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Abstract. The Gompertz state-space (GSS) model is a stochastic model for analyzing time series 1 

observations of population abundances. The GSS model combines density dependence, 2 

environmental process noise, and observation error toward estimating quantities of interest in 3 

biological monitoring and population viability analysis. However, existing methods for 4 

estimating the model parameters apply only to population data with equal time intervals between 5 

observations. In the present paper, we extend the GSS model to data with unequal time intervals, 6 

by embedding it within a state-space version of the Ornstein-Uhlenbeck process, a continuous-7 

time model of an equilibrating stochastic system. Maximum likelihood and restricted maximum 8 

likelihood calculations for the Ornstein-Uhlenbeck state-space model involve only numerical 9 

maximization of an explicit multivariate normal likelihood, and so the extension allows for easy 10 

bootstrapping, yielding confidence intervals for model parameters, statistical hypothesis testing 11 

of density dependence, and selection among submodels using information criteria. Ecologists 12 

and managers previously drawn to models lacking density dependence or observation error 13 

because such models accommodated unequal time intervals (for example, due to missing data) 14 

now have an alternative analysis framework incorporating density dependence, process noise and 15 

observation error. 16 

Key words: density dependence, diffusion process, Gompertz model, lognormal distribution, 17 

mean-reverting process, Ornstein-Uhlenbeck process, state-space model, stationary distribution, 18 

stochastic differential equation, stochastic population model  19 
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INTRODUCTION 1 

 Gaps in time series observations of population abundances pose challenges for analysis. 2 

Various statistical models for ecological time series data, especially models incorporating 3 

realistic population dynamics, require observations spaced at equal time intervals. However, 4 

ecological sampling involves constraints of time, personnel, and budgets that do not always live 5 

up to the designs and requirements of statistical models. As well, various ecological systems 6 

such as aquatic or microbial systems (Kirchman 2012) have intrinsically continuous-time 7 

dynamics and are sometimes sampled at unequal time intervals. Ordinarily equal time intervals 8 

will be stretched and shrunk into unequal intervals in systems in which time is measured in 9 

degree days (Metcalf and Luckmann 1994). The data that do exist in studies with missing data or 10 

unequal time intervals are potentially informative, and precluding such data from analysis could 11 

affect conclusions regarding the biological resources in question. The monitoring and 12 

management of biological populations would benefit from having better models for analyzing 13 

time series data with unequal time intervals. 14 

 Dennis et al. (2006) described a “state-space” population model for use in ecological time 15 

series analysis. The model, termed the Gompertz state space (GSS) model, is one of the simplest 16 

possible formulations containing density dependence, stochastic process variability, and 17 

stochastic observation or measurement error. The simplicity of the model allows for an explicit 18 

likelihood function and for parameter estimation through ordinary numerical maximization. 19 

Although the GSS model can accomodate missing observations from otherwise equally spaced 20 

time series, the GSS model does not allow observations collected at unequal, non-integer time 21 

intervals and hence is not suitable for ecological situations in which time is considered to be real-22 

valued. 23 
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 Various state space population models of greater complexity can handle unequally spaced 1 

data (de Valpine and Hastings 2002, de Valpine 2002, 2004, Clark and Bjørnstad 2004, Ionides 2 

et al. 2006, Lele et al. 2007, Ponciano et al. 2009) . Such models require custom programming of 3 

simulation-intensive computer algorithms for fitting (parameter estimation) and other statistical 4 

inferences. For example, Lele et al. (2007) and Ponciano et al. (2009) used data cloning (a Monte 5 

Carlo Markov Chain method) to calculate maximum likelihood estimates of parameters in state 6 

space models for analyzing the well-known laboratory Paramecium (sp.) data of Gause (1934) 7 

which have missing observations on day 1. Adapting such models to other data sets with other 8 

configurations of missing observations would require reprogramming the calculations for each 9 

new case. 10 

 A special case of the GSS model is a density independent state space model. The 11 

exponential growth state space (EGSS) model was introduced by Holmes (2001), and parameter 12 

estimation was studied by Lindley (2003) and Staples et al. (2004). By contrast to the GSS 13 

model, the EGSS model has been generalized to apply to unequal, real-valued time intervals 14 

(Staudenmayer and Buonaccorsi 2006, Humbert et al. 2009). 15 

 This paper extends the full, density dependent GSS model to unequal, real-valued 16 

time intervals. The method used employs a stochastic version of the continuous-time, 17 

deterministic Gompertz growth model as the underlying model of population growth (process 18 

model). The stochastic version is a continuous-time diffusion process representing Gompertz-19 

type density dependent growth perturbed by environmental noise. Transforming the process 20 

model to the logarithmic scale produces the Ornstein-Uhlenbeck process, a well-studied 21 

diffusion process. Finally, adding an observation error component produces a state-space version 22 

of the Ornstein-Uhlenbeck model. The state space model has discrete-time statistical properties 23 
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identical to those of a GSS model, but has a likelihood function that can be written for time 1 

series observations recorded at arbitrary real-valued time intervals. The likelihood makes 2 

accessible a variety of statistical inferences based on parametric bootstrapping. Four example 3 

data sets serve to illustrate statistical inferences with the model. Procedures for calculating 4 

confidence intervals for model parameters and for conducting bootstrap tests of density 5 

dependence are described in the online Appendix to this paper, and R programs for all statistical 6 

inferences are provided (Supplementary Material online). 7 

POPULATION MODEL 8 

Deterministic Gompertz model 9 

 The Gompertz curve (after Gompertz 1825) originally was an actuarial model of 10 

mortality, but since the 1920s biologists have been using the curve as a deterministic model of 11 

biological growth, variously to describe the growth of tumors, individuals, or populations 12 

(Winsor 1932). The model is frequently presented in the form of an ordinary differential 13 

equation: 14 

.       (1) 15 

Here  is the abundance of the growing entity at time , and  and  are positive constants, 16 

with  being the equilibrium abundance and  being a measure of the speed of equilibration. The 17 

similar logistic growth model has the density dependence term proportional to  instead of 18 

. The solution trajectory for Eq. 1 is given by 19 

,       (2) 20 

with  denoting the initial population abundance. The Gompertz trajectory has an 21 

inflection point at  if the initial population abundance is below that level (inflection for the 22 

logistic model is at ). 23 



6 
 

Stochastic Gompertz model 1 

 A stochastic version of the Gompertz model is represented by the following stochastic 2 

differential equation (SDE): 3 

.    (3) 4 

Here an infinitesimal increment of the Gompertz growth model (Eq. 1 written in differential 5 

form) is perturbed by a random noise term in which  has a normal distribution with a 6 

mean of 0 and a variance of  (where the correlation between  and  is assumed 7 

equal to 0 if ), and in which the intensity of the noise is scaled by the term , with 8 

. The scaling term proportional to population abundance is a common model of 9 

environmental stochasticity (Tier and Hanson 1981, Dennis and Patil 1984). Such stochasticity 10 

can produce substantial population variability at high as well as low abundances. The assumption 11 

of zero-correlated process noise describes the unpredictability of growth increment fluctuations 12 

in response to environmental buffeting has theoretical and empirical utility (Allen 2010, Dennis 13 

et al. 1991). Temporal correlation in process noise, if present, is difficult to estimate in the 14 

presence of sampling error (Staples et al. 2008). 15 

 The SDE as written in the form of Eq. 3 can be understood as an easy recipe for 16 

simulating a trajectory of population abundance for specified values of , , and  (for instance, 17 

Higham 2001, Allen 2010): (1) Over a tiny time interval , calculate an increment  of 18 

abundance from a normal distribution with a mean of  and a variance 19 

of , with  being the current population abundance and  being the current time in 20 

the simulation. (2) Update population abundance as  and update time as . 21 

(3) Return to step (1) and repeat the process for a new time interval, generating a new normal 22 

random growth increment using the updated population abundance. The accuracy of the 23 
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simulation (in terms of the statistical properties of ) is degraded if the time interval  is not 1 

small. While various alternative simulation algorithms can improve the numerical accuracy of 2 

SDEs in general (Allen 2010) and the OU process in particular (Gillespie 1996), the preceding 3 

"Euler-Maruyama" method for SDEs serves as an accessible pedagogical entry point to a highly 4 

mathematized subject. 5 

Ornstein-Uhlenbeck model 6 

 Written as an SDE in the form of Eq. 3, population abundance is a type of stochastic 7 

process known as a diffusion process with infinitesimal mean function given by 8 

 and infinitesimal variance function  (Karlin and Taylor 1981). 9 

A useful property of diffusion processes is that a smooth invertible transformation of a diffusion 10 

process is also a diffusion process (Karlin and Taylor 1981). Let  be such a 11 

transformation (perhaps  or  , etc.). The infinitesimal mean and variance of  12 

are given by the Itô transformation formulas: , 13 

, with . The transformation property opens the possibility that a given 14 

diffusion process might be transformed to a scale for which results helpful for analysis and 15 

inference can be derived. Such a transformation exists for the stochastic Gompertz model. 16 

 The logarithmic transformation, , converts population abundance  17 

under the stochastic Gompertz model into a well-studied diffusion process known as an 18 

Ornstein-Uhlenbeck (OU) process (after Uhlenbeck and Ornstein 1930; see Allen 2010). Under 19 

the Itô transformation formulas, the infinitesimal mean and variance functions for  become 20 

,         (4) 21 

,          (5) 22 

where . The SDE for  takes the form 23 
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,      (6) 1 

 which is a growth increment  from a linear deterministic model perturbed by 2 

normally-distributed noise with constant variance . The SDE given by Eq. 6 defines an OU 3 

process .  Among the well-known results (see Allen 2010) are that  has a normal 4 

transition probability distribution with a mean function given by 5 

 ,      (7) 6 

where , and a variance function given by 7 

 .      (8) 8 

The covariance of the process at two different times is given by 9 

 , ,    (9) 10 

and values of the process at multiple different times have a joint multivariate normal distribution. 11 

