models.  If model i is true, as it is assumed when testing a null hypothesis vs. an alternative, and if 648	  

the model deemed as best is the most parameter rich, then Wilks found that Λ  has an 649	  

approximate chi-square distribution with degrees of freedom equal to best id d− .  In this case, the 650	  

expression ( )1 Pr k cpΛ ≤ −Δ−  can be readily computed using any statistical software, like R. 651	  

In the case of AIC, this expression becomes ( )( )21 Pr i bestk d d−− Λ ≤ −  and in the case of the 652	  

SIC, it is ( )( )ln( )1 Pr i bestk n d dΛ ≤ − −− . Using the now “classic” 2k = , 1i bestdd − = −   653	  

gives ( )( )2 0.04551 Pr i bestk d dΛ ≤ − − =−  for the AIC. In the case of the SIC, assuming a 654	  

sample size of 7n = we get ( )( )ln( ) 0.01 47Pr 0i bestk n d dΛ ≤ − − =− .  This example shows 655	  

that under Wilks model setting (where the two models are nested and the simple model is the 656	  

truth) a cut off of 2 does give an error control of about the conventional 0.05 size.  Also, note that 657	  

for the AIC and the SIC (unless sample size is tiny) an increase in difference in the number of 658	  

parameters between the models results in an even stronger control of error.  Finally, note that the 659	  

strength of the error control does not vary when sample size is increased in the AIC but does so in 660	  

the SIC. For the SIC, M decrease as sample size increases.  This is what, in fact, makes the SIC 661	  

an order consistent form. 662	  

Exact values of M will vary with criterion, sample size, structure of the models, 663	  

nestedness of models, and the nearness of the best model to the generating process.  If 664	  

you are acting in a regulatory setting, or in an experimental design setting, then the 665	  

precise value of M may matter.  In these cases M should be explicitly calculated a priori. 666	  

But, in the general prosecution of science, it really matters very little whether M is 667	  

bounded at 0.07 or 0.03; both give moderately strong control of error.  Adopting an a 668	  



priori cut off of say 2 for moderately strong control of error or of 4 for strong control of 669	  

error gives the scientist and the scientific community the protection from wishful thinking 670	  

that it needs without the fiction that control of error is known more precisely than it is.   671	  

Increasingly, towards the end of the 20th century, ecological statistics shifted its 672	  

focus from point and interval estimation for parameters in models that magically seemed 673	  

to appear from nowhere and whose connection to hypotheses of real scientific interest 674	  

were often somewhat tenuous, to trying to incorporate theories of ecological processes 675	  

directly in models to be statistically probed.    676	  

We strongly believe that the major source of error in all statistical analysis is due 677	  

to using the wrong model, and traditional statistics did not adequately address model 678	  

uncertainty. At least this was the state of affairs in 1995 (Chatfield, 1995).  Since then, 679	  

Royall’s (1997) reconstruction of traditional statistics, and Lele’s (2004a) extension of 680	  

the likelihood ratio to evidence functions has allowed a statistical modern synthesis that 681	  

smoothly incorporates model identification, model uncertainty, parameter estimation, 682	  

parameter uncertainty, pre-data error control, and post-data strength of evidence into a 683	  

single coherent framework.  We believe that that evidential statistics is currently the most 684	  

effective statistical paradigm for promoting progress in science. 685	  

For completeness, we need to draw attention to another recent statistical paradigm 686	  

called “severe testing” (e.g. Mayo and Cox, 2006; Mayo and Spanos, 2006).  Similar to 687	  

evidential statistics, severe testing combines pre-data control of error with a post data 688	  

measure of the strength of inference. Despite very different surface presentations, there is 689	  

considerable similarity in their underlying mathematics between evidence and severe 690	  

testing.  We find the evidential approach more useful for us for several reasons: First, in 691	  



evidence the primary object of inference is the model, while the primary object of 692	  

inference in severe testing is the parameter value. Second, we find the direct comparison 693	  

involved in evidence very intuitive and clear; we have always been confused by the 694	  

counterfactual arguments required for testing (this of course is our shortcoming).-- 695	  

 696	  

An Example Evidential Application Using Information Criteria 697	  

To illustrate the evidential use of information criteria, we revisit an example from Lele 698	  

and Taper (2012). That is the single-species population growth data from Gause’s (1934) 699	  

laboratory experiments with Paramecium aurelia with interest in the scientific questions 700	  

of: 1) Does the population exhibit density dependent population growth?  And, 2) If so 701	  

what is the form of density dependence?  The observed growth rate for a population is 702	  

calculated as 
!!
r
t
= ln N

t +1 N
t

⎛
⎝

⎞
⎠ .   By definition the growth rate of a population with 703	  

density dependence is a function of population size, Nt (Figure 2).  Consequently, we 704	  

model the population’s dynamics by 
!!
r
t
= g N

t
,θ⎛

⎝
⎞
⎠ +νt

σ( ) , where g is a deterministic 705	  

growth function, θ  is a vector of parameters,
!
ν
t
σ( )  is an independent random normally 706	  

distributed environmental shock to the growth rate with mean 0 and standard deviation 707	  

σ representing the effects of unpredictable fluctuations in the quality of the 708	  

environment.   709	  

We use a suite of common population growth models: Ricker 
!!
g N

t
,θ⎛

⎝
⎞
⎠ = ri

1−N
t
K⎛

⎝
⎞
⎠
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⎞
⎠⎟ , 710	  

generalized Ricker 
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, Beverton-Holt 711	  



!!
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t
,θ⎛

⎝
⎞
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K K + r
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⎞
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!!
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t
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, and 712	  

the density independent exponential growth model !! g N t ,θ( ) = ri( ) . These models have 713	  

been parameterized in as similar a fashion as possible.  K represents the equilibrium 714	  

population size, and ri is the intrinsic growth rate, or limit to growth rate as Nt approaches 715	  

0.  In the Gompertz model the parameter ‘a’ also scales growth rate, but is not quite the 716	  

same thing as ri because in this model growth rate is mathematically undefined at 0.  717	  

