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a  b  s  t  r  a  c  t

Fishermen  frequently  switch  their target  fish  species  without  documenting  changes  in which  species
they  are  targeting  and  the  used  fishing  practices,  generating  misleading  catchability  information  about
the  caught  fish.  To  date, changes  in  target  species  have  been  incorporated  in stock  assessments  at  two
different  levels  in  analyses.  First,  these  changes  are  taken  into  account  during  the  parameterization  of
generalized  linear  models  used  to compute  the  CPUE  index  standardization.  Second,  changes  in  tar-
get species  are  directly  incorporated  as  a time-varying  catchability  parameter  during  the  fitting  of  the
dynamic  model  used  for the assessment.  Here,  we  present  an  alternative  method  for  this  incorporation  by
specifying  a single  change  point  in  the  stationary  distribution  of the  catchability  coefficient  in  a  Bayesian
state-space  production  model.  Two  models  were  fitted  to  the  time  series  of the  south  Atlantic  blue  shark
(Prionace  glauca)  stock.  In  one  of  the  models,  only  one  catchability  coefficient  was  estimated.  In the  other
model,  a changing  point  was  included,  and  two  catchability  coefficients  were  estimated,  one  before  the
changing  point,  and  the  other  after. Despite  the  latter  model  introducing  an  extra  parameter,  it produced
a  significantly  better  fit than  the modeling  approach  before  the  change  point.  Although  including  a  single
change  point  in  the  catchability  coefficient  had no  significant  impact  on  the  status  of south  Atlantic  blue
shark  (which  is still  above  BMSY),  it provided  a robust  way  of accounting  for  changes  in  catchability  as  a
result  of  fishermen  changing  target  species.

© 2014  Elsevier  B.V. All  rights  reserved.

24

1. Introduction25

The majority of abundance indices used in stock assessments26

are derived from estimates of catch-per-unit effort (CPUE), the27

number or biomass of fish caught as a function of effort (Quinn28

and Deriso, 1999). The primary assumption behind a CPUE-based29

abundance index is that changes in the index are assumed to be30

proportional to changes in the actual stock abundance (Maunder31

and Punt, 2004). The catchability coefficient, the proportionality32

constant between an abundance index and population size, can33

be an influential parameter in many stock assessment models34

(Arreguín-Sanchez, 1996). In general, the catchability coefficient is35
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assumed to be constant over time and independent of population 36

size. These assumptions are unrealistic because many biological, 37

management-based, and fishery-dependent factors may  influence 38

catchability in fisheries, such as: spatial and temporal aggregation 39

of fish, changes in fishing power, gear selectivity, environmen- 40

tal variability, and dynamics of the population or fishing fleet 41

(Maunder et al., 2006; Carruthers et al., 2010). In addition to these 42

other factors, fishermen often change the species they target with- 43

out documentation (Hutchings and Myers, 1994; Salthaug and 44

Aanes, 2003), adding ambiguity to the catchability information of 45

the caught species (Carvalho et al., 2010). 46

A number of alternative methods can be used to account for 47

variation caused by the above-mentioned factors in the catchability 48

coefficient over time, represented here as time-varying catchabil- 49

ity. Two  methods are commonly used to address this variability: 50

(1) standardization of the CPUE-derived indices via generalized lin- 51

ear models (GLMs) with the aim of correcting the raw dataset for 52

known factors before the stock assessment is conducted, and (2) 53

direct specification of time-varying catchability during the fitting 54

0165-7836/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.fishres.2014.01.022

dx.doi.org/10.1016/j.fishres.2014.01.022
dx.doi.org/10.1016/j.fishres.2014.01.022
http://www.sciencedirect.com/science/journal/01657836
http://www.elsevier.com/locate/fishres
mailto:fcorreia@ufl.edu
mailto:rahrens@ufl.edu
mailto:dmurie@ufl.edu
mailto:josemi@ufl.edu
mailto:alexdasilva@iattc.org
mailto:mmaunder@iattc.org
mailto:fhvhazin@terra.com.br
dx.doi.org/10.1016/j.fishres.2014.01.022


Please cite this article in press as: Carvalho, F., et al., Incorporating specific change points in catchability in fisheries stock assess-
ment models: An alternative approach applied to the blue shark (Prionace glauca)  stock in the south Atlantic Ocean. Fish. Res. (2014),
http://dx.doi.org/10.1016/j.fishres.2014.01.022