As time  becomes large, the transition distribution converges to a normal stationary distribution 12 

with mean 13 

 ,         (10) 14 

and variance 15 

 .         (11) 16 

The stationary distribution on the original abundance scale is a lognormal distribution and 17 

represents the stochastic counterpart to the point equilibrium or “carrying capacity” in the 18 

deterministic model (Dennis and Patil 1984). 19 

Ornstein-Uhlenbeck state space model 20 
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 We define an Ornstein-Uhlenbeck state space (OUSS) model by adding an observation 1 

error component. The observations can be taken at arbitrary times which need not be equally 2 

spaced. The observed population log-abundance at time  is modeled as 3 

 ,         (12) 4 

where  has a normal distribution with mean 0 and variance , with ,  uncorrelated ( ). 5 

Observation error on the original abundance scale thereby has a lognormal distribution, which 6 

can be regarded as a model of ecological sampling under heterogeneous sampling conditions 7 

(Dennis et al. 2006). Eqs. 6 and 12 together constitute the OUSS model. The underlying actual 8 

population log-abundance  is unobserved. 9 

 The observations  (estimates or indexes of log-population 10 

abundance) recorded at times  need not be equally spaced. The observations 11 

under the OUSS model have a joint multivariate normal distribution, but the distribution takes 12 

two different forms, non-stationary and stationary, depending on the situation being modeled. If 13 

the population abundances have commenced far from equilibrium, the observations have the 14 

non-stationary distribution in which the mean of each  is 15 

 ,       (13) 16 

the variance is 17 

 ,       (14) 18 

and the covariance of the process at two different times  and  is given by 19 

 .    (15) 20 
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If however the population abundances have become stationary (fluctuating stochastically around 1 

an equilibrium) before sampling commenced, the observations have the stationary distribution in 2 

which the mean of each  is 3 

 ,         (16) 4 

the variance is 5 

 ,         (17) 6 

and the covariance of the process at two different times  and  is given by 7 

 .       (18) 8 

In either the stationary or non-stationary case the joint distribution of the observations is similar 9 

to that of the underlying OU process, except that the quantity  is added to the variance of each 10 

. Two different methods for fitting the model to data (Statistical Methods, below) arise from 11 

whether or not the population has become stationary. 12 

 The OUSS model can be regarded as a continuous time version of the GSS model. The 13 

GSS model is defined (in the notation of Dennis et al. 2006) by , 14 

, where  and  are respectively the underlying and observed population log-15 

abundances at times , and  and  have independent normal distributions with 16 

means of 0 and respective variances of  and . The parameters , , and  are positive, and 17 

. If , the transition probability distributions of the OUSS and GSS 18 

models evaluated at integer times coincide as identical normal distributions means and variances 19 

given by Eqs. 13 and 14, with the relationships between parameters given by the following 20 

transformations: , , ; , 21 

, , with  having the same value in both models. If 22 
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 the, GSS model has a deterministic component with damped oscillatory behavior 1 

for which there is no straightforward continuous time version.  However, oscillatory behavior in 2 

population data, damped or otherwise, suggests the presence of nonlinear dynamic forces (May 3 

1994), and one should explore alternative model structures with additional state variables and/or 4 

nonlinear interactions. 5 

STATISTICAL METHODS 6 

Maximum likelihood estimation for the OUSS stationary case 7 

 Under stationarity, the initial log-population abundance, , is assumed to arise from 8 

the stationary normal distribution of the population abundances. Such an assumption of might be 9 

plausible if the monitoring program commenced after the population had been existing for a time 10 

long enough for stochastic equilibration in the particular environment. The model then has four 11 

unknown parameters: , , , and . 12 

 Fitting the model to data means estimating the unknown model parameters. Using the 13 

multivariate normal distribution, the model can be fitted to data with maximum likelihood (ML) 14 

estimation. For ML estimation with the OUSS model, the likelihood function is the joint 15 

multivariate normal probability density for the observations evaluated at their realized data 16 

values. The ML estimates then are the parameter values that jointly maximize the likelihood or 17 

log-likelihood function. The multivariate normal log-likelihood for the stationary OUSS model is 18 

given by 19 

 , (19) 20 

where the elements of the column vector  are the data values  (realized values of 21 

the random variables ) recorded at times . Also, the 22 

column vector  has all  elements identically equal to  (Eq. 16), the variances on the main 23 
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diagonal of the variance-covariance matrix  are all equal to  (Eq. 17), and the 1 

th and th covariance elements in  are both equal to , where 2 

 (Eq. 18). 3 

 The ML estimates must be calculated with numerical optimization (for instance, with the 4 

“optim” function in R; R Core Development Team 2006). An R program for such calculation is 5 

provided in the Supplementary Material online. 6 

Restricted ML estimation for the stationary case 7 

 Restricted maximum likelihood (REML) estimation for the multivariate normal 8 

distribution uses a linear combination of the observations that eliminates the parameters in the 9 

mean vector, leaving only parameters in the variance-covariance matrix. The statistical 10 

properties of the resulting estimates for the GSS and EGSS models are frequently better than 11 

those of ML estimates (Dennis et al. 2006, Humbert et al. 2009). For the OUSS model under the 12 

stationary case, a linear combination that produces a zero-mean vector is the simple differencing 13 

of the observations. Let , . The 's have a joint multivariate 14 

normal distribution with a mean vector of all zeros and a variance-covariance matrix given by 15 

 ,          (20) 16 

where  is the ( )1+× qq  differencing matrix given by 17 

 .       (21) 18 

For REML estimation, the multivariate normal log-likelihood is a function of three of the 19 

parameters in the OUSS model: 20 

 .   (22)  21 
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Here the column vector of differenced observations is . After numerical maximization of 1 

the REML log-likelihood, the mean parameter  is estimated by 2 

 ,         (23) 3 

where  is the variance-covariance matrix  (for the undifferenced observations, Eq. 19) 4 

evaluated with the REML estimates of , , and , and  is a  column vector of 5 

ones. The R program for parameter estimation accompanying this paper (Supplementary 6 

Material online) calculates the REML estimates in addition to the ML estimates. 7 

ML estimation for the nonstationary case 8 

 The nonstationary OUSS model should be considered for use when an appreciable 9 

proportion of the observations are recorded during a transient growth phase, as for instance when 10 

a population displays a sigmoid trajectory instead of a trajectory solely fluctuating around a 11 

steady state. Examples of such situations might occur when monitoring the translocation of a 12 

species by release of a few individuals into the wild, the colonization of a new area by an 13 

invading species, the increase of an agricultural pest through a growing season starting from low 14 

density, the recovery of a species after a catastrophic decline, or the growth of microbial 15 

populations in experimental laboratory cultures (Ponciano et al. 2005). The initial population 16 

log-abundance  usually becomes an additional unknown parameter in the nonstationary model, 17 

unless its value is known without sampling error (such as might be the case for a species 18 

translocation or a laboratory inoculation). 19 

 ML estimation is available for the nonstationary case, but REML estimation is not 20 

available. ML estimation uses the multivariate normal log-likelihood (Eq. 19) for the data values 21 

, but with a different mean vector and variance-covariance matrix. The element in 22 

the mean vector  corresponding to the data value  is given by Eq.13 , the variances on the 23 
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main diagonal of  are computed with Eq. 14, and the th and th covariance elements 1 

in  are obtained with Eq. 15. The log-likelihood must be numerically maximized jointly for the 2 

five unknown parameters , , , , and . 3 

 If the initial log-abundance  is known, the log-likelihood has just the four unknown 4 

parameters , , , and , with  fixed at its known value. Also, when  is known the initial 5 

observation  is equal to  and is omitted from the likelihood (that is, omitted from the data 6 

vector ). ML estimation uses the multivariate normal log-likelihood (Eq. 19) modified to apply 7 

to just the  observations  recorded at times . The modifications consist 8 

of substituting a  vector  containing means defined by Eq. 13, a  variance-9 

covariance matrix  containing elements defined by Eqs. 14 and 15, and a leading term 10 

 instead of  . The R program for parameter estimation accompanying 11 

this paper also optionally calculates estimates for the non-stationary case (Supplementary 12 

Material online). 13 

 Additional statistical inferences for the OUSS model include confidence intervals for 14 

parameters, hypothesis tests for density dependence, and model selection among submodels. The 15 

statistical justifications and calculations involved in the additional inferences are described in the 16 

Appendix. 17 

EXAMPLES 18 

 Bobcat (Lynx rufus) abundances in Idaho seemingly held steady, albeit with substantial 19 

fluctuations, over a 25 yr period beginning in 1956 (Figure 1, upper left). Bobcat abundances in 20 

Maine displayed fluctuations of even greater magnitude (Figure 1, upper right). The bobcat data 21 

are furbearer harvest records listed in the Global Population Dynamics Database (NERC Centre 22 

for Population Biology 2010), data sets 212 (Idaho) and 216 (Maine). As an index of population 23 
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abundance, fur harvest records can be assumed to arise from a variable and heterogeneous 1 

sampling process, and any models of such time series should incorporate an appropriate 2 

sampling component. In Idaho, an unexplained hiatus in the data occurs during the years 1966-3 

69, while in the Maine data the years 1938-41, 1967 and 1969 are missing. Mark-recapture 4 

estimates of the elk (Cervus elaphus) population in the central valley of Grand Teton National 5 

Park, Wyoming, are missing the year 1983 (Figure 1, lower left; data reported by Boyce 1989 as 6 

used by Dennis and Taper 1994). Yearly sampling of adult rangeland grasshopper (Orthoptera: 7 

Acrididae, mixed species) abundances in Montana began in 1948, with the years 1949-50, 1977, 8 

and 1982 missing (Figure 1, lower right; data reported by Kemp and Dennis 1993). The gaps are 9 

the main reason for the selection of the particular data sets here to illustrate the OUSS model.  10 

All the data sets in Figure 1 are among those included in the R programs accompanying this 11 

paper (Supplementary Material online). 12 

 The parameter  tends to be estimated with precision, according to the REML bootstrap 13 

confidence intervals (Figure 1). The parameters ,  and  are estimated well for these data, as 14 

suggested by the wide confidence intervals (Figure 1). The GSS model, and by implication the 15 