 718	  

The log-likelihood function for all of these models is 719	  

!!
logL r

t
,N
t
;θ ,σ⎛

⎝
⎞
⎠ =

g N
t
,θ⎛

⎝
⎞
⎠ − rt

⎛
⎝⎜

⎞
⎠⎟
2

t =0

T −2
∑

2σ2
−
T −1( )log 2πσ2⎛

⎝⎜
⎞
⎠⎟

2 , where T is the total 720	  

number of population sizes observed.  For the construction of information criteria, the 721	  

number of parameters, !p , is the length of the vector θ +1; the addition of 1 for the 722	  

parameter σ . 723	  

 724	  

Table 1 is typical of the tables produced in information criteria analysis.  It 725	  

contains the log-likelihoods, the number of parameters, and for several common criteria, 726	  

the IC and ΔIC values.  To have a priori control of error, we need to specify a threshold 727	  

for strong evidence.  As with α, the size of NP tests, this threshold depends on the 728	  

researchers needs.  To match with scientific conventions, we set this threshold at a ΔIC 729	  

value of 2.  As we have seen above, this translates roughly to a bound on misleading 730	  

evidence (see above) a probability of misleading evidence of M<0.05. From table 1, one 731	  



can make a number of observations that are very useful in framing our thinking about our 732	  

driving questions.  1) The ΔIC values are all >14 for the exponential model, confirming 733	  

quantitatively what is visually obvious from the figure that it is essentially impossible 734	  

that P. Aurelia is growing in a density independent fashion under the conditions of 735	  

Gause’s experiment. 2) All of the information criteria give strong evidence against the 736	  

Gompertz as a potential best model given our threshold for strong evidence. 3) The 737	  

Ricker model is nested within the generalized Ricker, and the exponential within the 738	  

Ricker.  As dictated by theory, the generalized Ricker has the highest log-likelihood 739	  

among these three models, but it is not the best model according to the information 740	  

criteria.  4) Different information criteria favor different models with different degrees of 741	  

strength.  Both the SIC and the AICc indicate moderately strong evidence that the 742	  

generalized Ricker is not the best model.  The evidence from the AIC is more equivocal 743	  

than that registered by the other two criteria.  This may be an example of the tendency of 744	  

the AIC to over fit.  Although not the case in this example, the rank order for some 745	  

models can change between different criteria.  5) The Ricker model has the lowest IC 746	  

value, indicating that it is the “best model”, but the difference with the Beverton-Holt 747	  

model is small, thus the evidence that the Ricker model is superior to the Beverton-Holt 748	  

is very weak, and both models should be considered for prediction and interpretation, as 749	  

should the generalized Ricker and Gompertz to considerably lesser degrees 6) There are 750	  

three classes of non-nestable models in this problem.  Classical likelihood ratio tests do 751	  

not compare across model families, thus an information criterion based analysis allows a 752	  

richer probing of nature.  In this case we see that the Beverton-Holt model is essentially 753	  



indistinguishable in merit from the Ricker, at least for this population on the basis of this 754	  

data. We also see that there is strong evidence that the Gompetz is not the best model.   755	  

 756	  

Figure 2: Observed population growth rate plotted population size.  The lines are 757	  

expected growth rates for five fitted growth models.  The data are the first of 3 replicate 758	  

times series for Paramecium Aurelia given in The Struggle for Existence. (Figure after 759	  

Figure 1 Lele and Taper 2012) 760	  

  761	  



Model LogLikelihood 
# 

Parameters 
AIC AICc SIC ΔAIC ΔAICc ΔSIC 

Ricker 4.90 3 -3.80 -1.96 -1.30 0.00 0.00  0.00 

Beverton-Holt 4.82 3 -3.63 -1.79 -1.13 0.17 0.17 0.17 

Generalized 

Ricker 
4.91 4 -1.81 1.52 1.52 1.99 3.48 2.83 

Gompertz 2.66 3 0.68 2.53 3.18 4.48 4.48 4.48 

Exponential -3.72 2 11.40 12.30 13.10 15.20 14.20 14.40 

 762	  

Table 1: Population dynamic model identification for Gause’s P. aurelia using 763	  

information criteria. 764	  

 765	  

Common confusions about the three paradigms 766	  

What Is the Frequency in Frequentism? 767	  

Frequentism is an overloaded term within the field of statistics referring both to a 768	  

definition of probability and to a style of inference.  Sensu stricto, a frequentist is 769	  

someone who adheres to a frequency definition of probability, under which an event’s 770	  

probability is long run limit that the event’s relative frequency in a series of trials.  771	  

Another common use of the term frequentist is to describe a person who uses the 772	  

frequency of error in a decision rule as their principle warrant for inference.  Sometimes 773	  

this branch of statistics is called “Classical Statistics”, but this itself is a bad term because 774	  

Bayesian-like statistics considerably predated this approach. We have followed Deborah 775	  

Mayo (e.g. Mayo 1996) in referring to this style of inference as “error statistics”. 776	  



   777	  

Do Hierarchical Models Require a Bayesian Analysis? 778	  

Hierarchical models are not Bayesian. Hierarchical models are probabilistic models 779	  

aiming at including two or more layers of uncertainty in the statistical model of how the 780	  

data arises. Which includes latent variable and missing data problems (Dennis et al. 2006, 781	  

Dennis and Ponciano 2014). Inference on Hierarchical models (HM) can in principle be 782	  

made under all three approaches. However, maximum likelihood estimation of HM can 783	  

be very difficult.  Generally accessible computer implementations of Monte Carlo 784	  

Markov chain (MCMC) algorithms made Bayesian estimation and inference broadly 785	  

accessible in the 1990s. Although biological models with deep roots in stochastic 786	  

processes, and in particular, Markov Chains had long been used in ecology and evolution 787	  

(see Cohen 2004) by the 90’s, the ease with which the Bayesian solutions yielded 788	  

inferential conclusions of value for managers and practitioners quickly triggered a 789	  