ARTICLE IN PRESSG Model
FISH 3799 1–12

2 F. Carvalho et al. / Fisheries Research xxx (2014) xxx–xxx

of the dynamic model used for the assessment. If the GLM approach55

is used, one way to compensate for changes in target species in56

a multi-species fishery over time is to include changes in target57

species, along with other factors that are known to influence catch-58

ability, in the CPUE standardization process. Carvalho et al. (2010),59

for example, used cluster analysis and GLMs to incorporate changes60

in target species of the Brazilian longline fishery when estimat-61

ing abundance indices for the south Atlantic blue shark (Prionace62

glauca)  stock. Their results clearly showed a major change in target63

species occurring in 1996 when most of the fleet started targeting64

swordfish (Xiphias gladius) instead of tunas (Thunnus spp.), with65

a concomitant switch from using multifilament to monofilament66

longlines with chemically luminescent light-sticks. Swordfish and67

blue sharks are commonly caught together in the longline fishery68

(Campana et al., 2011), and thus this change in target species also69

increased blue shark catches. However, it was still unclear if the70

standardization process was able to fully account for the effects of71

changes in target species on blue shark CPUE variability, indicating72

a need for further study.73

In the assessment process, state-space models are an alternative74

method to model time-varying catchability. They can be formulated75

to estimate the catchability coefficient, historical abundance, and76

other parameters simultaneously, and allow them to vary over time77

without specifying the source of variation (Wilberg et al., 2010). The78

interest in state-space models as a modeling tool in fisheries man-79

agement has increased in the last decade (e.g. Rivot et al., 2004;80

Michielsens et al., 2006). One of the most important advantages of81

state-space models is that they can separate an observed process82

into two components: a system process that models the biolog-83

ical process over time and an observation process that accounts84

for imperfect detection of the system process, such as measure-85

ment error (Buckland et al., 2004; Dennis et al., 2006). Another86

way to accommodate time-varying catchability in stock assessment87

models is through the estimation of the variance parameter of the88

likelihood for the CPUE data (Wilberg et al., 2010). This method89

does not explicitly model catchability, but estimating an additive90

variance parameter accommodates additional white-noise varia-91

tion in the catchability coefficient. Other methods that explicitly92

model time-varying catchability in stock assessment have also been93

developed (see Wilberg et al., 2010).94

The management of blue shark stocks in the Atlantic Ocean is95

under the jurisdiction of the International Commission for the Con-96

servation of Atlantic Tunas (ICCAT). In 2008, ICCAT conducted a97

stock assessment for south Atlantic blue shark using a Bayesian98

surplus production model and multiple CPUE time series from99

various fishing fleets. All analyses indicated that current fishing100

mortality rates for blue shark in the south Atlantic are sustainable.101

However, the general conclusion of the assessment was that the102

results needed to be interpreted with considerable caution due to103

data deficiencies and the resulting uncertainty in the assessment104

(ICCAT, 2008). The ICCAT working group on assessment methods105

also expressed concern that some CPUE series used in the assess-106

ments might be misleading due to target species changing within107

the fishery.108

Time-varying catchability remains a central concern in fisheries109

science due to its potential to create biases in stock assessments.110

The present study aimed to improve the understanding of how111

changes in catchability over time, specifically due to changes in112

target species, affected the CPUE standardization process. Further-113

more, we illustrate how specifying a single change point in the114

stationary distribution of the catchability coefficient can lead to115

different estimates of biological reference points and subsequent116

harvest quota options. For this purpose, a methodology to incor-117

porate specific changing points in the catchability coefficient in a118

Bayesian state-space production model was developed and applied119

to the south Atlantic blue shark stock.120

Fig. 1. Distribution of fishing effort in number of hooks by the Brazilian pelagic
longline fleet between 1978 and 2012.

2. Materials and methods 121

Three sequential procedures were used to relate target species 122

changes, catchability, and CPUE time-series to production mod- 123

els: (1) a cluster analysis was used to identify target species in the 124

Brazilian longline fishery in the southwest Atlantic Ocean; (2) stan- 125

dardized CPUE abundance indices for blue shark were constructed 126

with and without the “target species” factor identified through the 127

cluster analysis; and (3) standardized abundance (CPUE) indices 128

were fit to a Bayesian state-space production model under two  sce- 129

narios. In scenario I, the CPUE series was  split into periods pre- and 130

post-1996, the year when there was  a marked change (change- 131

point) in the targeted species. The catchability coefficient values 132

were then estimated for each period. In scenario II, the CPUE series 133

used in the model was  not split and a single value was  estimated for 134

the catchability coefficient. Biological and management reference 135

point estimates from both scenarios were then compared. 136

2.1. Catch and effort data 137

Blue shark catch and effort data used in Carvalho et al. (2010) 138

were updated to 2012, increasing the total number of longline sets 139

made by the Brazilian pelagic tuna longline fleet to 72,231, includ- 140

ing both national and chartered vessels fishing from 1978 through 141

2012 (Fig. 1). Logbooks were made available by the Ministry of Fish- 142

eries and Aquaculture within the Brazilian government. Longline 143

sets were distributed throughout a wide area of the southwest- 144

ern Atlantic Ocean, ranging from 10◦ E and 50◦ W longitude and 145

between 10◦ N and 45◦ S latitude. This total fishing ground was 146

divided into two areas, north and south of 15◦ S, based on differ- 147

ences in the oceanographic characteristics (Carvalho et al., 2010) 148

(Fig. 1). 149

The Bayesian state-space production model used the total catch 150

per year for the south Atlantic blue shark between 1978 and 2012. 151

Because the catches reported to ICCAT over time are known to rep- 152

resent only a portion of total removals of the species of concern to 153

ICCAT, working groups have resorted to various methods to esti- 154

mate a time series of the total catch. Two such methods were used 155

by ICCAT in its last blue shark assessment. The first method, devel- 156

oped by Clarke et al. (2006), estimates shark catches in the Atlantic 157

by all fleets based on a characterization of the global shark fin trade 158

as of 2000, including number and biomass by shark species. In 159

this method, Hong Kong fin trade-based estimates for 2000 were 160

scaled to annual global values for 1980–2006 using the observed 161
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Fig. 2. Annual catches (1978–2012) of blue shark in the south Atlantic Ocean esti-
mated by using data supplied by ICCAT and methods that use either: (1) the ratio of
tunas to sharks in the catch; or (2) the total shark fins in the shark-fin trade.

quantity of imports to Hong Kong and an approximation of Hong162

Kong’s share of the global trade in each year. The resulting global163

fin trade for each year was then scaled to Atlantic-specific values164

(Clarke, 2008; ICCAT, 2008). The second method was  developed165

by the ICCAT shark working group (ICCAT, 2005). It estimates the166

percentage of reported shark catch vs. the combined total catch of167

tunas, swordfish, and billfish. The ratio from this calculation was168

aggregated by gear and fleet characteristics and applied to strata169

for which no shark catch information is available in order to esti-170

mate possible catch levels of blue shark for non-reporting fleets171

over the period 1978–2012 in the south Atlantic. As it was in the172

last ICCAT blue shark assessment, the total catch in each year was173

set equal to the maximum of the catch estimated from the tuna ratio174

and the catch estimated from the fin trade data. Except when no175

fin trade estimates were available during 1978–1980, 1982, 1985,176

1989, and 2006–2012, catches were much higher in the fin ratio177

based estimate than in the tuna ratio based estimate (Fig. 2).178

2.2. Cluster analysis179

We  used cluster analysis to account for changes in target180

species of the Brazilian longline fishery from 1978 through 2012,181

as described by Carvalho et al. (2010).  Data for the cluster analysis182

were obtained from the logbooks of the Brazilian longline fishery,183

which included such information as: vessel identification, fishing184

locations, starting times of setting and retrieval, number of hooks185

deployed, and number of fish caught by species. Clusters were186

developed using SAS 9.3 software (SAS Institute, Cary, NC). First, we187

fit a non-hierarchical cluster analysis (K-means method; Johnson188

and Wichern, 1988) in order to identify the ideal number of clusters189

associated with targeting different groups of fish. After the cluster190

analysis, percentages of the species and species groups were calcu-191

lated for each cluster. These clusters comprised the “target” species192

factor in the GLM.193

2.3. CPUE standardization194

Two standardizations were performed for blue shark catch and195

effort data using GLMs. In order to assess the impact of the “tar-196

get” factor in the standardization, this factor was  added to one of197

the models. The number of zero blue shark catches was  relatively198

high in the dataset (56%) and a Tweedie distribution with a log-link199

function was therefore used in the GLMs following Carvalho et al. 200

(2010).  The models used the following formulas: 201

E[Y](= E[CPUE] = !)
= exp{(intercept) + (year) + (quarter of the year) + (area)}
Var[Y](= "var[!]) = #2!p