OUSS model, sometimes has ridge-like likelihoods, or likelihoods with multiple local maxima 16 

corresponding to sub-models with all observation error or all process noise (Dennis et al. 2006, 17 

2011, Knape 2008), especially for short time series. Replicating the sampling process one or 18 

more times at selected sampling times can substantially improve parameter estimation (Dennis et 19 

al. 2011), as can substantial amounts of transience in the data (nonstationarity) resulting from 20 

initiating the time series far from equilibrium (Dennis and Taper 1994). 21 

DISCUSSION 22 
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 If unequal sampling intervals are due simply to data missing from otherwise equally 1 

spaced observations (such as the data in Figure 1), then the ordinary GSS model can in fact be 2 

used with modification. The GSS model, like the OUSS model, has observations with a 3 

multivariate normal log-likelihood (Eq. 19). To calculate ML estimates for the GSS model, the 4 

missing observations in question are deleted from the vector , the entries corresponding to the 5 

missing observations are deleted from , and the rows and columns corresponding to the 6 

missing observations are deleted from . The resulting expression is the proper log-likelihood 7 

function for the multivariate normal distribution of the remaining observations, under a standard 8 

property of the multivariate normal distribution (Seber 1984).  While deleting observations from 9 

the GSS is easy in principal, programming software to automate the deletions in order to analyze 10 

many data sets would not be straightforward.  11 

 An additional problem with missing observations occurs for restricted maximum 12 

likelihood (REML) estimation. For the GSS model, REML estimates are calculated from the 13 

likelihood function for the first differences (Dennis et al. 2006). For the EGSS model, REML 14 

estimates are calculated from the likelihood function for the second differences (Staples et al. 15 

2004). The problem is that each missing observation removes two observations from REML 16 

estimation in the GSS model and three observations from REML estimation in the EGSS model. 17 

REML estimation with missing data thus becomes costly, in terms of information about 18 

parameters, for the low sample sizes common in ecological time series. 19 

 Also, the GSS model cannot be used for systems sampled naturally at unequal time 20 

intervals. Plankton sampling schedules in aquatic systems, for instance, might not adhere to 21 

rigidly equal intervals. In insect ecology, degree days are routinely used as a time scale, and the 22 

application of a degree-day transformation to sampling times with equal intervals invariably 23 
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produces unequal intervals on the new scale. In such cases, the unequal intervals cannot be 1 

handled merely by dropping observations from the multivariate normal log-likelihood function. 2 

A solution instead is to use the OUSS model. 3 

 Alternative ways for accommodating unequal intervals in state space models are 4 

computationally challenging. The basic approach treats the underlying population abundance as 5 

an unobserved "latent variable" in a hierarchical statistical model. Parameters are estimated with 6 

intensive MCMC simulation, coupled with either a Bayesian (Clark and Bjornstadt 2004) or 7 

frequentist (Lele et al. 2007) inferential method. While the approach allows the use of more 8 

complex ecological models of population growth and/or sampling, the problems of parameter 9 

estimability are not made any easier. Recent developments in estimation diagnostics (Lele et al. 10 

2010, Ponciano et al. 2012) at least are helping investigators recognize when problems exist. As 11 

well, the MCMC calculations require considerable expertise in programming and statistical 12 

theory. By contrast, the OUSS model presented here brings density dependence, process noise, 13 

and observation error within reach of ordinary numerical maximization. 14 
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SUPPLEMENT 18 

R scripts for calculating maximum likelihood estimates, restricted maximum likelihood 19 

estimates, and parametric bootstrap likelihood ratio tests of density dependence, for the Ornstein 20 

Uhlenbeck state space model, using population abundance data having possibly unequal 21 

observation time intervals (Ecological Archives 0000-000-00).  22 
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FIGURE CAPTION 1 

Figure 1. Four population abundance time series (circles), with expected values of true 2 

abundances given the other observations (short dashed lines), and bootstrapped 95% confidence 3 

intervals for true abundances (long dashed lines), estimated with restricted maximum likelihood 4 

under the Ornstein-Uhlenbeck state space model. Upper left: bobcat furbearer harvest records 5 

from Idaho, USA (parameter estimates with bootstrapped 95% confidence intervals:  6.79 6 

(6.61, 6.97), 1.26 (3.91 , 20.2), 0.272 (7.43 , 3.94), 7.48  7 

(9.14 , 0.0847)). Upper right: bobcat furbearer harvest records from Maine, USA (  8 

5.78 (5.47, 6.08), 0.877 (0.0226, 10.3), 0.735 (0.0202, 2.40), 0.00475 (1.799 

, 0.334)). Lower left: elk population estimates from Grand Teton National Park, Wyoming, 10 

USA (  7.29 (7.14, 7.44), 0.868 (0.229, 19.3), 0.0990 (0.0296, 1.45), 9.8011 

 (2.93 , 1.22 )). Lower right: grasshopper density estimates from the western 12 

mountainous region of Montana, USA (  1.56 (1.31, 1.82), 0.722 (0.272, 2.01), 13 

0.347 (0.160, 0.752), 2.27  (3.81 , 2.27 )). 14 
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Ecological Archives 1 

Brian Dennis, José Miguel Ponciano. 201X. Density dependent state space model for population 2 

abundance data with unequal time intervals. Ecology VOL: pp-pp. 3 

Appendix. Confidence intervals, hypothesis tests, and model selection for the Ornstein-4 

Uhlenbeck state-space model. 5 

 The Ornstein-Uhlenbeck state-space (OUSS) model is given by , 6 

, where  is the observed or estimated log-abundance of 7 

the population at time ,  is the actual (unobserved) log-abundance, where  has a normal 8 

distribution with mean 0 and variance , with ,  uncorrelated ( ),  has a normal 9 

distribution with a mean of 0 and a variance of  (where the correlation between  and 10 

 is equal to 0 if ),  is a real-valued parameter, and , , and  are positive real-11 

valued parameters. 12 

 Confidence intervals for the model parameters are readily obtained using parametric 13 

bootstrapping. For the OUSS model, parametric bootstrapping involves simulating 2000 or so 14 

data sets from the estimated OUSS model (the OUSS model equations evaluated at the maximum 15 

likelihood (ML) or restricted maximum likelihood (REML) estimates) and reestimating the 16 

model parameters for each simulated data set. Percentiles (or alternatively, median-adjusted 17 

percentiles) of the 2000 bootstrap parameter values form the ends of the confidence intervals (see 18 

Manly 1997). 19 

 Confidence intervals obtained with parametric bootstrapping are in general not symmetric 20 

and tend to have better coverage properties than intervals based on large sample ML theory 21 

(Pawitan 2001). Also, parametric bootstrap intervals are easily obtained for functions of 22 

parameters (such as the stationary variance of  given by ) just by calculating the 23 



value of the particular function for each set of bootstrap parameter values. One of the R 1 

programs accompanying this paper (Supplementary Material online) calculates parametric 2 

bootstrap confidence intervals. 3 

 A statistical hypothesis test of density independence versus density dependence can be 4 

performed for the OUSS model with parametric bootstrapping. The exponential growth state-5 

space (EGSS) model serves as the null hypothesis of density independence, and the OUSS model 6 

serves as the alternative hypothesis of density dependence. The procedure represents an 7 

extension of the method of Dennis and Taper (1994), which used only process noise and equal 8 

time intervals. The procedure is to simulate 2000 or more data sets from the EGSS model that 9 

has been fitted to the data with ML estimates (as described in Humbert et al. 2009). The EGSS 10 

and the OUSS model are then fitted to each simulated data set with ML estimation, and a 11 

likelihood ratio statistic (  ) is then calculated for each simulated data set. 12 

Here  represents a multivariate normal likelihood maximized under the EGSS or OUSS model. 13 

The proportion of the 2000 (or more) simulated likelihood ratio values that exceed the value of 14 

likelihood ratio statistic calculated for the data constitutes the P-value for the test. One of the R 15 

programs accompanying this paper (Supplementary Material online) calculates the parametric 16 

bootstrap likelihood ratio test of the EGSS model versus the OUSS model. The procedure 17 

basically tests for the presence of a tendency toward equilibration (or stationarity), and the 18 

ecological interpretation of such a test as biological density dependence requires caution (Wolda 19 

and Dennis 1993) in the absence of other biological information about the population. 20 

 Model selection can be performed among submodels, or among alternative model forms, 21 

with information criteria such as AIC and its variants (Burnham and Anderson 2002). The model 22 

selection indexes typically require the values of the maximized log-likelihoods for the various 23 



models under question (or at least the differences of the maximized log-likelihoods for every pair 1 

as in Ponciano et al. 2009). For the OUSS model and its submodels, the maximized log-2 

likelihood values are readily available as byproducts of model-fitting. However, one should not 3 

compare models with likelihoods arising from fundamentally different data, such as the raw 4 

observations for ML estimates and the differenced observations for REML estimates (or even 5 

first differences for OUSS/REML and second differences for EGSS/REML). Rather, the 6 

likelihoods for the models being compared should be defined for the same unique observations, 7 

which usually means comparing ML with ML.  8 
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R scripts for calculating maximum likelihood estimates, restricted maximum likelihood 

estimates, and parametric bootstrap likelihood ratio tests of density dependence, for the 

Ornstein Uhlenbeck state space model, using population abundance data having possibly 

unequal observation time intervals. 
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Description 

This supplement contains three R scripts:  (1) RUNNING-ROUSS.R calculates 

maximum likelihood and restricted maximum likelihood estimates for the Ornstein 



Uhlenbeck state space model (stationary and non-stationary), using population abundance 

data having possibly unequal observation time intervals.  (2) RUNNING-PBLRT.R 

performs parametric bootstrap likelihood ratio test of exponential growth state space 

model vs. Ornstein-Uhlenbeck state space model.  (3) ROUSSE-1.0.R contains the 

functions used in statistical inferences for the Ornstein-Uhlenbeck state space model.  