“Bayesian revolution” (Beaumont and Rannala 2004). This revolution prompted heated  790	  

discussions between the proponents of frequentist and Bayesian statistics resulting in the 791	  

marked growth of various biological scientific communities, including Ecology. As a 792	  

result, topics of inference once deemed too difficult or almost inaccessible for 793	  

practitioners, such as stochastic population dynamics modeling, have found a well-794	  

defined niche in Ecology (Newman et al 2014). 795	  

The drive to improve inference using Bayesian statistics has generated a plethora 796	  

of technical novelties to sample from posterior distributions (like Approximate Bayesian 797	  

Computation, see https://approximatebayesiancomputational.wordpress.com/), and even 798	  

motivated novel approaches to ML estimation. Data Cloning (Lele et al. 2007, 2010) for 799	  



instance, is a recent algorithmic device inspired by Bayesian statistics that allows 800	  

likelihood estimation by a simple algorithmic trick. It has long been known (Walker 801	  

1969) that in Bayesian analysis as the amount of data increases the posterior distribution 802	  

converges to a normal distribution with the same mean and variance as the sampling 803	  

distribution of the maximum likelihood estimate.  The Lele et al. papers show that this 804	  

same effect can be achieved simply by creating large data sets from multiple (say k ) 805	  

copies of an original data set (preserving data dependencies).  The mean of the resulting 806	  

posterior distribution approximates the maximum likelihood estimate, but the variance is 807	  

too low.  An estimate of the asymptotic variance is recovered by multiplying the variance 808	  

of the posterior by k. These estimates can be made arbitrarily accurate by increasing k 809	  

and the MCMC run length.   810	  

As presented above, inference is available through t-tests and Wald intervals, 811	  

Ponciano et al. (2009) extend the data cloning inference tools to include information 812	  

criterion based model selection, likelihood ratio tests and profile likelihood computations 813	  

for hierarchical models relevant in Ecology.  Using data cloning a full likelihood solution 814	  

can be achieved for any hierarchical model  815	  

The R package dclone (Solymos 2010) provides easy access to data cloning to 816	  

anyone who can write a Bayesian model in WinBugs, OpenBugs, or JAGS.  Gimenez et 817	  

al. (2014) attribute the rise of Bayesian applications in Ecology to the ease of software 818	  

applications, and wonder what will be the consequence of readily available data cloning 819	  

software.  We would like to point out that Yamamura (2015) in this symposium 820	  

introduces “empirical Jeffreys’ priors”, another computational device for achieving 821	  

maximum likelihood inference for complex HM.  	  822	  



 823	  

Are likelihood and probability the same thing? 824	  

This is a point that often confuses students making their first foray into mathematical 825	  

statistics. The difficulty arises from the equation defining likelihood as 826	  

( ) ( )ii MxfxML ;; =  and not as we do here the first time we present the likelihood 827	  

function.  The likelihood function is in fact proportional to the probability of observing 828	  

the data under a given model.  The left hand side of this equality is the likelihood while 829	  

the right hand side is the probability, so they must be the same thing.  Not at all, the 830	  

likelihood is supposed to be understood as a function of the model (parameter) given the 831	  

data, while probability is a function of the data given the model. This probability can be 832	  

thought of as the long run frequency with which a mechanism would generate all the 833	  

possible observable events, while the likelihood, or rather the relative likelihood, is the 834	  

support in the data for certain value(s) of the parameter(s) of interest vis-à-vis other 835	  

values.   836	  

 The examples shown in this paper deal mostly with discrete probability models 837	  

(the binomial distribution).  In the case of continuous probability models, writing the 838	  

likelihood function as the joint probability density function of the data evaluated at the 839	  

observations at hand is not the exact likelihood function (i.e., it is not the joint probability 840	  

of the observations evaluated at the data at hand). The joint probability density function is 841	  

only an approximation introduced for mathematical convenience (Barnard 1967, Sprott 842	  

2000, Montoya et al 2008, 2009), one that works most of the time and hence advocated as 843	  

the true likelihood function of continuous models in standard mathematical statistics 844	  

books (e.g. Rice 1995). This approximation however sometimes leads to strange behavior 845	  



and singularities.  For that, the likelihood has been sometimes critiqued. However, the 846	  

likelihood is proportional to probabilities and for that, cannot have singularities.  When 847	  

these issues arise, Montoya et al (2009) show how returning to the original definition of 848	  

the likelihood function, not the approximation, solves the problems. 849	  

 850	  

Are confidence intervals and credible intervals really the same thing? 851	  

The error statistical confidence interval is constructed so that under repeated sampling of 852	  

data confidence intervals constructed with the same method will contain the true value a 853	  

specified f-probability of the time. The Bayesian credible interval is constructed so that in 854	  

this instance the true value is believed to be within the interval with a specified b-855	  

probability. Thus, confidence intervals are really about the method, while credible 856	  

intervals are about the instance. However, a confidence interval do also inform about the 857	  

instance. A measurement made by a reliable method should be reliable. The width of a 858	  

confidence interval is a function of the variance of the ML estimator of the parameter of 859	  

interest (Rice 1995). If the data-gathering process is reliable and generates observations 860	  

with high information content, then repeated instances of this sampling process will result 861	  

in very similar estimators of the parameter of interest. In other words, the variance of this 862	  

estimator over hypothetical repeated sampling will be small and the confidence interval 863	  

will be narrow.  The “confidence” then would stem from the reliability and repeatability 864	  

of the conclusions. 865	  

 A confidence interval informs that there is evidence that the instance is within the 866	  

confidence interval (see Bandyophadyay et al. 2015 appendix chapter 2) . Many flavors 867	  

of confidence intervals exist, but one most relevant to scientists is the one derived from 868	  



profile likelihoods, or relative profile likelihoods (Royall, 2000; Sprott, 2004).  Profile 869	  

likelihoods allow one to evaluate the verisimilitude of a set of values of the parameter of 870	  

interest vis-à-vis the likelihood of the ML estimate.  Intuitively, there is no reason why 871	  

parameter values to the left or right of the ML estimate that are say, 85% as likely as the 872	  