202

and
203

E[Y](= E[CPUE] = !)
= exp{(intercept) + (year) + (quarter of the year) + (target)  + (area)}
Var[Y](= "var[!]) = #2!p

204

where ! is the location parameter; #2 is the diffusion parameter; 205

and p is the power parameter (Shono, 2008). 206

The selection of predictors was evaluated using AIC. The 95% 207

confidence intervals were computed using the bootstrapping 208

method with 1000 resampling data. The GLMs were computed in 209

the R language for statistical analysis (R Development Core Team, 210

2011). 211

2.4. Bayesian state-space production model 212

South Atlantic blue shark population dynamics were modeled 213

within a surplus production model framework using AD Model 214

Builder (ADMB; Fournier et al., 2012). Surplus-production mod- 215

els are the most commonly used stock assessment approach when 216

data are comprised of only harvest and relative abundance time 217

series (Hilborn and Walters, 1992). South Atlantic blue shark stock 218

dynamics were accounted for by fitting a surplus-production model 219

using a logistic difference equation to predict changes in popula- 220

tion biomass (B) in year y (Eq. (1)). In this model, population change 221

is governed by two  population parameters while the harvest pro- 222

cess is linked with changes in population size (Hilborn and Walters, 223

1992): 224

By = By−1 + rBy−1

(
1 −

By−1

K

)
− Cy−1 (1) 225

where By is the biomass at the start of year y, r is the intrinsic growth 226

rate, K is the carrying capacity, and Cy is the total catch during year 227

y. 228

In order for model predictions to be useful for comparison in 229

a management context, it is important to be able to make proba- 230

bilistic statements regarding the likelihood of a particular outcome. 231

Parameter estimation is therefore done using either a Bayesian or a 232

Maximum Likelihood approach, with both methods incorporating 233

external information of the parameters of interest. In the case of a 234

Bayesian approach, this information comes in the form of a prior; 235

the lack of parameter identifiability does not impose an inferential 236

problem as long as this lack of information can be compensated 237

using priors based on expert knowledge. Under Maximum Likeli- 238

hood, extra information about the parameters of interest can be 239

incorporated by writing the Joint Likelihood function of the exter- 240

nal data and the focal data of interest. In this latter approach, data, 241

not priors, are elicited to solve the identifiability problem (Ponciano 242

et al., 2012). 243

In the present assessment, an existing Bayesian estimation 244

framework developed by Meyer and Millar (1999) was used. This 245

framework explicitly considers both observation error and process 246

error to estimate south Atlantic blue shark population parameters 247

while also providing probability distributions associated with pop- 248

ulation predictions. This model assumes there is a single closed 249

stock, and that the dynamics of the stock (e.g. density-dependent 250

growth, mortality, and recruitment processes) are well described 251

by the Schaefer model (Schaefer, 1954). 252
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Variability is an important feature of natural populations and253

ignoring it often leads to an incomplete representation of the state254

of a population and an incorrect prediction of its future. The process255

error model relates the dynamics of a population to natural variabil-256

ity resulting from demographic and environmental processes. Here,257

the process model uses a state-space representation of the Schaefer258

surplus production model. With this parameterization, the deter-259

ministic equation (Eq. (1)) is rewritten into a stochastic population260

model with population state values expressed as a proportion of261

the carrying capacity (Pt = Bt/K) (Eq. (2)). The biomass in the first262

year of the time series was scaled using the model parameter ϕ,263

which is defined as the ratio of the biomass in the first year of the264

CPUE time series to K.265

P1 = ϕ

Pt |Pt−1, K, r, %2 =
(

Pt−1 + rPt−1(1 − Pt−1) − Ct−1

K

)
eut−(%2/2)

ut∼N(0, %2)

(2)266

where P1, . . .,  PN are the unknown states and ut the  process error267

for year t.268

The observation error model connects the state process (Eq.269

(2)) to CPUE (I), assuming CPUE is proportional to biomass (Eq.270

(3)). An “additional variance” approach, where the variance of271

measurement errors is the sum of variance estimates from index272

standardization and additional variance, was also implemented.273

It = qtKPtevt

vt∼N(0, "t + #2)
(3)274

where q is the catchability coefficient, in year t, and vt is the obser-275

vation error for year t. Observation error variance, process error276

variance, and index standardization variance, are defined by the277

parameters #2, %2, and ", respectively. When evaluating the joint-278

posterior distributions of the observed and unobservable processes279

(Eq. (4)), we used a reciprocal prior on the catchability coefficient280

(uniform on log-scale), which is the Jeffrey’s prior (i.e. invariant281

under re-parameterization, see Millar, 2002). Separate catchability282

coefficient (q) values were estimated for each period (pre- and post-283

1996) in scenario I, while a single value was estimated in scenario284

II.285

Using Bayes’ theorem, a posterior distribution for the fully con-286

ditional joint probability distribution of parameters was  specified287

based on the observed information. The posterior distribution given288

assumed known catch removals and CPUE data is proportional to289

the product of the priors and the likelihood of the observable and290

unobservable processes (Eq. (4)):291

p(r, K, ϕ, q, #2, %2, P1, . . .,  PN, I1, . . .,  IN)292

= p(r)p(K)p(ϕ)p(#2)p(%2)p(P1|%2, K, C1)
N∏

t=2

p(Pt |Pt−1, K, r, %2)293

N∏

t=1

p(It |Pt, q, #2) (4)294

295

2.5. Prior distributions296

In the present study we assumed non-informative prior distri-297

butions for all model parameters except r and ϕ. For K, #2 and %2298

we assigned an inverse-gamma prior distribution with the scaling299

parameters & and k set to 0.001 (Brodziak and Ishimura, 2012) (Eq. 300

(5)). 301

p(x) = &kx(k−1)e(−&x)