ROUSSE-1.0.R is called by both RUNNING-ROUSS.R and RUNNING-PBLRT.R and 

must be present (as a file by that name) in the working directory of R. 

 

 
#====================================================================== 
#  RUNNING-ROUSS.R:  calculates maximum likelihood and restricted 
#  maximum likelihood estimates for the Ornstein-Uhlenbeck state space 
#  model (stationary and non-stationary), using population abundance 
#  data having possibly unequal observation time intervals.  The script 
#  ROUSSE-1.0.R must be present in the working directory of R. 
#  Be patient;  R is slow. 
#====================================================================== 
 
#---------------------------------------------------------------------- 
#  Load all the OUSS model functions and needed packages 
#---------------------------------------------------------------------- 
library("MASS") 
source("ROUSSE-1.0.R") 
 
#---------------------------------------------------------------------- 
#        USER INPUT SECTION 
#---------------------------------------------------------------------- 
#  User supplies time series data here into the vector "Observed.t.   
#  User can substitute R statements to read population abundance data  
#  from a file into the vector "Observed.t". No zeros! Do not change 
#  the object name "Observed.t". Times of observation are entered into 
#  the vector "Time.t". Do not change the object name "Time.t". 
 
#  First example data set is bobcat (Lynx rufus) in Idaho, data set 
#  212 from the Global Population Dynamics Database. Various other data 
#  sets are also included.  Pick any of these data sets and associated 
#  sampling years by "commenting out" the Idaho bobcat data and 
#  "uncommenting" the desired data. 
 
# Lynx rufus, from Idaho, GPPD data set 212. 
Observed.t=c(346,675,802,1478,1173,756,861,972,854,1161,1318,901,901, 
1173,608,811,903,584,1179,1020,1129,966)  #  No zeros!  
Time.t=c(1956,1957,1958,1959,1960,1961,1962,1963,1964,1965,1970,1971, 
1972,1973,1974,1975,1976,1977,1978,1979,1980,1981) 
 



#  Linx rufus, from Florida, GPPD data set 211. 
# Time.t=c(1946,1947,1948,1949,1950,1954,1955,1956,1957,1958, 
# 1959,1960,1961,1963,1964,1965,1966,1967,1968,1975,1976,1977, 
# 1978,1979,1980,1981) 
# Observed.t=c(672,1028,538,566,300,400,400,400,400,300,250, 
# 450,450,13,23,23,2,400,20,389,537,983,1698,1132,1702,1031) 
 
# Lynx rufus, California, GPPD data set 208. 
# Time.t=c(1934,1935,1936,1938,1940,1941,1942,1943,1944,1945, 
# 1946,1947,1948,1949,1950,1951,1952,1954,1955,1956,1957,1958, 
# 1959,1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970, 
# 1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981) 
# Observed.t=c(1994,1436,1290,2292,2776,3239,1923,2898,2063,1730, 
# 1072,689,169,375,293,239,336,223,228,276,202,142,175,304,205, 
# 295,361,221,221,241,244,381,588,319,588,686,1244,1393,2203, 
# 3618,4445,6928,7809,9595,9337) 
 
# Lynx rufus, Michigan, GPPD data set 218. 
# Time.t=c(1936,1937,1939,1940,1941,1942,1943,1944,1945,1946, 
# 1947,1948,1949,1950,1951,1952,1954,1955,1956,1957,1958,1962, 
# 1963,1964,1966, 1969,1976,1977,1978,1979,1980,1981) 
# Observed.t=c(1134,811,598,528,529,375,2538,2802,2910,2363, 
# 2174,2063,1547,1753,1443,1836,696,847,880,762,200,588,494,265, 
# 400,300,341,331,386,597,223,200) 
 
# Lynx rufus, Maine, GPPD data set 216. 
# Time.t=c(1934,1935,1936,1937,1942,1943,1944,1945,1946,1947, 
# 1948,1949,1950,1951,1952,1953,1954,1956,1957,1958,1959,1961, 
# 1962,1963,1964,1965,1966,1968,1970,1971,1972,1973,1974,1975, 
# 1976,1977,1978,1979,1980,1981) 
# Observed.t=c(644,911,687,400,133,105,184,1044,181,178,489,100, 
# 263,83,106,795,667,695,263,198,221,278,231,588,269,152,233,153, 
# 730,654,641,573,544,373,436,389,278,318,381,345) 
 
# Lynx rufus, Wisconsin, GPPD data set 239. 
# Time.t=c(1934,1935,1936,1937,1938,1940,1941,1942,1943,1944, 
# 1945,1946,1947,1948,1949,1950,1951,1952,1954,1956,1959,1960, 
# 1969,1970,1971,1974,1975,1976,1977,1978,1979,1980,1981) 
# Observed.t=c(302,428,513,461,593,180,283,191,765,384,1048,577, 
# 427,437,482,525,724,740,524,321,479,869,148,148,147,205,223, 
# 275,163,223,131,81,168) 
 
# Elk, central valley of Grand Teton National Park, cited in 
# Dennis and Taper (1994 Ecological Monographs). 
# Observed.t = c(1627,1527,824,891,1140,1322,1431,1733,1131,1611, 
# 1644,1991,1762,1076,1442,1800,1667,1558,1396,1753,1453,1804) 
# Time.t = c(1963,1964,1965,1966,1967,1968,1969,1970,1971,1972, 
# 1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1984,1985) 
 
# Rangeland grasshoppers, MT western mountain region, from 
# Kemp and Dennis 1993 Oecologia).  
# Observed.t=c(5.7981,7.7194,4.8022,3.9397,11.8806,10.7568,8.9586, 
# 10.6619,6.5895,4.4905,3.0684,6.9973,5.3986,4.2777,6.1166,7.2989, 
# 5.0850,4.8298,5.3997,4.7679,4.5073,1.9714,4.1007,5.6403,3.0492, 
# 2.8144,4.4071,2.4121,3.2233,1.4236,2.3404,10.5283,7.6872,2.7305, 
# 3.4570,5.4336,3.1487,3.8315,4.4805) 
# Time.t=c(1948,1951,1952,1953,1954,1955,1956,1957,1958,1959,1960, 



# 1961,1962,1963,1964,1965,1966,1967,1968,1969,1970,1971,1972,1973, 
# 1974,1975,1977,1978,1979,1980,1981,1983,1984,1985,1986,1987,1988, 
# 1989,1990) 
 
# American Redstart, record # 02014 3328 08636 from the North 
# American Breeding Bird Survey 1966-95 (Table 1 in Dennis et 
# al. 2006 Ecological Monographs). 
# Observed.t = c(18,10,9,14,17,14,5,10,9,5,11,11,4,5,4,8,2,3,9,2,4, 
# 7,4,1,2,4,11,11,9,6) 
# Time.t = c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 
# 21,22,23,24,25,26,27,28,29) 
 
# Log-transform the observations to carry out all the calculations 
# in this program. 
log.obs = log(Observed.t)  
#-------------------------------------------------------------------- 
 
 
#-------------------------------------------------------------------- 
#        PARAMETER ESTIMATION, PARAMETRIC BOOTSTRAP AND PREDICTIONS 
#-------------------------------------------------------------------- 
# Before doing the calculations, the user has to specify ONLY the 
# following 4 options: 
 
# 1. Do you want to compute the ML estimates or the REML estimates? 
 
method = "REML" # alternatively, set method = "ML" 
 
# 2. Do you want to plot the predictions? 
pred.plot = "TRUE" # Set it to "FALSE" if you do not want to plot the 
                   # predictions 
 
# 3. Do you want to plot the parametric bootstrap distribution of the 
# estimates? 
pboot.plot = "TRUE" # Set it to "FALSE" if you do not want to plot the 
                    # bootstrap distribution of the estimates 
 
# 4. How many bootstrap replicates? 
NBoot = 1000  
 
 
#-------------------------------------------------------------------- 
#  5. THE FOLLOWING LINES OF CODE COMPUTE THE ESTIMATES, PREDICTIONS, 
#  AND PARAMETRIC BOOTSTRAP CONFIDENCE INTERVALS. THE USER DOES NOT 
#  NEED TO MODIFY THESE LINES OF CODE. 
# 
#  THE OUTPUT OF THE FUNCTION 'ROUSS.CALCS' IS A LIST AND THE USER 
#  CAN RETRIEVE EACH OF THE LIST ELEMENTS PRINTED AND SAVED IN THE 
#  OBJECT "all.results". 
# 
#  THE 95% PARAMETRIC BOOTSTRAP FOR BOTH, THE PARAMETERS AND THE 
#  PREDICTIONS ARE COMPUTED BY THE FUNCTION "ROUSS.CALCS".   
#       
#-------------------------------------------------------------------- 
 
all.results = ROUSS.CALCS(Yobs=log.obs,Tvec=Time.t,pmethod=method, 
               nboot=NBoot,plot.pred=pred.plot, 



               plot.bootdists=pboot.plot) 
 
 
#====================================================================== 
#  RUNNING-PBLRT.R:  performs parametric bootstrap likelihood ratio 
#  test of exponential growth state space model vs. Ornstein-Uhlenbeck 
#  state space model.  The script ROUSS-1.0.R must be in the working 
#  directory of R. 
#====================================================================== 
 
#---------------------------------------------------------------------- 
#  Load all the OUSS model functions and needed packages 
#---------------------------------------------------------------------- 
library("MASS") 
source("ROUSSE-1.0.R") 
 
#---------------------------------------------------------------------- 
#        USER INPUT SECTION 
#---------------------------------------------------------------------- 
#  User supplies time series data here into the vector "Observed.t.   
#  User can substitute R statements to read population abundance data  
#  from a file into the vector "Observed.t". Do not change the object 
#  name "Observed.t". 
#  Times of observation are entered into the vector "Time.t". Do not 
#  change the object name "Time.t". 
 