ML estimate shouldn’t be considered. The evidential support built in the profile 873	  

likelihood interval gives a continuous measure of the likelihood of nearness to the central 874	  

value, which is as close as you can get to a credible interval without crossing the 875	  

philosophical divide between frequentist and Bayesian definitions of probability. 876	  

A common criticism of the confidence interval relative to the credible interval is 877	  

that they can include impossible values such as population sizes below the number of 878	  

observed values.  But these problems only occur in approximate confidence intervals.  It 879	  

is important to realize that this criticism does not apply to confidence intervals based on 880	  

relative likelihoods or relative profile likelihoods (see Sprott, 2000 page 16). 881	  

 882	  

Is Bayesianism the only paradigm that can use expert opinion? 883	  

The ability to incorporate expert opinion into the statistical analysis of ecological 884	  

problems is often cited as one of strengths of the Bayesian approach (Kuhnert et al. 885	  

2010).  Lele (2004b) and Lele and Allen (2006) show how to elicit pseudo data not priors 886	  

from experts and to treat these as measurements with observation error. This approach is 887	  

easier for experts than supplying priors. Further, the reliability of the experts can be 888	  

probed in ways not available with elicited priors.  889	  

 890	  

Is Bayesianism the only paradigm that allows updating?  891	  



The ability to “update” on the basis of new data has been stated (e.g. Ellison 2004) as a 892	  

major advantage of Bayesian analysis. However, as pointed out by van der Tweel (2005) 893	  

all three paradigms allow updating.  What is updated differs, but in each case relates to 894	  

the paradigms core inferential process.  A sequential Bayesian analysis updates belief, a 895	  

sequential evidential analysis updates evidence, and a sequential error statistical analysis 896	  

updates both the test statistic and critical values. Desiderata 6) in the sketch of evidential 897	  

statistics given above indicates that updating is one of the defining characteristics of the 898	  

evidential approach. 899	  

 900	  

Confusions about the interpretations of classes of information criteria 901	  

There has been a long entrenched confusion in the literature about the interpretation of 902	  

information criteria.  Bozdogan (1987) insightfully addressed this confusion, but 903	  

insufficient attention has been paid to it in the subsequent decades.  Bozdogan noted that 904	  

every estimated model has error in it, and following Akaike, Bozdogan characterized this 905	  

error in terms of Kulback-Liebler (K-L) divergences.  He then decomposed the total 906	  

divergence for an estimated model into two parts: 1) a divergence between the true 907	  

distribution and the model parameterized in the best possible manner given the 908	  

constraints of model structure, and 2) a further divergence due to errors of estimation.   909	  

This decomposition yields two reasonable but distinct targets for model 910	  

identification.  The “minimum total discrepancy” forms (e.g. AIC and AICc) seek to 911	  

identify the model in the model set that, when estimated, will on average have the lowest 912	  

K-L divergence.  The “order consistent” forms (e.g. CAIC, SIC, and ICHQ) seek to 913	  

identify the model in the model set that will have the lowest K-L divergence under best 914	  



possible parameterization.    Asymptotically, both types of criteria achieve their goals.  915	  

As a generality (but with exceptions in particular data sets and classes of problems) MTD 916	  

forms tend to select models with slightly lower prediction mean squared errors, while 917	  

order consistent forms tend to select models with somewhat less spurious complexity (see 918	  

Taper 2004).  These two classes of information criteria are sometimes referred to as 919	  

“consistent” and “non-consistent”.  We prefer our terminology because “non-consistent” 920	  

implies that the MTD forms are doing something wrong as opposed to just different.  921	  

The failure to understand the distinction in the targets of identification has led to a 922	  

sea of wasted ink (e.g. Burnham et al., 2011) regarding the assumption purportedly 923	  

required by the order consistent forms that the “true model” is in the model set.  924	  

Mathematically, this assumption doesn’t exist.  We speculate that the origin of the myth 925	  

derives from loose language in Schwarz’ (1978) paper. When deriving the SIC (which he 926	  

calls the BIC) Schwarz declared αj, the prior for model j, to be the probability that model 927	  

j is the true model.  He immediately states that the specification of the priors doesn’t 928	  

matter because they are eliminated in the derivation.  In fact, he could have just as well 929	  

declared αj to be “the probability that model j is the model of best possible 930	  

approximation”.   931	  

Does model choice inherently make frequentist statistics subjective? 932	  

There is some truth, but little sting to this criticism to frequentist statistics often raised by 933	  

Bayesian scientists.  Certainly, if we understand the world through the use of models; the 934	  

models we actually use limit our understanding.  Thus model choice does add a 935	  

subjective element to science, which can influence the rate of gain of knowledge.  936	  



However, what knowledge is gained is objective.  For the evidential statistician, this is 937	  

most clear.  The evidential statistician makes no claim to the truth of any of the models 938	  

that investigated.  This statistician only claims that given the data in hand one model is 939	  

estimated to be closer to truth than another.  This claim is entirely objective. Further, the 940	  

subjective choice of models act as a challenge to other scientists to subjectively choose 941	  

other models that may themselves objectively prove closer to truth. We return to these 942	  

important points in our conclusions. 943	  

Error statistics also maintains objectivity, although in a more cumbersome 944	  

fashion.   The carefully wrought and strict definitions of NP and significance testing 945	  

make it clear both that the evidence is conditional on the models considered, and that the 946	  

tests make no claims as to the truth of any hypotheses.  NP (1933) "Without hoping to 947	  

know whether each separate hypothesis is true or false”	  thought that operational and 948	  

temporary decisions should be made between models based on the data and objective 949	  

criteria.  Similarly, Fisher’s significance tests only indicate when a model is inadequate 950	  

and make no exhortation to belief in the model when it is not rejected.  However, the 951	  

claim to objectivity for error statistics is slightly weaker than that of evidential statistics 952	  

because error probabilities are the primary evidential measure, and error probabilities are 953	  

calculated assuming one of the models is true. 954	  

  955	  

Problems in the use of the paradigms: 	  956	  

Difficulties in the relationships among P-values, error probabilities and evidence  957	  