' (k)
(5) 302

The prior for ϕ was based on the analysis of historical catch and 303

effort data of the Brazilian pelagic longline fishery, which can be 304

divided in three distinct periods: I (1958–1962); II (1968–1970); 305

and III (1978–present). The average blue shark CPUE during period 306

II (unpublished data) was 86% of that during period I (Carvalho et al., 307

2008). Based on this value, ϕ was fixed at 0.86. In order to take 308

into account the high uncertainty around this value we set a coef- 309

ficient of variation (CV) of 45% (e.g. Hampton et al., 2004). There 310

are no records on longline fishing activity by the Brazilian fleet in 311

between these three periods. Additionally, the target species (yel- 312

lowfin tuna) and gear (Japanese-type longline) were the same for 313

periods I and II, meeting the assumptions required for calculating 314

the depletion between these two  periods. 315

An informative prior distribution was developed for the popula- 316

tion intrinsic rate of increase r following the demographic method 317

outlined in McAllister et al. (2001).  In this analysis, prior distri- 318

butions for age-specific fecundity, maturity, and natural mortality 319

are converted into prior distributions for r. This conversion is done 320

using the Leslie matrix projection approach. The Leslie matrix 321

model used is based on two equations: (1) the survival equation 322

Ni+1,t+1 = Ni,t × Si, where Ni,t is the number of age i individuals at time 323

t, and Si the  survival rate from age i to age i + 1; and (2) the repro- 324

duction equation N0,t+1 =
∑A

i=0Ni,t × mi, where mi = the expected 325

number of female pups per female. The number of age 0 individ- 326

uals depends on mi, the average number of age zero individuals 327

produced by an individual of age i. In matrix form, the model is 328

written [Ni]t+1 = L × [Ni]t , where [Ni]t is the vector of the numbers 329

of individuals in age group i at time t and L = Leslie matrix of the 330

form:
331





m0 mi mA 0

S0 0 . . . 0

0 Si . . . 0

0 0 SA 0




332

When the matrix coefficients are all positive, the rate of population 333

growth is r = ln((), where ( is the dominant eigen value of matrix 334

L. A distribution of population intrinsic rate of increase was  com- 335

puted and a probability density function was  fitted for values of r 336

generated from 20,000 Leslie population matrices. 337

The life history information and parameters used to construct 338

the prior distributions for r were sourced from previous studies on 339

blue shark life-history and are summarized in Table 1. To account 340

for uncertainty we used a simulation approach as in Cortés (2002), 341

where statistical distribution functions were defined for each life- 342

history parameter, based on published records. A total of 20,000 343

independent vectors were randomly drawn to calculate the dif- 344

ferent components of the Leslie population matrices, i.e. annual 345

survivorship at age i(Si) (age 1–16; the maximum  age in the cal- 346

culations was based on Aires-da-Silva and Gallucci, 2008), survival 347

of age 0 (young-of the year) (S0), and expected number of female 348

pups per female (mi), respectively. The expected number of female 349

pups produced per female is given by mx = sr × fx × Ox, where mx is 350

the mean number of age 0 female pups produced per age x female, 351

sr is the sex ratio (1:1 embryonic sex ratio was assumed based on 352

Hazin et al., 2000), fx is the fecundity at age x, and Ox is the pro- 353

portion of mature female at age x. Age-specific fecundities for blue 354

dx.doi.org/10.1016/j.fishres.2014.01.022


Please cite this article in press as: Carvalho, F., et al., Incorporating specific change points in catchability in fisheries stock assess-
ment models: An alternative approach applied to the blue shark (Prionace glauca)  stock in the south Atlantic Ocean. Fish. Res. (2014),
http://dx.doi.org/10.1016/j.fishres.2014.01.022

ARTICLE IN PRESSG Model
FISH 3799 1–12

F. Carvalho et al. / Fisheries Research xxx (2014) xxx–xxx 5

Table  1
Growth parameters values used in the Demographic analysis for South Atlantic blue shark. L∞: asymptotic length; K(y–1): growth Coefficient; x0: age at zero length; xm50:
age  at 50% mature; and xmax: maximum age.

Source Parameter

Sex L∞ K (y−1) x0 xm50 xmax Length measurement

Pacific Ocean
Cailliet et al. (1983) Male 295.3 0.175 −1.113 4 9 TL

Female 241.9 0.251 −0.795 5 9
Nakano (1994)b Male 382.9 0.129 −0.756 5 10 PCL

Female 321.4 0.144 −0.849 6 10
Manning and Francis (2005)b Male 410.8 0.088 −1.257 6 22 FL

Female 320.1 0.126 −1.047 7 19

Atlantic Ocean
Stevens (1975) Combined 423.0 0.110 −1.035 a 6 TL
Aires-da-Silva (1996) Combined 340.0 0.138 −1.075 a 5 TL
Henderson et al. (2001) Combined 376.5 0.120 −1.330 a 6 TL
Skomal  and Natanson (2003)b Male 282.3 0.180 −1.350 5 16 FL

Female 310.8 0.130 −1.770 5 15
Lessa  et al. (2004) Combined 352.1 0.157 −1.010 5 12 TL
Jolly  et al. (2013) Male 294.6 0.140 −1.300 5 14

Female 334.7 0.110 −2.190 6 16
Distribution Normal Normal Normal Uniform Uniform

a No information available.
b Given as fork length (FL) or pre-caudal length (PCL) and converted to total length (TL) using equation: FL = 0.8313(TL) + 1.39 and PCL = 0.9075(FL) − 0.3956 (Kohler et al.,

1995).

shark were calculated according the equation proposed by Mejuto355

and García-Cortés (2005):356

No. embryos = −61.605 + 0.470403 × (FL female)  (6)357

The logistic function that described the proportion of mature358

female at age x is:359

Ox = 1
1 + e(−ˇ(x−xm50))