# Lynx rufus, from Idaho, GPPD data set 212. 
Observed.t=c(346,675,802,1478,1173,756,861,972,854,1161,1318,901,901, 
1173,608,811,903,584,1179,1020,1129,966)  #  No zeros!  
Time.t=c(1956,1957,1958,1959,1960,1961,1962,1963,1964,1965,1970,1971, 
1972,1973,1974,1975,1976,1977,1978,1979,1980,1981) 
 
# Lynx rufus, from Florida, GPPD data set 211. 
# Time.t=c(1946,1947,1948,1949,1950,1954,1955,1956,1957,1958, 
# 1959,1960,1961,1963,1964,1965,1966,1967,1968,1975,1976,1977, 
# 1978,1979,1980,1981) 
# Observed.t=c(672,1028,538,566,300,400,400,400,400,300,250, 
# 450,450,13,23,23,2,400,20,389,537,983,1698,1132,1702,1031) 
 
# Lynx rufus, California, GPPD data set 208. 
# Time.t=c(1934,1935,1936,1938,1940,1941,1942,1943,1944,1945, 
# 1946,1947,1948,1949,1950,1951,1952,1954,1955,1956,1957,1958, 
# 1959,1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970, 
# 1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981) 
# Observed.t=c(1994,1436,1290,2292,2776,3239,1923,2898,2063,1730, 
# 1072,689,169,375,293,239,336,223,228,276,202,142,175,304,205, 
# 295,361,221,221,241,244,381,588,319,588,686,1244,1393,2203, 
# 3618,4445,6928,7809,9595,9337) 
 
# Lynx rufus, Michigan, GPPD data set 218. 
# Time.t=c(1936,1937,1939,1940,1941,1942,1943,1944,1945,1946, 
# 1947,1948,1949,1950,1951,1952,1954,1955,1956,1957,1958,1962, 
# 1963,1964,1966,1969,1976,1977,1978,1979,1980,1981) 
# Observed.t=c(1134,811,598,528,529,375,2538,2802,2910,2363, 
# 2174,2063,1547,1753,1443,1836,696,847,880,762,200,588,494,265, 
# 400,300,341,331,386,597,223,200) 
 



# Lynx rufus, Maine, GPPD data set 216. 
# Time.t=c(1934,1935,1936,1937,1942,1943,1944,1945,1946,1947, 
# 1948,1949,1950,1951,1952,1953,1954,1956,1957,1958,1959,1961, 
# 1962,1963,1964,1965,1966,1968,1970,1971,1972,1973,1974,1975, 
# 1976,1977,1978,1979,1980,1981) 
# Observed.t=c(644,911,687,400,133,105,184,1044,181,178,489,100, 
# 263,83,106,795,667,695,263,198,221,278,231,588,269,152,233,153, 
# 730,654,641,573,544,373,436,389,278,318,381,345) 
 
# Lynx rufus, Wisconsin, GPPD data set 239. 
# Time.t=c(1934,1935,1936,1937,1938,1940,1941,1942,1943,1944, 
# 1945,1946,1947,1948,1949,1950,1951,1952,1954,1956,1959,1960, 
# 1969,1970,1971,1974,1975,1976,1977,1978,1979,1980,1981) 
# Observed.t=c(302,428,513,461,593,180,283,191,765,384,1048,577, 
# 427,437,482,525,724,740,524,321,479,869,148,148,147,205,223, 
# 275,163,223,131,81,168) 
 
# Elk, central valley of Grand Teton National Park, cited in 
# Dennis and Taper (1994 Ecological Monographs). 
# Observed.t = c(1627,1527,824,891,1140,1322,1431,1733,1131,1611, 
# 1644,1991,1762,1076,1442,1800,1667,1558,1396,1753,1453,1804) 
# Time.t = c(1963,1964,1965,1966,1967,1968,1969,1970,1971,1972, 
# 1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1984,1985) 
 
# Rangeland grasshoppers, MT western mountain region, from 
# Kemp and Dennis 1993 Oecologia).  
# Observed.t=c(5.7981,7.7194,4.8022,3.9397,11.8806,10.7568,8.9586, 
# 10.6619,6.5895,4.4905,3.0684,6.9973,5.3986,4.2777,6.1166,7.2989, 
# 5.0850,4.8298,5.3997,4.7679,4.5073,1.9714,4.1007,5.6403,3.0492, 
# 2.8144,4.4071,2.4121,3.2233,1.4236,2.3404,10.5283,7.6872,2.7305, 
# 3.4570,5.4336,3.1487,3.8315,4.4805) 
# Time.t=c(1948,1951,1952,1953,1954,1955,1956,1957,1958,1959,1960, 
# 1961,1962,1963,1964,1965,1966,1967,1968,1969,1970,1971,1972,1973, 
# 1974,1975,1977,1978,1979,1980,1981,1983,1984,1985,1986,1987,1988, 
# 1989,1990) 
 
# American Redstart, record # 02014 3328 08636 from the North 
# American Breeding Bird Survey 1966-95 (Table 1 in Dennis et 
# al. 2006 Ecological Monographs). 
# Observed.t = c(18,10,9,14,17,14,5,10,9,5,11,11,4,5,4,8,2,3,9,2,4, 
# 7,4,1,2,4,11,11,9,6) 
# Time.t = c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 
# 21,22,23,24,25,26,27,28,29) 
 
# Log-transform the observations to carry out all the calculations 
# in this program. 
log.obs = log(Observed.t)  
#---------------------------------------------------------------------- 
 
#---------------------------------------------------------------------- 
#   PARAMETER ESTIMATION AND PARAMETRIC BOOTSTRAP LIKELIHOOD RATIO TEST 
#---------------------------------------------------------------------- 
#  The output contains 6 objects: 
#  Object 1:  "egssml": this is a list that contains the ml estimates 
#  of the EGSS model, the maximized log likelihood and the AIC value 
#  under that model.   
# 



#  Object 2:  "roussml": this is a list that contains the ml estimates 
#  of the OUSS model, the maximized log likelihood and the AIC value 
#  under that model.  
# 
#  Object 3:  "Lam.obs":  this is the observed log-likelihood ratio 
#  statistic given by -2*ln[L(H0)/L(H1)]. 
# 
#  Object 4:  "Lam.vec":  this is a vector of the bootstrapped values 
#  of -2*ln[L(H0)/L(H1)]. 
# 
#  Object 5:  "pvalue":  this is the proportion of the bootstrapped 
#  values of -2*ln[L(H0)/L(H1)] that are more extreme than the observed 
#  value of -2*ln[L(H0)/L(H1)].  
# 
#  Object 6:  "Decision.rule": this is a character object that prints 
#  out the decision of the test (Fail to reject or reject the null 
#  hypothesis of the EGSS density independent model). 
# 
#  Before doing the calculations, the user has to specify ONLY the 
#  following 3 options: 
 
# 1. How many bootstrap replicates do you want to use? (Default is 
# one thousand) 
NBoot = 1000 
 
# 2. At what significance level alpha do you want to test the null 
# hypothesis of density independence vs. the alternative of density 
# dependence? 
my.alpha = 0.05 
 
# 3. Do you want to plot the sampling distribution of the log- 
# likelihood ratio statistic -2*ln[L(H0)/L(H1)]? 
plot.it = TRUE 
 
# Performs the bootstrap analysis (be patient): 
pblrt.trial = PBLRT.ddpcont(B=NBoot, Yobs=log.obs, Tvec=Time.t,  
alpha=my.alpha, plot.PBLR=plot.it) 
 
# Printing results: 
 
#  Object 1:  "egssml": this is a list that contains the ml estimates 
#  of the EGSS model, the maximized log likelihood and the AIC value 
#  under that model.   
pblrt.trial$egssml 
 
#  Object 2:  "roussml": this is a list that contains the ml estimates 
#  of the OUSS model, the maximized log likelihood and the AIC value 
#  under that model.  
pblrt.trial$roussml 
 
#  Object 3:  "Lam.obs":  this is the observed value of the log- 
#  likelihood ratio statistic -2*ln[L(H0)/L(H1)] 
pblrt.trial$Lam.obs 
 
#  Object 5:  "pvalue":  this is the proportion of the bootstrapped 
#  values of -2*ln[L(H0)/L(H1)] that are more extreme than the observed 
#  value of -2*ln[L(H0)/L(H1)].  



pblrt.trial$pvalue 
 
#  Object 6:  "Decision.rule": this is a character object that prints 
#  out the decision of the test (Fail to reject or reject the null 
#  hypothesis of density independence) 
pblrt.trial$Decision.rule 
 
#  To plot the sampling distribution of the likelihood ratio test, we 
#  recommend producing a trial histogram first, and after a visual 
#  inspection, eliminating from the plotting range the numerical 
#  extremes, which should be very few. 
# 
#  The script lines below will display an example. 
 
#  Histogram of the pboot LRT with the observed LRT in red. 
hist(pblrt.trial$Lam.vec) 
abline(v=pblrt.trial$Lam.obs,lwd=2,col="red") 
 
#  After plotting, note that the American Redstart example has 
#  numerical extremes around -600 and around +600. 
#  Re-do the plot zooming into the bulk of the bootstrap distribution. 
hist(pblrt.trial$Lam.vec[abs(pblrt.trial$Lam.vec)<100], 
   xlab="Bootstrap values of -2*ln[L(H0)/L(H1)]",main="") 
abline(v=pblrt.trial$Lam.obs,lwd=2,col="red") 
 
#===================================================================== 
#  ROUSSE-1.0.R:  Functions used in statistical inferences for the 
#  Ornstein-Uhlenbeck state space model.  This script should be present 
#  in the working directory of R before running either RUNNING-ROUSS.R 
#  or RUNNING-PBLRT.R. 
#===================================================================== 
 
##  PART I)  OUSS model R functions 
##  PART II) EGSS model R functions 
##  PART III) Density dependence vs. Density independence 
##     Parametric Bootstrap Likelihood Ratio Test (PBLRT) functions  
 
##  All EGSS Functions originally published in  
##  Humbert, J.-Y., Mills, S., Horne, J. S. and Dennis, B. 2009. A 
##  better way to estimate population trend. Oikos 118:1940-1946. 
 