The bulk of science has been done using as statistical tools Neyman-Pearson hypothesis 958	  

tests and Fisherian significance tests of P-values.  Much of this science has been solid, 959	  



which is amazing because both methods are seldom used the way they were intended.  960	  

The NP test does not present output which can be interpreted as evidence.  Neyman and 961	  

Pearson were clear on this in labeling it a decision procedure.  The size of the test, α, 962	  

which is an a priori error rate, could be taken as a crude measure of evidence under the 963	  

rubric of realiablism, but it is almost never reported.  What is reported as a “P-value” is 964	  

the minimum α that would have been rejected with the observed data.  This value is not 965	  

the size of the test, it isn’t really evidence, and it isn’t a post hoc type I error rate.  There 966	  

is a vast number of papers over many decades discussing these points, but Blume and 967	  

Peipert 2003 is a good introduction.   The persistence of this treatment of the NP test in 968	  

the face of all statistical education and literature is informative.  Scientists very much 969	  

want to be able to design experiments and studies with modest a priori control of error 970	  

rates, and they want a post hoc interpretation of evidence which is something more than 971	  

accept/reject.  The NP test does not give them both but evidential statistics does. 972	  

Another problem with the dominant error statistical procedures is that the 973	  

evidence for or against a single model, H0, represented by a Fisherian significance test is 974	  

not commensurate with the evidence for or against that hypothesis when it is contrasted 975	  

with an alternative model, H1.  This is known as the Lindley paradox.  Lindley (1957) 976	  

originally contrasted a significance test with a Bayesian comparison of two models.  977	  

Interestingly, as with all Bayesian inference, how often the contradiction occurs depends 978	  

on the priors set on the two models.   979	  

The Lindley paradox is not restricted to Bayesian analysis. The problem can be 980	  

reconstructed comparing a P-value with a Neyman-Pearson test.  The problem is that the 981	  

significance test may indicate a rejection of H0 when a comparison of the two models 982	  



indicates that there is more evidence for H0 than for H1.   The converse can also be true, a 983	  

significance test can fail to reject H0 whereas a model comparison indicates that there is 984	  

more evidence for H1 than there is for H0. For the general prosecution of science, this is a 985	  

flaw, although in certain contexts, such as drug trials, which require a conservative “first 986	  

do no harm” attitude, it is a design feature. 987	  

Having discarded the “true model” assumption, an evidentialist statistician has 988	  

trouble thinking in terms of evidence for a single model.  For the evidentialist, these 989	  

attempts are better described as model adequacy measures (Lindsey, 2004).  Basu et al. 990	  

(2011) have recently published a technical treatment on the development and use of 991	  

generalized distance measures for statistical inference. As pointed out by Taper and Lele 992	  

(2004) evidence functions are the difference (or possibly ratio) of 2 model adequacies.  993	  

Thus, the Basu et al. book can provide rich material for the construction of future 994	  

evidence functions. Further, the model adequacy of the best model in a model set 995	  

represents a limit on how much better a perfect model could do in representing the data. 996	  

  997	  

Problems with error statistical inference and & sample size 998	  

It is a long standing joke that a frequentist, (really an error statistician) is someone happy 999	  

to be wrong 5% of the time.  This is more than just a joke – it is a reality.  The way the 1000	  

control of error is built into error statistical tests implies that while the type I error doesn’t 1001	  

increase when sample increase, it also doesn’t decrease.  Under the evidential paradigm, 1002	  

both error probabilities, the probability of strong misleading evidence, M, and the 1003	  

probability of weak evidence, W, go to zero as sample size increases (see Royall, 1997; 1004	  

Royall,2000).  To illustrate this fact, in Figure 3 we present Royall’s example where the 1005	  



setting was as follows:  The null hypothesis (model 1) was that the data is normally 1006	  

distributed with mean  θ1and variance  σ
2 . The alternative is that the data is normally 1007	  

distributed, with the same variance but with mean  θ2
> θ

1 . If the null hypothesis is true, 1008	  

then the sample mean 
  
X ~N θ

1
,σ 2 / n( )  and the critical threshold at a level  α = 0.05  for 1009	  

the observed mean above which we would reject the null is given by 1010	  

  
x

crit
= σ

n
zα +θ

1
= σ

n
1.645+θ

1
, where  zα  is the percentile of a standard normal 1011	  

distribution so that  (1−α )100%  of the area under the Gaussian curve lies to the left of it.  1012	  

In that case, the Type II error, or probability of observing a sample mean that happens to 1013	  

fall within the “failing to reject” region given that the true probability model is 1014	  

  
X ~N θ

2
,σ 2 /n( )  is computed as 

  
Pr X ≤ x

crit( ) .  On the other hand, the probabilities of 1015	  

misleading evidence and of weak evidence as a function of  n  in this case are computed 1016	  

respectively as 1017	  

	  

   

M(n) = Pr ℓ
2

/ ℓ
1
> k( ) = Pr ℓ

1
/ ℓ

2
> k( ) ,

W (n) = Pr 1/ k < ℓ
2

/ ℓ
1
< k( ). 	  	  1018	  

Using standard mathematical statistic results pertaining transformation of variables, these 1019	  

probabilities can be readily computed for various sample sizes, and a given cut-off  k  for 1020	  

the strength of evidence (see Royall 2000 and Figure 3).           1021	  



	  1022	  

Figure 3. A comparison of the behavior with increasing sample size of Neyman-Pearson 1023	  

error rates (Type I and Type II) with evidential error rates (M and W).  The critical 1024	  

distinction is that NP type I error remains constant regardless of sample size while both 1025	  

evidential error rates go to zero as sample size increases (Figure re-drawn after Royall 1026	  