(7)360

where ˇ is the slope of the positive linear relationship between lit-361

ter size and fork length of the pregnant females from Mejuto and362

García-Cortés (2005) and xm50 is the age where 50% of the individ-363

uals are mature, which is 5 years according Lessa et al. (2004).364

To estimate natural mortality (hence survivorship, S = e−M) we365

applied five methods, including Pauly (1980),  Hoenig (1983),  Chen366

and Watanabe (1989) and Jensen’s (1996) age-at-maturity method;367

and, Jensen’s (1996) K growth coefficient method. All these meth-368

ods rely on parameter estimates derived from the von Bertalanffy369

growth function (Cortés, 2002). As suggested by Aires-da-Silva and370

Gallucci (2008),  we used the mean and coefficient of variation (CV)371

obtained for M across methods as parameter estimates to define a372

lognormal distribution, which ensures that the transformed esti-373

mates and resulting pdf of annual survivorship vary between 0 and374

1. This demographic analysis resulted in a prior estimate of 0.297375

(SD = 0.08) for r.376

From Bayes’ theorem, the posterior distribution represents the377

uncertainty about the true parameter values and is used to make378

probability (or credibility) statements regarding parameter val-379

ues. In the Bayesian framework, samples are generated from the380

posterior distribution of parameters, which can be implemented381

using Markov Chain Monte Carlo (MCMC) techniques (MacKay,382

2003). The MCMC  samples were calculated using the default algo-383

rithm in ADMB (Fournier et al., 2012). MCMC  simulations were384

conducted in an identical manner for each model scenario. Each385

simulation included five chains with 2 million cycles, discarding386

the first 200,000 iterations as burn-in phase and then thinning the387

chain by saving every 200th iteration to reduce autocorrelation.388

MCMC  simulation convergence was tested using the CODA pack-389

age (Convergence Diagnosis and Output Analysis; Plummer et al.,390

2006) in R statistics. A minimal thresholds of p = 0.05 was adopted391

for Geweke’s diagnostic (Geweke, 1992) and the two-stage Hei-392

delberger–Welch stationary test (Heidelberger and Welch, 1983).393

We  also used the Gelman and Rubin (1992) approach to evaluate 394

the mixing and convergence of our MCMC  sampler Tests results 395

showed no evidence of failure to converge for all model parameters. 396

The 2.5th and 97.5th percentiles of the posterior distribu- 397

tions are used to represent 95% Bayesian credibility intervals 398

for all parameters, projections, and management quantities. The 399

estimated 95% credibility intervals (CIs) are analogous to 95% con- 400

fidence intervals and are also conditional on the model. CIs can be 401

interpreted in the sense that there is a 95% probability that the 402

lower and upper credibility intervals include the true value given 403

the prior information and the data. 404

Model fit was  evaluated using a graphical assessment of the 405

95% prediction credibility intervals. To compare alternative mod- 406

els, the deviance information criterion (DIC) was  used. The deviance 407

information criterion is defined as: DIC = P̄()) + pD, where P̄()) = 408

E[P())]|y] is the posterior mean of the deviance, where y are the 409

data, ) are the unknown parameters of the model, and pD = P̄()) = 410

E[P())|y] − P[E())|y] is the difference in the posterior mean of the 411

deviance and the deviance evaluated at the posterior mean of the 412

parameters. As a rule of thumb, if two models differ in DIC by more 413

than three, the one with the smaller DIC is considered the best 414

fitting (Spiegelhalter et al., 2002). 415

2.6. Biological reference points 416

For each scenario, harvest management measures can be 417

derived from Eq. (1), including Maximum Sustainable Yield (MSY). 418

The production model provides direct estimates of biological ref- 419

erence points for blue shark used for determining stock status: 420

B2012, the stock biomass at the end of the last year of the assess- 421

ment period; BMSY, the stock biomass at which MSY  is achieved; 422

FMSY, the fishing intensity corresponding to MSY; F2012, the fishing 423

intensity during the last year of the assessment period; B2012/BMSY, 424

the ratio of the spawning stock biomass at the end of the last year 425

of the assessment period to that at which MSY  is achieved; and 426

F2012/FMSY, the  ratio of the fishing intensity during the last year 427

of the assessment period to that corresponding to MSY. The time 428

series of the exploitable biomass was  plotted using the mean values 429

from model parameter joint-posterior distributions. Total Allow- 430

able Catch (TAC) was estimated as the product of FMSY and the 2012 431

biomass. 432
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Table 2
Percentage of each species or group of species per cluster.

Species Cluster

1 2 3 4 5 6

Yellowfin tuna Thunnus albacares 5.4 45.1a 9.1 8 2.5 4.3
Bigeye tuna Thunnus alalunga 70.5a 10.4 6.8 5.5 4.8 2.1
Albacore Thunnus obesus 5.3 12.3 5.2 9.9 1.5 71a

Swordfish Xiphias gladius 3.1 7.5 10.4 58.9a 8.3 9
Sailfish Istiophorus albicans 1.3 2.4 2.1 1.9 0.8 1
White marlin Tetrapturus albidus 0.7 2.2 1.7 0.9 0.6 0.6
Blue  marlin Makaira nigricans 0.5 1.3 0.7 1.3 0.4 0.9
Other  billfishes 0.1 0.1 2.4 0.7 0.3 0
Wahoo Acanthocybium solandri 0.7 2.9 2.2 0.4 0.3 0.3
Dolphin fish Coryphaena hippurus 0.4 0.7 6.7 1.5 3.4 0.4
Blue  shark Prionace glauca 4.9 2.3 6.1 6.7 68.2a 4.9
Hammerhead shark Sphyrna sp. 0 0.5 3.1 0.4 1.6 0
Bigeye thresher Alopias superciliosus 0 0.1 0.1 0.1 0.3 0
Mako  shark Isurus sp. 0.3 1.6 1.3 0.8 2.8 0.1
Silky  shark Carcharhinus falciformis 0 0.1 5.8 0.1 0.2 0.1
Oceanic whitetip Carcharhinus longimanus 0 0 0.1 0 0 0
Other  sharks 2 1.5 11.6 1 2.4 2.4
Other  teleosts 3.9 7.1 24.6a 1.9 1.6 2

a The target species in each cluster.

2.7. Sensitivity analysis433

The assessment of south Atlantic blue shark stock was  subject to434

sensitivity analysis in order to evaluate model performance under435

alternative priors for r and ϕ. The best model selected between sce-436

narios I and II was used as the base case for the sensitivity analyses.437

For the alternative prior for r a less informative standard deviation438

of 0.3 was assigned. The parameter ϕ was given an uninformative439

(uniform) prior between 0.2 and 1.1 (ICCAT, 2008). Also, as tak-440

ing the maximum catch in each year might inflate MSY, a catch441

sensitivity analysis using the tuna ratio catch series instead of the442

maximum of the tuna ratio and fin trade catch estimates was  per-443

formed.444

3. Results445

3.1. Cluster analysis identifying the “Target” factor446

The cluster analyses resulted in the separation of the catch447

into six different clusters representing fishing or target strategies,448

the % composition of species or species group in each cluster are449

as follow: Cluster 1 = bigeye tuna (Thunnus alalunga, 70.5%); Clus-450

ter 2 = yellowfin tuna (Thunnus albacares, 45.1%); Cluster 3 = other451

teleosts (24.6%), together with other sharks (11.6%) and swordfish452

(X. gladius,  10.4%); Cluster 4 = swordfish (58.9%); Cluster 5 = blue453

shark (68.2%); and Cluster 6 = albacore (Thunnus obesus,  71%)454

(Table 2). These clusters were the same ones identified in the anal-455

ysis by Carvalho et al. (2010) using data from 1978 to 2006, with456

only small differences in the % composition of the main species457

observable with the data updated to 2012.458

3.2. CPUE standardization459

The final model for the blue shark CPUE standardization that460

did not include the Target variable consisted of three variables and461

explained 55% of the total deviance. The relative contribution from462

each variable in the total explained deviance for the model showed463

that Year (62%) was the most important factor, followed by Area464

(31%), and Quarter (7%) (Table 3). The CPUE model that included465

Target consisted of four variables and explained 61% of the total466

deviance. Target (51%) and Year (29%) were the most important467

factors, followed by Area (14%), and Quarter (6%). The estimations468

of the regression coefficients for the main effects in both models469

Table 3
Deviance analysis of explanatory variables in the Tweedie models for blue shark
caught by Brazilian pelagic tuna longline fleet, from 1978 to 2012.