# PART I):  The OUSS functions -------------------------------------- 
  
# 1. Negative log-likelihood score, for ML estimation or Model 
# Selection. 
#  ML objective function "negloglike.OU.ml" is negative of log- 
#  likelihood. 
#  The function uses a multivariate normal log- 
#  likelihood (Eq. 19).  The three function arguments are: 
#  fguess, vector of parameters (transformed to the real line),  
#  yt, vector of time series of log observed abundances (cannot 
#  have 0's ), tt, vector of observation times. 
negloglike.OU.ml <- function(fguess,yt,tt){ 
   mu = fguess[1] 
   guess = exp(fguess[2:4]) # Constrains parameters > 0 
   theta = guess[1] 
   betasq = guess[2] 



   tausq = guess[3] 
   q = length(yt) - 1 
   qp1 = q+1 
   Var.inf = betasq/(2*theta) # Stationary variance 
   ss = tt[2:qp1] - tt[1:q] 
   t.cols = matrix(rep(tt,each=qp1),nrow=qp1,ncol=qp1, byrow=FALSE) 
   t.rows = t(t.cols) 
   abs.diffs = abs(t.rows-t.cols) 
   V = Var.inf*exp(-theta*abs.diffs) 
   diag(V) = diag(V) + rep(tausq,qp1) 
   mu.vec = rep(mu,qp1) 
   neglogl = (qp1/2)*log(2*pi)+(1/2)*log(det(V))+ 
      (1/2)*(yt-mu.vec)%*%ginv(V)%*%(yt-mu.vec) 
   return(neglogl) 
} 
 
#  2. Negative log-likelihood for REML estimation or Model 
#  Selection (Eq. 22). 
#  REML objective function "negloglike.OU.reml" is negative of 
#  log-likelihood for first differences of the log-scale observations. 
#  The three function arguments are:  
#  phi, vector of parameters (transformed to the real line),  
#  yt, vector of time series observations (log scale), 
#  tt, vector of observation times. 
#  The function performs the differencing. 
negloglike.OU.reml=function(phi,yt,tt) { 
   theta = exp(phi[1])          #  Constrains theta > 0. 
   betasq = exp(phi[2])         #  Constrains betasq > 0.  
   tausq = exp(phi[3])          #  Constrains tausq > 0. 
   Var.inf = betasq/(2*theta)   #  Recurring quantity. 
   q = length(yt)-1 
   qp1 = q+1 
   ss = tt[2:qp1]-tt[1:q]       #  Time intervals. 
   t.cols = matrix(rep(tt,each=qp1),nrow=qp1,ncol=qp1, byrow=FALSE) 
   t.rows = t(t.cols) 
   abs.diffs = abs(t.rows-t.cols) 
   Sigma.mat = Var.inf*exp(-theta*abs.diffs) 
   Itausq = matrix(0,qp1,qp1) 
   diag(Itausq) = rep(tausq,qp1) 
   V = Sigma.mat+Itausq 
   Dmat = cbind(-diag(1,q),matrix(0,q,1)) + 
      cbind(matrix(0,q,1),diag(1,q))        #  Differencing matrix. 
   Phi.mat = Dmat%*%V%*%t(Dmat)             #  REML var-cov matrix. 
   wt = yt[2:qp1]-yt[1:q] 
   ofn = (q/2)*log(2*pi)+0.5*log(det(Phi.mat)) + 
      0.5*wt%*%ginv(Phi.mat)%*%wt         #  ginv() is numerically 
                                          #  more robust than solve(). 
   return(ofn) 
} 
 
# 3. rand.MVN:  Multivariate Normal random number generator: 
#    n = number of random samples of a MVN vector, 
#    mu = mean vector of the MVN distribution, 
#    cov.mat = Variance-covariance matrix of the MVN distribution. 
randmvn = function(n,mu.vec, cov.mat) { 
   p = length(mu.vec) 
   Tau = chol(cov.mat) 



   Zmat = matrix(rnorm(n=p*n,mean=0,sd=1),nrow=p,ncol=n) 
          #  generate normal deviates outside loop. 
   out = matrix(0,nrow=p,ncol=n) 
   for(i in 1:n) { 
      Z = Zmat[,i] 
      out[,i] = t(Tau)%*%Z + mu.vec 
   } 
   return(out) 
} 
 
# 4. Simulation function: requires as input parameter values and 
#  a vector of observation times. The multivariate Normal model (see 
#  eq. 19) is used to simulate the data. 
#    nsims = number of bootstrap replicates to simulate. 
#    parms = vector of parameter values = c(mu_hat, theta_hat, 
#       betasq_hat,tausq_hat), where 'hat' denotes neither the 
#       ML or the REML estimates. 
#    Tvec = vector of ORIGINAL observation times (t_0, t_1, t_2, ..., 
#       t_q) 
ROUSS.sim = function(nsims,parms,Tvec) { 
   tt = Tvec-Tvec[1] 
   mu = parms[1] 
   theta = parms[2]  
   betasq = parms[3] 
   tausq = parms[4] 
   q = length(tt)-1 
   qp1 = q+1 
   Var.inf = betasq/(2*theta) 
   ss = tt[2:qp1]-tt[1:q] 
   t.cols = matrix(rep(tt,each=qp1),nrow=qp1,ncol=qp1,byrow=FALSE) 
   t.rows = t(t.cols) 
   abs.diffs = abs(t.rows-t.cols) 
   V = Var.inf*exp(-theta*abs.diffs) 
   diag(V) = diag(V)+rep(tausq,qp1) 
   m.vec = rep(mu,qp1) 
   out = randmvn(n=nsims,mu.vec=m.vec,cov.mat=V) 
   return(out) 
} 
 
# 5. Computing rough initial guesses for ML estimation. 
#     Yobs = log(Observed time series of abundances), 
#     Tvec = vector of sampling times. 
guess.calc = function(Yobs,Tvec) { 
   T.t = Tvec-Tvec[1]       #  For calculations, time starts at zero. 
   q = length(Yobs)-1       #  Number of time series transitions, q. 
   qp1 = q+1                #  q+1 gets used a lot, too. 
   S.t = T.t[2:qp1]-T.t[1:q]  #  Time intervals. 
   Ybar = mean(Yobs) 
   Yvar = sum((Yobs-Ybar)*(Yobs-Ybar))/q 
   mu1 = Ybar             # Kludge an initial value for theta based 
                          #  on mean of Y(t+s) given Y(t). 
   th1 = -mean(log(abs((Yobs[2:qp1]-mu1)/(Yobs[1:q]-mu1)))/S.t) 
   bsq1 = 2*th1*Yvar/(1+2*th1)       # Moment estimate using stationary 
   tsq1 = bsq1                       # variance, with betasq=tausq. 
   out = c(mu1,th1,bsq1,tsq1) 
   return(abs(out)) 
} 



 
# 6.  Computing the ML estimates of the OUSS model, maximized log- 
# likelihood and the AIC score:  
#     Yobs = log(Observed time series of abundances), 
#     Tvec = vector of sampling times, 
#     parms.guess = vector of initial guesses for the parameters 
#       = c(mu_hat,theta_hat,betasq_hat,tausq_hat) 
ROUSS.ML = function(Yobs,Tvec,parms.guess) { 
   tt = Tvec-Tvec[1] 
   q = length(tt)-1 
   qp1 = q+1 
   guess.optim = c(parms.guess[1],log(parms.guess[2:4])) 
   optim.out = optim(par=guess.optim,fn=negloglike.OU.ml, 
      method="Nelder-Mead",yt=Yobs,tt=tt) 
   mles = c(optim.out$par[1],exp(optim.out$par[2:4])) 
   lnL.hat = - optim.out$value[1] 
   AIC = -2*lnL.hat + 2*4       # where 4 = length(mles)... 
   out = list(mles=mles, lnL.hat = lnL.hat, AIC=AIC) 
   return(out) 
} 
 
# 7.  Computing the REML estimates of the OUSS model, maximized log- 
# likelihood and the AIC score:  
#     Yobs = log(Observed time series of abundances), 
#     Tvec = vector of sampling times, 
#     parms.guess = vector of initial guesses for the parameters 
#      = c(mu_hat,theta_hat,betasq_hat,tausq_hat). 
ROUSS.REML = function(Yobs,Tvec,parms.guess) { 
   tt = Tvec-Tvec[1] 
   q = length(tt)-1  
   qp1 = q+1 
   ss = tt[2:qp1]-tt[1:q] 
   guess.optim = log(parms.guess[2:4]) 
   optim.out = optim(par = guess.optim,fn=negloglike.OU.reml, 
      method="Nelder-Mead",yt=Yobs,tt=tt) 
   remls = exp(optim.out$par) 
   lnL.hat = -optim.out$value[1] 
   theta.reml = remls[1] 
   betasq.reml = remls[2] 
   tausq.reml = remls[3] 
   Var.inf = betasq.reml/(2*theta.reml) 
   vx = matrix(1,qp1,qp1) 
   for (ti in 1:q) { 
      vx[(ti+1):qp1,ti] = exp(-theta.reml*cumsum(ss[ti:q])) 
      vx[ti,(ti+1):qp1] = vx[(ti+1):qp1,ti] 
   } 
   Sigma.mat = vx*Var.inf 
   Itausq = matrix(0,qp1,qp1) 
   diag(Itausq) = rep(tausq.reml,qp1) 
   V.reml = Sigma.mat+Itausq 
   j = matrix(1,qp1,1) 
   Vinv = ginv(V.reml) 
   mu.reml = (t(j)%*%Vinv%*%Yobs)/(t(j)%*%Vinv%*%j)  #  REML estimate 
                                                     # of mu. 
   out = list(remls=c(mu.reml,theta.reml,betasq.reml,tausq.reml), 
      lnLhat = lnL.hat) 
   return(out) 