(2000)’s Figure 2 using   |θ2
−θ

1
|=σ = 15;θ

1
= 100;k = 8;α = 0.05.  ). 1027	  

 1028	  

Fisherian significance also has sample size difficulties.  In this case, it is with the 1029	  

interpretation of a P-value as the strength of evidence against a model.  The common 1030	  

practice of science implicitly assumes that a P-value from one study implies more or less 1031	  

the same degree of evidence against the null hypothesis that the same P-value from 1032	  

another study would even if the two studies have different sample sizes.  Unfortunately 1033	  

this isn’t true.  But, how the evidence varies with sample depends on subtleties of the 1034	  

scientist’s interpretation of the procedure.  If you impose a significance level and treat 1035	  

every P-value greater than the level simply as exceeding the level than there is greater 1036	  



evidence against the null in small samples than in large. If on the other hand, the scientist 1037	  

is directly comparing P-values without an a priori cut off, then there is greater evidence in 1038	  

large samples than small samples for a given P-values.  In either case the evidence 1039	  

depends on sample size making a hash of interpretation of published work (see Royall 1040	  

1986 for further details).  1041	  

Bayesian Difficulties with non-identifiability 1042	  

A model is said to be non-estimable if the maximum value of the likelihood function 1043	  

evaluated at the data occurs for more than one different sets of parameters.  That is to say 1044	  

that the data can’t be used to distinguish between multiple possible estimates.  If this 1045	  

failure is not due to a quirk of sampling, but is instead determined by the way the model 1046	  

is configured, then a model is said to non-identifiable if it is non-estimable for all 1047	  

possible data sets. 1048	  

Non-estimability may cause programs that calculate maximum likelihood 1049	  

estimates through numerical optimization to return an error.  This is generally annoying, 1050	  

but is an important indication that something is wrong with the way you are modeling 1051	  

your data.   1052	  

A Bayesian estimation on the other hand will be completely oblivious to the non-1053	  

estimability. Bayesian estimates are a combination of information from the data and 1054	  

information from the prior beliefs.  The hope is that information from the data will 1055	  

swamp that in the prior: 1056	  

“Specification of the prior distribution can be viewed as the ‘price’ paid for the 1057	  
exactness of inferences computed using Bayes Theorem. When the sample size is 1058	  
low, the price of an exact inference may be high.  As the size of a sample 1059	  
increases the price of an exact inference declines because the information in the 1060	  
data eventually exceeds the information in the prior” Royle & Dorazio.  2008. 1061	  
Hierarchical Modeling and Inference in Ecology.  Page 55 1062	  



However, this is not always true.  In the case of non-estimability/non-1063	  

identifiability there is no information in the data to distinguish between alternative 1064	  

estimates, and the decision is made entirely on the basis of the prior.  Often with complex 1065	  

hierarchical models where non-estimability/non-identifiability might occur is not 1066	  

obvious.   1067	  

As mentioned above, data-cloning is a method of transforming a Bayesian 1068	  

analysis into a likelihood analysis.  In situations where non-estimability/non-1069	  

identifiability is suspected, this is particularly useful.  A data cloned estimation will 1070	  

return estimates of estimable parameters and diagnostics indicating that non-1071	  

identifiability exists in the remainder (Lele et al. 2010; Ponciano et al. 2012). 1072	  

 1073	  

Informative, non-informative or mis-informative priors? 1074	  

As our sketch of Bayesian inference indicates, a specified prior is mandatory for 1075	  

Bayesian calculations.  To avoid “subjectivity” many Bayesian scientists prefer to 1076	  

employ “objective” or “non-informative” priors. 1077	  

“To compute the posterior distribution, the Bayesian has to prescribe a prior 1078	  
distribution for θ, and this is a model choice. Fortunately, in practice, this is 1079	  
usually not so difficult to do in a reasonably objective fashion.  As such, we view 1080	  
this as a minor cost for being able to exploit probability calculus to yield a 1081	  
coherent framework for modeling and inference in any situation.” 1082	  

Royle & Dorazio.  2008. Hierarchical Modeling and Inference in Ecology.  Page 1083	  
21 1084	  

The problem, is that what constitutes a non-informative prior depends on how the model 1085	  

is parameterized (Fisher, 1922).  Lele (2015) analyses 2 important ecological problems 1086	  

with simulated and real data sets. Each problem has multiple equivalent and commonly 1087	  

used parameterizations.   Lele analyses population persistence projections for the San 1088	  



Joaquin kit fox using a Ricker equation parameterized in terms of growth rate and density 1089	  

dependence (a, b) or in terms of growth rate and carrying capacity (a, K).   The two forms 1090	  

are mathematically equivalent.  However, Bayesian estimation using “non-informative” 1091	  

priors yield very different parameters estimates and very different predictions of 1092	  

population persistence.  Similarly occupancy models for the American toad can be 1093	  

parameterized either in terms of probabilities of occupancy and detection, or in terms of 1094	  

the logits of those quantities.  Both formulizations are commonly used in studying 1095	  

occupancy.  Again parameter estimates and posterior distributions from Bayesian 1096	  

estimates using non-informative priors are substantially different.  Lele (2015) further 1097	  

demonstrates that the maximum likelihood estimates for these problems achieved through 1098	  

data cloning are transformation invariant.  1099	  

While many statistical ecologists (e.g. Clark, 2005) agree with Royle and Dorazio 1100	  

that non-informative priors are benign, other eminent statisticians are much more 1101	  

cautious.  Bradley Efron, a major proponent of empirical Bayes, closes a 2013 article 1102	  

with the statement: “be cautious when invoking uninformative priors. In the last case, 1103	  

Bayesian calculations cannot be uncritically accepted and should be checked by other 1104	  

methods, which usually means frequentistically.”  Gelman and Shalizi (2013) also 1105	  

strongly argue for frequentist/falsificationist checking of Bayesian solutions, and go as 1106	  

far as saying that  1107	  

“the idea of Bayesian inference as inductive, culminating in the computation of 1108	  
the posterior probability…has had malign effects on statistical practice.  At best, 1109	  
the inductivist view has encouraged researchers to fit and compare models 1110	  
without checking them; at worst, theorists have actively discouraged practitioners 1111	  
from performing model checking because it does not fit into their framework”.   1112	  