Df Deviance Resid. Df Resid. Dev. Dev.
Exp. (%)

AIC

Model without “Target”
NULL 37,881 109672.5 4515
Year 34 42308.3 28,413 105041.8 62 3871
Area 1 33566.1 27,109 102637.7 31 3317
Quarter 3 14653.7 26,538 99431.1 7 3291

Model with “Target”
NULL 39,840 58013.7 9221
Target 5 21745.3 35,611 52085.8 51 7044
Year 34 18451.2 31,714 46728.1 29 6653
Area 1 17617.8 28,045 45115.6 14 5868
Quarter 3 17044.1 27,825 45093.0 6 5776

are shown in Table 4. For both models it can be noted that the 470

estimated catch rates in area 2 were higher than catch rates for 471

area 1 (reference area). Also, catch rates in quarter 4 (October to 472

December) were similar to catch rates gathered in quarter 1 (refer- 473

ence quarter), while catch rates in third and second quarter were 474

lower than quarter 1. As expected, the model that included Target 475

showed higher catch rates in cluster 5 (cluster with the highest % 476

of blue shark catches (Table 2) than in cluster 1 (reference cluster). 477

The standardized CPUE time series showed a stable trend from 1978 478

Table 4
Estimations of regression coefficients and related statistics for the main effects of
the variables included in the GLMs for blue shark caught by Brazilian pelagic tuna
longline fleet, from 1978 to 2012.

Estimate Std. error t value Df P(>|t|)

Model without “Target”
Area 2 0.2164 0.0867 2.14 0.0174
Quarter 2 −0.2513 0.1241 −2.49 0.0087
Quarter 3 −0.2053 0.0921 −3.58 0.0019
Quarter 4 0.0401 0.1142 0.21 0.8315

Model with “Target”
Area 2 0.2712 0.0973 2.9227 0.0037
Quarter 2 −0.4655 0.2813 −3.7418 0.0042
Quarter 3 −0.3918 0.2902 −2.1933 0.0411
Quarter 4 0.0947 0.0795 1.2867 0.2017
Target 2 −0.5517 0.2844 −0.2072 0.9773
Target 3 0.0114 0.2451 0.4507 0.8022
Target 4 0.0159 0.3317 0.5941 0.5803
Target 5 1.4175 0.1304 9.2506 <0.001
Target 6 0.0749 2.8150 0.0113 0.7548
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A) Standardized CPUE without 'Target' factor
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Fig. 3. Nominal (black circle) and standardized (black line) CPUE of blue shark caught by the Brazilian pelagic tuna longline fleet from 1978 to 2012 without and with the
“Target”  factor. Shaded region represents the 95% credibility interval for predicted CPUE values.