} 
 
# 8. Parameteric Bootstrap function. 
# B = number of bootstrap replicates, 
# parms = c(mu.mle,theta.mle,betasq.mle,tausq.mle) = ML estimates of 
# the parameters with the original time series, 
# tt = vector of observation times (t_0, t_1, t_2, ..., t_q) from the 
# original time series. 
# If REML="TRUE", then the parametric bootsrap is computed for REML 
# estimation.  In that case, 'parms' must contain the REML estimates 
# for the original time series. 
ROUSS.pboot = function(B=2,parms,Yobs,Tvec,REML="FALSE", 
                 plot.it="FALSE") { 
   tt = Tvec-Tvec[1] 
   nparms = length(parms) 
   preds.boot = matrix(0,nrow=B,ncol=length(tt)) 
   if(REML=="TRUE") { 
      boot.remles = matrix(0,nrow=B,ncol=nparms+1) 
      all.sims = ROUSS.sim(nsims=B,parms=parms,Tvec=Tvec) 
      reml.preds = ROUSS.predict(parms=parms,Yobs=Yobs,Tvec=Tvec, 
                      plot.it="FALSE")[,2] 
      for(b in 1:B) { 
         bth.timeseries = all.sims[,b] 
         remles.out = ROUSS.REML(Yobs=bth.timeseries,Tvec=Tvec, 
                         parms.guess=parms) 
         boot.remles[b,] = c(remles.out$remls,remles.out$lnLhat) 
         preds.boot[b,] = ROUSS.predict(parms=remles.out$remls, 
                             Yobs=bth.timeseries,Tvec=Tvec, 
                              plot.it="FALSE")[,2] 
      } 
      CIs.mat = apply(boot.remles,2,FUN=function(x){quantile(x, 
                   probs=c(0.025,0.975))}) 
      CIs.mat = rbind(CIs.mat[1,1:4],parms,CIs.mat[2,1:4]) 
      rownames(CIs.mat) = c("2.5%","REMLE","97.5%") 
      colnames(CIs.mat) = c("mu","theta","betasq","tausq") 
      preds.CIs = apply(preds.boot,2,FUN=function(x){quantile(x, 
                     probs=c(0.025,0.975))}) 
      preds.CIs = t(rbind(Tvec,preds.CIs[1,],reml.preds, 
                     preds.CIs[2,])) 
      colnames(preds.CIs) = c("Year","2.5%","REMLE","97.5%") 
      boot.list = list(boot.remles=boot.remles,CIs.mat=CIs.mat, 
                     preds.CIs=preds.CIs) 
      if(plot.it=="TRUE") { 
         X11() 
         par(mfrow=c(2,2)) 
         hist(boot.remles[,1],main=expression(hat(mu)),xlab="") 
         abline(v=parms[1],lwd=2,col="red") 
         hist(boot.remles[,2],main=expression(hat(theta)), 
            xlab="") 
         abline(v=parms[2],lwd=2,col="red") 
         hist(boot.remles[,3],main=expression(hat(beta^2)), 
            xlab="") 
         abline(v=parms[3],lwd=2,col="red") 
         hist(boot.remles[,4],main=expression(hat(tau^2)), 
            xlab="") 
         abline(v=parms[4],lwd=2,col="red") 
      } 



      return(boot.list) 
   } else { 
      boot.mles = matrix(0,nrow=B,ncol=nparms+2) 
      all.sims = ROUSS.sim(nsims=B,parms=parms,Tvec=Tvec) 
      ml.preds = ROUSS.predict(parms=parms,Yobs=Yobs, 
                    Tvec=Tvec,plot.it="FALSE")[,2] 
      for(b in 1:B) { 
         bth.timeseries = all.sims[,b] 
         mles.out = ROUSS.ML(Yobs=bth.timeseries,Tvec=Tvec, 
                       parms.guess=parms) 
         boot.mles[b,] = c(mles.out$mles, mles.out$lnL.hat, 
                            mles.out$AIC) 
         preds.boot[b,] = ROUSS.predict(parms=mles.out$mles, 
                             Yobs=bth.timeseries,Tvec=Tvec, 
                             plot.it="FALSE")[,2] 
      } 
      CIs.mat = apply(boot.mles,2,FUN=function(x){quantile(x, 
                   probs=c(0.025,0.975))}) 
      CIs.mat = rbind(CIs.mat[1,1:4],parms,CIs.mat[2,1:4]) 
      rownames(CIs.mat) = c("2.5%","MLE","97.5%") 
      colnames(CIs.mat) = c("mu","theta","betasq","tausq") 
      preds.CIs = apply(preds.boot,2,FUN=function(x){quantile(x, 
                     probs=c(0.025,0.975))}) 
      preds.CIs = t(rbind(Tvec,preds.CIs[1,],ml.preds,preds.CIs[2,])) 
      colnames(preds.CIs) = c("Year","2.5%","MLE","97.5%") 
      boot.list = list(boot.mles=boot.mles,CIs.mat=CIs.mat, 
                     preds.CIs=preds.CIs) 
      if(plot.it=="TRUE") { 
         X11() 
         par(mfrow=c(2,2)) 
         hist(boot.mles[,1],main=expression(hat(mu)), 
            xlab="") 
         abline(v=parms[1],lwd=2,col="red") 
         hist(boot.mles[,2],main=expression(hat(theta)), 
            xlab="") 
         abline(v=parms[2],lwd=2,col="red") 
         hist(boot.mles[,3],main=expression(hat(beta^2)), 
            xlab="") 
         abline(v=parms[3],lwd=2,col="red") 
         hist(boot.mles[,4],main=expression(hat(tau^2)), 
            xlab="") 
         abline(v=parms[4],lwd=2,col="red") 
      }  
      return(boot.list) 
   }                     # End if/else 
} 
 
# ROUSS.pboot(B=20,parms=linx.remles,Yobs=log(Observed.t), 
#    Tvec=Time.t,REML="TRUE",plot.it="FALSE") 
 
# 9. Function to compute the predicted trajectory of the unobserved 
# process.  The arguments are: 
#    parms = ML or REML estimates of c(mu,theta,betasq,tausq), 
#       whichever you prefer, 
#    Yobs  = Log observations, 
#    Tvec  = vector of original observation times (t_0,t_1,...,t_q). 
ROUSS.predict = function(parms,Yobs,Tvec,plot.it="TRUE") { 



   qp1 = length(Yobs) 
   q = qp1-1 
   tt = Tvec - Tvec[1] 
   ss = tt[2:qp1] - tt[1:q] 
   mu = parms[1] 
   theta = parms[2] 
   betasq = parms[3] 
   tausq = parms[4] 
   Var.inf = betasq/(2*theta) 
   t.cols = matrix(rep(tt,each=qp1),nrow=qp1,ncol=qp1,byrow=FALSE) 
   t.rows = t(t.cols) 
   abs.diffs = abs(t.rows-t.cols) 
   Sigma.mat = Var.inf*exp(-theta*abs.diffs) 
   Itausq = matrix(0,qp1,qp1) 
   diag(Itausq) = rep(tausq,qp1) 
   V = Sigma.mat+Itausq 
   Predict.t = rep(0,qp1) 
   Muvec = rep(mu,q) 
   for (tj in 1:qp1) { 
      Y.omitj = Yobs[-tj]   #  Omit observation at time tj. 
      V.omitj = V[-tj,-tj]  #  Omit row tj and col tj from var-cov 
                            #    matrix. 
      V12 = V[tj,-tj]       #  Submatrix:  row tj without col tj. 
      Predict.t[tj] = mu+V12%*%ginv(V.omitj)%*%(Y.omitj-Muvec) 
               #  Usual expression for conditional MV normal mean. 
   } 
   Predict.t = exp(Predict.t) 
   if(plot.it=="TRUE") { 
      #  Plot the data & model-fitted values 
      X11() 
      plot(Time.t,exp(Yobs),xlab="time",ylab="abundance",lty=1, 
         type="b",cex=1.5,lwd=1.5) 
      #  Population data are circles. 
      points(Tvec,Predict.t,type="l",lty=2,lwd=1.5) 
      #  Predicted abundances are dashed line. 
   } 
   return(cbind(Tvec,Predict.t)) 
} 
 
# 10. Function to run the estimation, compute the predictions and 
# run a parametric bootstrap. 
ROUSS.CALCS = function(Yobs,Tvec,pmethod="ML",nboot, 
                  plot.pred="TRUE",plot.bootdists="TRUE") { 
   # 10.1 Compute a rough guess of the parameter estimates to 
   #  initialize the search: 
   guesscalc = guess.calc(Yobs=log.obs,Tvec=Tvec) 
   # 10.2 Compute either the ML or the REML estimates, according 
   #  to what was specified in point 1 above. 
   if (pmethod=="ML") { 
      best.guess = ROUSS.ML(Yobs=Yobs,Tvec=Tvec, 
                      parms.guess=guesscalc) 
      AIC = best.guess[[3]] 
      reml.option = "FALSE" 
   } else if (pmethod=="REML") { 
      best.guess = ROUSS.REML(Yobs=Yobs,Tvec=Tvec, 
                      parms.guess=guesscalc) 
      reml.option = "TRUE" 



   } else { 
      print("Error: ML and REML are the only options allowed for 
        'method' ") 
   } 
   # 10.3 Parameter estimates and maximized log-likelihood 
   # (will be printed at the end). 
   parms.est = best.guess[[1]] 
   lnLhat = best.guess[[2]] 
 
   # 10.4 Computing the predictions. 
   # rouss.preds = ROUSS.predict(parms=parms.est, 
   #               Yobs=Yobs,Tvec=Tvec,plot.it=plot.pred) 
   # print("These are the predictions of what the true, unobserved 
   #    population abundances were") 
   # print(rouss.preds) 
 