Gelman and Shalizi, 2013. 1113	  



We are of the opinion that, while doing Bayesian statistics, practitioners should run 1114	  

frequentist checks on the validity of the inferences, despite the computational cost of so 1115	  

doing.  By frequentist checks here we mean running a large number of simulations under 1116	  

the model (i.e. a parametric bootstrap) or a more complex setting where truth is known 1117	  

(i.e. a model structure adequacy analysis sensu Taper et al 2008) so that the reliability of 1118	  

the inferences with the posterior distribution can be assessed. 1119	  

	  1120	  

The true model assumption and the difficulty of using probability as a measure of 1121	  

evidence 1122	  

A cryptic but fundamental assumption of Bayesian analysis is that the true model is in the 1123	  

model set. This is obvious because probabilities sum to 1.  But, this flies in the face of 1124	  

our experience as scientists, modelers and statisticians.  To quote George Box (1976) 1125	  

“All models are wrong.”  For us, if all models are wrong, what sense does it make to 1126	  

believe in any of them?  If you don’t believe in models, what sense does it make to 1127	  

depend on a statistical system predicated on belief in models? However, doubt about 1128	  

belief is not share uniformly by scientists as evidenced by this quote from an unpublished 1129	  

manuscript by an ecologist. 1130	  

“Frequentists never explicitly state how their metrics such as P-values and 1131	  
confidence intervals should be translated into belief about the strength of 1132	  
evidence, although such translation is clearly being done (otherwise data analysis 1133	  
is pointless if it is not informing belief). This is why I view the frequentist 1134	  
approach as subjective; there is no theory for how frequentist metrics should be 1135	  
translated into belief, so clearly the interpretation of frequentist metrics in terms 1136	  
of strength of evidence and belief must be subjective.” 1137	  

This ecologist believes in belief so strongly as to essentially accuse frequentists of lying 1138	  

when they say they don’t.     1139	  



Interestingly, some Bayesian statisticians concur with us.  Gelman and Shalizi 1140	  

(2013) state: “It is hard to claim that the prior distributions used in applied work represent 1141	  

statisticians’ states of knowledge and belief before examining their data, if only because 1142	  

most statisticians do not believe their models are true, so their prior degree of belief in all 1143	  

of Θ is not 1 but 0.”  Clearly, for these statisticians Bayesian statistics simply represents a 1144	  

very convenient calculation engine.  G.A. Barnard (1949) made a more psychological 1145	  

point when he said: 1146	  

“To speak of the probability of a hypothesis implies the possibility of an 1147	  
exhaustive enumeration of all possible hypotheses, which implies a degree of 1148	  
rigidity foreign to the true scientific spirit. We should always admit the possibility 1149	  
that our experimental results may be best accounted for by a hypothesis which 1150	  
never entered our own heads.”  1151	  

G.A. Barnard (1949) 1152	  

What does it do to us as scientists to continually condition ourselves to believe that our 1153	  

little systems comprehend reality?  1154	  

 1155	  

Bayesian aspects of Akaike weights 1156	  

Akaike weights are very important in so called frequentist model averaging (Burnham 1157	  

and Anderson 2002). They are the weights used in averaging models.  However, as 1158	  

pointed out by Burnham and Anderson (2004) Akaike weights are posterior probabilities 1159	  

based on subjective priors of the form  1160	  

	   ( )1exp log ,
2i i iq C K n K⎛ ⎞= ⋅ −⎜ ⎟⎝ ⎠

	  	  1161	  

where qi is the prior for model i, C is a normalization constant, Ki is the number of 1162	  

parameters in the model, and n is the number of observations. This prior is a b-1163	  



probability, and as consequence so are Akaike weights. Thus, Burnham and Anderson’s 1164	  

model averaging depends on a subjectively chosen prior, and as such inherits all of the 1165	  

justified criticism of such priors. 1166	  

Burnham and Anderson like this prior a great deal.  They call it a savvy prior 1167	  

(their emphasis).  The prior they favor captures the Burnham and Anderson world-view 1168	  

very well. Plotting this prior as a function of the number of parameters in model i, it is 1169	  

easy to see that if you have more than 8 observations this prior is in fact an “anti-1170	  

parsimony” prior, where models of more parameters are being favored a priori over 1171	  

models with fewer.   1172	  

 1173	  

Priors as practical regularization devices 1174	  

A class of intractable estimation problems using likelihood inference can be rendered 1175	  

tractable using subjective Bayesian statistics. Suppose we were wishing to estimate both, 1176	  

the probability of success p in a binomial trial whose total number of trials is unknown.  1177	  

In such cases, and depending on the values of p, the profile likelihood for the total 1178	  

number of trials N may not be well behaved and result in confidence limits with an 1179	  

infinite upper bound (Montoya 2008). In that case, as in similar species richness 1180	  

estimation problems (Christen and Nakamura 2000), subjective prior elicitation results in 1181	  

reliable inferences that have found applications in planning of biodiversity studies 1182	  

(Christen and Nakamura 2000).     1183	  

This is not to say the only way to control a badly behaving likelihood is through a 1184	  

prior.  Moreno and Lele (2010) were able to greatly improve the performance of site 1185	  



occupancy estimation using penalized likelihood. Some statisticians claim that penalized 1186	  

likelihood is equivalent to some prior (Wang and Lindsay, 2005). In Moreno and Lele’s 1187	  

case, they penalized to an alternative estimator based on the same data so no belief or 1188	  

prior information was involved. 1189	  

 1190	  

Using the paradigms  1191	  

Statistics as a means to clarify arguments 1192	  

There is a strong impulse among ecologists to seek a statistical paradigm that is true and 1193	  

exact and will make all their analyses beautiful.  No such paradigm exists. No paradigm 1194	  

is bullet proof, and no paradigm applies to all situations.   Science works by making 1195	  

demonstrations through evidence based arguments (Gelman and Hennig 2015). Statistics 1196	  

functions in science to quantify and clarify those arguments. Different statistical 1197	  

paradigms can be applied to different scientific arguments. 1198	  

Scientists are not used to thinking about the merits of statistical paradigms 1199	  

usefully.  Scientist judge scientific theories by how well they match an external reality.  1200	  