through 1995, increasing from 1996 onwards, and reached a peak479

in 2003 in both models (Fig. 3). However, from 2002 onwards the480

model that did not include the Target factor showed higher CPUE481

values (Fig. 3A) than the CPUE model standardized with it (Fig. 3B).482

3.3. Biomass dynamic model483

We  fit the two biomass dynamic models to the blue shark stan-484

dardized CPUE time series that included Target. The DIC analysis485

indicated better model fitting under scenario I, as it was  94 deviance486

points smaller than for the model under scenario II. Under sce-487

nario I, predicted CPUE appeared to randomly fluctuate throughout488

the observed CPUE time series with an increase in both predicted489

and observed CPUE after 1995, followed by relative stability from490

2002 until 2012 (Fig. 4A). Under scenario II (Fig. 4B), the predicted491

CPUE time series showed similar behavior as scenario I, with a sta-492

ble trend until 1995 and an increase in CPUE afterward. However,493

predicted and observed CPUEs from the model under scenario II494

exhibited similar values until 2001, after which the predicted CPUEs495

displayed markedly higher values than the observed CPUEs. When496

comparing the predicted time series between the two models, there497

was a noticeable discrepancy in the predicted CPUE values. After498

2000, scenario II appears to overestimate predicted CPUE values,499

and the overestimation also seems to occur for scenario I, but to500

a lesser extent. In 2012, for example, predicted CPUE under sce-501

nario I showed a 7.0% of increase from the observed CPUE, while in502

Scenario II the increase was 19.4%.503

The posterior median estimates of parameters r and ϕ, using504

the baseline priors, showed narrow marginal posterior distribu-505

tions for both scenarios, and the observed parameter value for506

r within the predicted range obtained by the demographic anal-507

ysis. The posterior median values of r and ϕ are  greater for508

scenario II (r = 0.319, SD = 0.081; ϕ = 0.869, SD = 0.024) than sce-509

nario I (r = 0.280, SD = 0.069; ϕ = 0.861, SD = 0.018) (Table 5). For510

carrying capacity (K, the posterior median based on scenario I was511

847,311 t (SD = 118,615) while the median based on scenario II was512

971,050 t (126,445). Time series of observation and process errors513

for both models clearly show a positive trend over time, with no514

negative values occurring after 1995 (Fig. 5A and B). The poste-515

rior median estimates for observation error variance were 0.056516

(SD = 0.0094) for scenario I and 0.139 (SD = 0.0285) for scenario II.517

For process error variance, the posterior median estimates were518

0.0011 (SD = 0.0002) for scenario I, and 0.0031 (SD = 0.0005) for519

scenario II (Table 5). The amount of change in the catchability520

coefficient over time also showed an increase after 1995 for both 521

models (Fig. 5C). Under scenario I median estimates for qpre-1996 522

and qpost-1996 were 0.0000011 (SD = 0.0000001) and 0.0000020 523

(SD = 0.0000001), respectively, while for scenario II was 0.0000031 524

(SD = 0.0000009) (Table 6). 525

The estimates of the biological reference points were very uncer- 526

tain and varied between the two  scenarios (Table 7). The posterior 527

median estimate of BMSY for scenario I was 14% below the estimate 528

for scenario II. The posterior median estimate of MSY  for scenario I 529

was approximately 27% below the estimate for scenario II. All mod- 530

els provided different estimates for the current biomass (B2012). 531

The highest posterior median estimated value was obtained by sce- 532

nario II (Table 7). The estimate of TAC and the uncertainty around 533

its estimate also varied between scenarios. The posterior median 534

estimates of TAC were 89,106 mt  per year based on scenario I, and 535

116,214 mt  per year based on scenario II (Table 7). 536

There was  no practical difference in the estimates of stock sta- 537

tus in 2012 between the two  scenarios. In particular, the posterior 538

median estimates of B2012 were greater than BMSY for both models 539

(i.e. B2012/BMSY > 1) and the associated probabilities of B2012 being 540

below BMSY were close to zero as well. For scenario I, exploitable 541

biomass fluctuated above BMSY during the entire model timeframe, 542

with biomass fluctuating around 600,000 mt  until 1995 when 543

values started increasing, reaching their highest value in 2001, fol- 544

lowed by a decrease and subsequent stabilization (Fig. 6A). Biomass 545

estimates for scenario II were similar to scenario I until 1996, after 546

which the model under scenario II presented slightly higher val- 547

ues (Fig. 6B). The trajectories of the posterior median estimates 548

of the ratio of fishing mortality to FMSY for both biomass dynam- 549

ics models are summarized using a stock-status plot (Fig. 7). The 550

stock biomass displayed similar trends throughout the years for 551

both models, although scenario I produced a higher estimate of 552

F/FMSY in 2012 (0.28) than scenario II (0.26). The ratio of B2012 to 553

BMSY showed a lower value (1.49) under scenario I than scenario 554

II (1.56). Both indicated that the stock is currently not overfished 555

(B > BMSY) and that overfishing is not taking place (F < FMSY) (Fig. 7). 556

All of the sensitivity analyses (Table 7) were consistent in finding 557

that the population abundance is probably above BMSY and fishing 558

mortality is probably below FMSY. Although the sensitivity analy- 559

ses showed similar population status, the posterior distributions 560

of r and ϕ were more uncertain when less informative priors were 561

used for these parameters. The sensitivity analysis using only the 562

tuna ratio catch series resulted in much lower estimates for k and 563

current biomass (Tables 5 and 7). 564
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Fig. 4. Time series of observed (black circle) and predicted (black line) CPUE from the southern Atlantic blue shark stock assessment using a Bayesian state-space production
model  under scenarios I (split-catchability) and II (continuous catchability). Shaded region represents the 95% credibility interval for predicted CPUE values.

Table  5
Estimated parameters from the southern Atlantic blue shark stock assessment using a Bayesian state-space production model under scenarios I (split-catchability) and II
(continuous catchability). r: population intrinsic rate of increase; ϕ: ratio of the biomass in the first year to K; K: carrying capacity; #2: observation error variance; and %2:
process  error variance.

r ϕ K #2 %2

Median (SD) Median (SD) Median (SD) Median (SD) Median (SD)

Scenario I (base case) 0.280 (0.069) 0.861 (0.018) 847,311 (118,615) 0.056 (0.0094) 0.0011 (0.0002)
Scenario II 0.319 (0.081) 0.869 (0.024) 971,050 (126,445) 0.139 (0.0285) 0.0031 (0.0005)
Sensitivity analysis

Scenario I (less informative r) 0.320 (0.168) 0.859 (0.036) 935,263 (169,011) 0.054 (0.0095) 0.0011 (0.0001)
Scenario I (uninformative prior for ϕ) 0.313 (0.098) 0.813 (0.154) 927,228 (192,387) 0.062 (0.0093) 0.0022 (0.0003)
Scenario I (tuna ratio catch series only) 0.311 (0.094) 0.848 (0.021) 654,006 (91,473) 0.057 (0.0088) 0.0020 (0.0002)

Fig. 5. Time series of observation error, process error, and catchability estimated by the southern Atlantic blue shark stock assessment using a Bayesian state-space production
model  under scenarios I (split-catchability) and II (continuous catchability). Horizontal dashed lines indicates zero and the vertical dashed line indicates the year 1996. Shaded
region  represents the 95% credibility interval.
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Table  6
Estimated catchability parameters (q) from the southern Atlantic blue shark stock assessment using a Bayesian state-space production model under scenarios I (split-
catchability) and II (continuous catchability).

qpre-1996 qpost-1996 q
Median (SD) Median (SD) Median (SD)

Scenario I (base case) 0.0000011 (0.0000001) 0.0000020 (0.0000001) –
Scenario II – – 0.0000031 (0.0000009)
Sensitivity analysis

Scenario I (less informative r) 0.0000012 (0.00000007) 0.0000024 (0.00000010)
Scenario I (uninformative prior for ϕ) 0.0000013 (0.00000014) 0.0000019 (0.00000017)
Scenario I (tuna ratio catch series only) 0.0000010 (0.00000013) 0.0000025 (0.00000011)

Table 7
Estimated reference points from the southern Atlantic blue shark stock assessment using a Bayesian state-space production model under scenarios I (split-catchability) and
II  (continuous catchability).

BMSY B2012 MSY TAC
Median (SD) Median (SD) Median (SD) Median (SD)

Scenario I (base case) 423,474 (60,018) 632,735 (82,918) 59,324 (8513) 89,106 (11,701)
Scenario II 485,719 (67,833) 757,961 (91,157) 77,469 (9002) 116,214 (19,935)
Sensitivity analysis

Scenario I (less informative r) 466,485 (85,308) 716,481 (125,009) 72,109 (11,872) 94,377 (13,210)
Scenario I (uninformative prior for ϕ) 467,127 (85,090) 718,925 (112,016) 70,268 (14,012) 92,273 (16,141)
Scenario I (tuna ratio catch series only) 327,290 (40,011) 437,013 (70,851) 48,102 (6137) 72,014 (9294)