   # 10.5 Parametric bootstrap: computing both, parameters and 
   # predictions 95 % CI's. 
   pboot.calcs = ROUSS.pboot(B=nboot,parms=parms.est,Yobs=Yobs, 
                    Tvec=Tvec,REML=reml.option,plot.it=plot.bootdists) 
   print("These are the predictions of what the true, unobserved  
      population abundances were, along with 95% CI's") 
   print(pboot.calcs$preds.CIs) 
   rouss.preds = ROUSS.predict(parms=parms.est,Yobs=Yobs, 
                   Tvec=Tvec,plot.it=plot.pred) 
   if(plot.pred=="TRUE") { 
      points(Tvec,pboot.calcs$preds.CIs[,2],type="l",col="black",lty=5) 
      points(Tvec,pboot.calcs$preds.CIs[,4],type="l",col="black",lty=5) 
   } 
   print("This is the matrix of Parametric Bootstrap 95% CI's  
      along with the estimates") 
   print(pboot.calcs$CIs.mat) 
   print("Maximized log-likelihood score") 
   print(lnLhat) 
   if(pmethod=="ML") { 
      print("AIC score") 
      print(AIC) 
      out = list(parms.est=parms.est,lnLhat=lnLhat,AIC=AIC, 
               pbootmat=pboot.calcs[[1]],pboot.cis=pboot.calcs[[2]], 
               pboot.preds=pboot.calcs$preds.CIs) 
   } else { 
      out = list(parms.est=parms.est,lnLhat=lnLhat, 
               pbootmat=pboot.calcs[[1]],pboot.cis=pboot.calcs[[2]], 
               pboot.preds=pboot.calcs$preds.CIs) 
   } 
   return(out) 
} 
 
# PART II):  The EGSS functions --------------------------------  
 
# 11.  Negative Log-Likelihood function for the EGSS model. 
negloglike.EGSS.ml = function(theta,yt,tt) { 
   mu = theta[1] 
   sigmasq = exp(theta[2]) 
   tausq = exp(theta[3]) 
   xo = theta[4] 
   q = length(yt) - 1 



   qp1 = q+1 
   yt = matrix(yt,nrow=qp1,ncol=1)  # makes data a matrix object. 
   vx = matrix(0,qp1,qp1) 
   for(i in 1:q) { 
      # Create the matrix with the correct dimensions 
      # instead of relying on R's automatic recycling- 
      # to-match-dimensions property. 
      vx[((i+1):qp1),((i+1):qp1)] = matrix(1,(qp1-i), 
                                      (qp1-i))*tt[(i+1)] 
   } 
   Sigma.mat = sigmasq*vx 
   Itausq = matrix(rep(0,(qp1*qp1)),nrow=qp1,ncol=qp1) 
   diag(Itausq) = rep(tausq,qp1) 
   V = Sigma.mat + Itausq 
   mu.vec = matrix((xo+mu*tt),nrow=qp1,ncol=1) 
   return((qp1/2)*log(2*pi) + 0.5*log(det(V)) + 0.5*(t(yt- 
            mu.vec)%*%ginv(V)%*%(yt-mu.vec))) 
} 
 
#  12. Function to propose initial values of the parameters 
#  to feed the parameter estimation function under the EGSS model. 
init.egss = function(Yobs,Tvec) { 
   q = length(Yobs)-1       #  Number of time series transitions, q. 
   qp1 = q+1                #  q+1 gets used a lot, too. 
   T.t = Tvec-Tvec[1]       #  For calculations, time starts at zero. 
   Ybar = mean(Yobs) 
   Tbar = mean(T.t) 
   mu.egoe = sum((T.t-Tbar)*(Yobs-Ybar))/sum((T.t-Tbar)*(T.t-Tbar)) 
   x0.egoe = Ybar-mu.egoe*Tbar 
   ssq.egoe = 0 
   Yhat.egoe = x0.egoe+mu.egoe*T.t 
   tsq.egoe = sum((Yobs-Yhat.egoe)*(Yobs-Yhat.egoe))/(q-1) 
   S.t = T.t[2:qp1]-T.t[1:q]   #  Time intervals. 
   Ttr = sqrt(S.t) 
   Ytr = (Yobs[2:qp1]- Yobs[1:q])/Ttr 
   mu.egpn = sum(Ttr*Ytr)/sum(Ttr*Ttr) 
   Ytrhat = mu.egpn*Ttr 
   ssq.egpn = sum((Ytr-Ytrhat)*(Ytr-Ytrhat))/(q-1) 
   tsq.egpn = 0 
   x0.egpn = Yobs[1] 
   mu0 = (mu.egoe+mu.egpn)/2 
   ssq0 = ssq.egpn/2 
   tsq0 = tsq.egoe/2 
   xo.out = x0.egoe 
   return(c(mu0,ssq0,tsq0,xo.out)) 
} 
 
#  13. Function to optimize the negative log-likelihood and return 
#  parameter estimates, likelihood score and AIC, BIC value. 
EGSS.ML = function(Yobs,Tvec,parms.guess) { 
   tt = Tvec-Tvec[1] 
   q = length(tt)-1 
   qp1 = q+1 
   guess.optim = c(parms.guess[1],log(parms.guess[2:3]), 
                    parms.guess[4]) 
   optim.out = optim(par=guess.optim,fn=negloglike.EGSS.ml, 
                  method="Nelder-Mead",yt=Yobs,tt=tt) 



   mles = c(optim.out$par[1],exp(optim.out$par[2:3]), 
             optim.out$par[4]) 
   lnL.hat = - optim.out$value[1] 
   AIC = -2*lnL.hat + 2*4  # where 4 is the number of parameters. 
   out = list(mles=mles,lnL.hat=lnL.hat,AIC=AIC) 
   return(out) 
} 
 
# guess.egss = init.egss(Yobs=yt,Tvec=Time.t) 
# trial.egssml = EGSS.ML(Yobs=yt,Tvec=Time.t,parms.guess=guess.egss) 
 
 
#  14. Simulation from the EGSS model for parametric bootstrap: 
#  simulate data using the observed time intervals and the ML 
#  estimates.  The simulation is greatly eased by the fact that 
#  the log observations are multivariate normally distributed. 
 
EGSS.sim = function(nsims,parms,Tvec) { 
   tt = Tvec-Tvec[1] 
   mu = parms[1] 
   sigmasq = parms[2] 
   tausq = parms[3] 
   xo = parms[4] 
   q = length(tt)-1 
   qp1 = q+1 
   vx = matrix(0,qp1,qp1) 
   for(i in 1:q) { 
      vx[((i+1):qp1),((i+1):qp1)] = matrix(1,(qp1-i),(qp1- 
                                       i))*tt[(i+1)] 
   } 
   Sigma.mat = sigmasq*vx 
   Itausq = matrix(rep(0,(qp1*qp1)),nrow=qp1,ncol=qp1) 
   diag(Itausq) = rep(tausq,qp1) 
   V = Sigma.mat + Itausq 
   mu.vec = matrix((xo+mu*tt),nrow=qp1,ncol=1) 
   out = randmvn(n=nsims,mu.vec=mu.vec,cov.mat=V) 
   return(out) 
} 
 
# PART III):  PBLR function -------------------------------- 
 
# 15. Function to do a PBLRT between the EGSS model (null) 
# and the OUSS model (alternative). 
PBLRT.ddpcont = function(B=10,Yobs,Tvec,alpha=0.05,plot.PBLR=TRUE) { 
   #  Estimation under the null Ho: the EGSS model. 
   guess.egss = init.egss(Yobs=Yobs,Tvec=Tvec) 
   egssml = EGSS.ML(Yobs=Yobs,Tvec=Tvec,parms.guess=guess.egss) 
   lnL.Ho = egssml$lnL.hat 
   #  Estimation under the alternative H1:  the OUSS model 
   guess.rouss  = guess.calc(Yobs=Yobs,Tvec=Tvec) 
   roussml = ROUSS.ML(Yobs=Yobs,Tvec=Tvec,parms.guess=guess.rouss) 
   lnL.H1 = roussml$lnL.hat 
   #  Computing the observed Lam.obs = -2*ln[L(H0)/L(H1)].  
 Lam.obs = -2*(lnL.Ho-lnL.H1) 
   #  Simulating under H0 using the ML estimates  
   mlsforboot = egssml$mles 
   sims.mat = EGSS.sim(nsims=B,parms=mlsforboot,Tvec=Tvec) 



   #  Looping over the simulations and maximizing the likelihood 
   #  for both models each time and computing the bootstrapped 
   #  values of Lam.boot = -2*ln[L(H0)/L(H1)]. 
   Lam.vec = rep(0,B) 
   for(b in 1:B) { 
      # Estimating parameters and maximizing under the null. 
      Yobs.b = sims.mat[,b] 
      egssml.b = EGSS.ML(Yobs=Yobs.b,Tvec=Tvec, 
                   parms.guess=mlsforboot) 
      lnL.Ho.b = egssml.b$lnL.hat 
      # Estimating parameters and maximizing under the alternative. 
      guess.rouss.b = guess.calc(Yobs=Yobs.b,Tvec=Tvec) 
      roussml.b = ROUSS.ML(Yobs=Yobs.b,Tvec=Tvec, 
                     parms.guess=guess.rouss.b) 
      lnL.H1.b = roussml.b$lnL.hat 
      # Computing the boostrapped likelihood ratio. 
      Lam.boot = -2*(lnL.Ho.b-lnL.H1.b) 
      Lam.vec[b] = Lam.boot 
   } 
   #  Computing the proportion of the simulations that have a 
   #  more extreme Lamb.boot value than the observed Lamb.obs. 
   pval = sum(Lam.vec>Lam.obs)/B 
   Decision.rule = "Fail to Reject Density Independence" 
   if(pval<alpha) { 
      Decision.rule = "Reject Density Independence" 
   } 
   #  Return the vector of Lam.boot values and 
   #  a plot if plot.PBLR=TRUE 
   out = list(egssml=egssml,roussml=roussml,Lam.obs=Lam.obs, 
            Lam.vec=Lam.vec,pvalue=pval,Decision.rule=Decision.rule) 
#   if(plot.PBLR==TRUE) { 
#      hist(Lam.vec,main="P-boot distribution of -2*ln[L(H0)/L(H1)]") 
#      abline(v=Lam.obs,col="red") 
#   } 
   return(out) 
} 
 