But, all statistical methods exist in the mind only, there is no external reality against 1201	  

which to judge them.  Statistical methodologies are to be judged as tools.  Are they useful 1202	  

in the construction of sound scientific arguments or are they not? 1203	  

 1204	  

The Central Task of Science 1205	  

We hold the view that models carry the meaning in science (Frigg, 2006; Giere, 2004; 1206	  

2008). Less radical views, of models such as that they represent reality  Giere, 1988; 1207	  

1999; 2004; Hughes, 1997; Morgan, 1999; Suppe, 1989; van Fraassen, 1980; 2002) or 1208	  



serve as tools for learning about reality (Giere, 1999; Morgan, 1999) all still give a very 1209	  

central place to models in science.  1210	  

Consequently, the job of scientists is to replace old (possibly good models) with 1211	  

new better models.  When we have taught courses in both ecological modeling and 1212	  

statistical modeling our primary instruction is always: “Never fall in love with your 1213	  

model – it should not be a long relationship.”  Even if a scientist’s interest is primarily in 1214	  

parameter values, Model identification is paramount.  Without a good model, parameter 1215	  

estimation will be faulty. 1216	  

Evidential statistics gives the scientist tools to choose among the models he has 1217	  

and motivation to formulate new ones.  Evidential statistics is a complete framework.  It 1218	  

encompasses: The design of experiments and the control of error, post data assessment of 1219	  

the strength of inference, model identification, the comparison of models, assessment of 1220	  

model uncertainty, parameter estimation, and assessment of estimate uncertainty. 1221	  

 1222	  

Communicating about models: Public versus Personal Epistemology 1223	  

Science knows much more than any individual scientist.  Science has learned much more 1224	  

than any individual scientist has ever learned.  This knowledge has accumulated over 1225	  

thousands of years through a complex web of transmission, colleague to colleague and 1226	  

teacher to student.  Science is a public epistemology. 1227	  

Belief is personal and difficult to transfer.  Belief also depends strongly on such 1228	  

individual things as cultural background and present mood.  Evidence, on the other hand, 1229	  

is independent of the individual, transferable, and can accumulate. As such it is much 1230	  

better suited to form the basis of a public epistemology than is belief.  Personal belief, 1231	  



although critically important for conducting first-person epistemology, needs to be 1232	  

strengthened with incorporation of data and information gathered from objectively 1233	  

grounded research to meet the demand of ever-growing science.  Scientific epistemology, 1234	  

on the other hand is public, and is based on the transferrable and accumulation of 1235	  

information from many people and over great periods of time (See Strevens, 2010). 1236	  

However, the growth of scientific knowledge is not divorced from personal beliefs.  1237	  

Scientists are people, and create their research programs informed by their personal 1238	  

beliefs.  1239	  

 1240	  

The Character and Contributions of Statistical Paradigms. 1241	  

Each of the statistical paradigms discussed has its own character and can make 1242	  

contributions to science. Error statistics, for instance, has been the backbone of science 1243	  

for a hundred years.  Undoubtedly, it will continue to make major contributions in the 1244	  

21st century.  There are inherent conservative biases in error statistics generated by the 1245	  

focus on the null hypotheses and the pre-specification of error rates. This conservative 1246	  

bias makes error statistics well suited for application in regulatory situations, medical 1247	  

science, and legal testimony, all fields that ethically mandate a similar bias.  1248	  

Evidential statistics, while still retaining control of error, places all models on 1249	  

equal footing.  These properties and its focus on models make us feel that the evidential 1250	  

paradigm is best suited for the prosecution of general science.  Nevertheless, when we are 1251	  

consulting for people answering to regulatory agencies, all of our evidential statistics get 1252	  

packed away, and out comes an error statistical tool kit.   1253	  



Although we personally find the belief based philosophical foundations of 1254	  

Bayesian statistics unsound to support science as a public epistemology (this includes 1255	  

both subjective and objective Bayesian approaches), a lot of good work has been done 1256	  

with Bayesian statistics.  A Bayesian analysis unchecked by frequentist methods runs the 1257	  

risk of undetected catastrophic failure, but in practice, much of the time it will be fine.   1258	  

Even if one seeks to avoid the use of a belief-based probability definition, an 1259	  

understanding of Bayesian methods in the analysis of hierarchical models is absolutely 1260	  

necessary.  Most of the alternative methods for solving complex problems in science, 1261	  

empirical Bayes, data cloning, and empirical Jeffreys’ priors all require a solid grounding 1262	  

in Bayesian methods. 1263	  

It is our opinion that the epistemological high ground is now held by evidential 1264	  

statistics.  We look forward to developments that will further evidential statistics, and 1265	  

someday lead to something that supplants it.  Currently, most of the purported advantages 1266	  

of both error statistics and Bayesian statistics are now held by evidential statistics.  This 1267	  

is by design; the framers of evidential statistics have ruthlessly borrowed what was good 1268	  

and rejected what was faulty.  Many of the key ideas in evidential statistics were 1269	  

pioneered by its predecessors. 1270	  

The central theme of this essay is that there is no magic wand for scientists in 1271	  

statistics. If one wants to use statistics effectively in science, then one needs to learn how 1272	  

to clarify scientific arguments with statistical arguments.  To do that one needs to 1273	  

understand how the statistical arguments work.  In many ways, this is a much harder task 1274	  

than mastering statistical methods. There are a number of excellent sources to help with 1275	  



this task. As a beginning, we suggest: Royall, 1997; Barnett, 1999; Sprott, 2000; Taper 1276	  

and Lele, 2004; Thompson, 2007, and Bandyopadhyay et al. 2015. 1277	  
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