4. Discussion565

The tuna longline fishery is complex due to the large variety566

of boats and fleets and frequent switching of gear type and target567

species. Since the start of the fishery in 1956, approximately 237568

boats, consisting of 20 fleets, have operated in the southwestern569

Atlantic Ocean. In fisheries where fishery-independent data are not570

available, such as in the southwestern Atlantic tuna longline fish-571

ery, it is necessary to develop models that standardize for the572

biological, technical, and economic factors that affect catch rates.573

However, under circumstances of abrupt change, standardization574

models assuming constant catchability may  not be sufficient to575

minimize the effects of these factors. In the present study, for exam-576

ple, the substantial increase in blue shark nominal CPUE after 1996,577

due to changes in target species, persists in both standardized CPUE578

series. Additionally, the variability found in the blue shark stock579

assessment models for both scenarios indicates that not correct-580

ing for time-varying catchability directly in the assessment model581

can lead to incorrect estimates of stock status and poorly informed582

management decisions.583

Besides CPUE standardization, several more sophisticated 584

modeling procedures have been developed that incorporate time- 585

varying catchability directly in stock assessment models; however, 586

there is little consensus regarding which practice is ideal (e.g. Fox, 587

1974; Fournier and Archibald, 1982; Freon, 1988; Prager, 1994; 588

Schnute, 1994; Fournier et al., 1998; Shepherd and Pope, 2002; 589

Walters and Martell, 2004). State-space techniques and modeling 590

the catchability coefficient as a function of time do not ascribe cau- 591

sation for changes in catchability (Meyer and Millar, 1999; Punt, 592

2003), while the use of functions of density or external variables 593

assumes that the variables used are the dominant factors affecting 594

the change. 595

4.1. Assessment model 596

In the 1960s and 70s, most shark stock assessments were con- 597

ducted using some form of the logistic Schaefer model, mainly 598

because of a lack of data and computing power. This model often 599

proved inappropriate to model shark population dynamics since 600

it considered the relationship between surplus production and 601
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Fig. 6. Time series of exploitable biomass (mt) estimated by the southern Atlantic blue shark stock assessment using a Bayesian state-space production model under scenarios
I  (split-catchability) and II (continuous catchability). Shaded region represents the 95% credibility interval for predicted biomass values.
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Fig. 7. Estimated trajectories for the posterior median of B/BMSY and F/FMSY from
the southern Atlantic blue shark stock assessment using a Bayesian state-space
production model under scenarios I (split-catchability) and II (continuous catch-
ability). Shaded region represents the joint 95% credibility interval for B2012/BMSY

and F2012/FMSY.

resource biomass to be symmetrical with a maximum at halfway602

between a resource biomass of zero and the carrying capacity603

(Maunder, 2003). Pella and Tomlinson (1969) proposed the addi-604

tion of a supplementary shape parameter to allow the production605

relationship to be skewed to the left or to the right. However, in606

order to improve the logistic model approach in the Pella and Tom-607

linson model, an additional parameter, the shape parameter, must608

be estimated to fit the model to the data. Despite its flexibility609

and suitability, this model may  perform worse than the Schaefer610

due to an inverse relationship between the number of parameters611

to be estimated and model performance (e.g. precision) (Prager,612

2002). According to Cortés (2008),  the blue shark is a very produc-613

tive species with high fecundity and an inflection point near 50%614

of K (i.e. not skewed). For precautionary management, 50% is a rea-615

sonable estimate of the critical value. Then, the use of the logistic616

Schaefer model would be appropriate for blue shark.617

The Bayesian estimation approach presented here provided618

better scientific advice than models that do not incorporate time-619

varying catchability. The estimated biological reference points620

from the two scenarios indicated that varying catchability had no621

qualitative impact on the status of the south Atlantic blue shark622

population with respect to MSY-based reference points based on623

current stock size, with both scenarios indicating that the stock is624

not currently overfished nor undergoing overfishing. Analyses also625

showed that it was very likely that the south Atlantic blue shark626

population biomass was above BMSY in 2012, since all scenarios627

showed B/BMSY > 1.0. Regardless of the scenario and the sensitiv-628

ity analysis used, it is unlikely that the south Atlantic blue shark629

population was being fished in excess of its optimal equilibrium630

harvest rate in 2012, similar to the conclusion reached by the south631

Atlantic blue shark stock assessment in 2008 (ICCAT, 2008). How-632

ever, it is important to highlight that an evaluation of the stock633

status for south Atlantic blue shark is strongly compromised by634

limited fishery statistics, as is an evaluation for any other bycatch635

shark species. Under- or non-reporting of bycatch, unknown dis-636

card levels, unknown status (dead or alive) of discards, and poor637

knowledge on the extent of finning practices are among the major638

reasons for the lack of data. In fact, the blue shark catch informa-639

tion provided by ICCAT and catch estimates based on the shark640

fin trade from Clarke (2008),  represent, to date, the only sources641

of information on blue shark total removals in the south Atlantic 642

Ocean. 643

Sharks are usually characterized by slow growth rates, long life 644

spans, late maturity, and production of limited offspring after long 645

gestation periods (Bonfil, 1994). This low reproductive output is 646

responsible for the vulnerability of sharks to harvest, as shown by 647

many cases of overexploitation when data are informative (Cortés, 648

2004). However, the magnitude of the decline of the south Atlantic 649

blue shark population is less than in other pelagic shark species 650

in the Atlantic, such as the porbeagle (Lamna nasus) (ICES/ICCAT, 651

2009). This seems reasonable in light of their life history charac- 652

teristics (Aires-da-Silva and Gallucci, 2008). According to Cortés 653

(2002),  blue shark have one of the highest fecundities documented 654

among sharks (mean litter size of 37 pups, Mejuto and García- 655

Cortés, 2005; reaching up to 82 pups, Pratt, 1979) and surprisingly 656

fast early growth rates that result in near doubling of pup size over 657

the first year (Skomal and Natanson, 2003). 658

Despite the benefits of the Bayesian estimation approach, it is 659

important to note that the choice of prior distributions can alter 660

posterior estimates of stock status, especially when data is unin- 661

formative. As a result, it is preferable to select prior probability 662

distributions that are consistent with data from other populations. 663

In the present analysis, the prior distribution of south Atlantic blue 664

shark intrinsic rate of increase r, obtained using demographic anal- 665

yses, encompassed the range of posterior predictions of r from 666

Cortés (2002) and Aires-da-Silva and Gallucci (2008).  Graphical 667

analyses of the posterior distributions for r and ϕ from both models 668

were similar to the prior, which indicates the data are uninfor- 669

mative (McAllister and Kirkwood, 1998). The sensitivity analyses 670

also confirmed the current assessment results were sensitive to the 671

prior and catch series choice. For example, the estimate of current 672

biomass for the sensitivity analysis using the tuna ratio catch series 673

is 36% smaller than the base case. 674

Time-varying catchability is a common feature of many fish- 675

eries. Unidentifiable trends in catchability can lead to biased results 676

from stock assessment models and erroneous management recom- 677

mendations (Pope and Shepherd, 1985; Patterson and Kirkwood, 678

1995; Wilberg and Bence, 2006; Thorson and Berkson, 2010; 679

Thorson, 2011). As suggested by Wilberg et al. (2010),  to best 680

account for the many known causes of time-varying catchability, 681

CPUE should be standardized for factors known to affect catcha- 682

bility while recognizing that it will be difficult to correct for all 683

potential causes. This study implemented an alternative method to 684

incorporate time-varying catchability in stock assessment models 685

by specifying a single change point in the catchability coefficient, 686

which resulted in significant improvements in model fit. Further- 687

more, a more stable trend and lower values of q, especially after 688

1995 for scenario I, indicates that the alternative model also bet- 689

ter captures changes in catchability over time. We  recommend 690

that the alternative method that includes time-varying catchability 691

presented here be tested on other fish stocks, along with other rec- 692

ommendations given by Wilberg et al. (2010).  We  suggest that the 693

proposed method would be most appropriately applied to assess- 694

ments where the catch data can clearly be separated into time 695

periods with different fisheries dynamics. 696
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