Lecture 14: Section 3.3
Rates of Change

ex. The boiling point \(B \) of water (in Fahrenheit degrees) \(h \) thousand feet above sea level is given by the function \(B(h) = -1.8h + 212 \).

What do the intercept and slope tell you?

By how much does \(B \) change starting at sea level if elevation rises by 1000 feet?

By how much does \(B \) change starting from a mile marker on a trail in the Rockies (5280 feet) if a hiker climbs another 1000 feet?

How do we measure rate of change if our function is not linear?
ex. Let \(p(x) = 20 - 0.02x \) be the demand function for a product.

1) Find the revenue function \(R(x) \).

\[R(x) = \]

Consider its graph:
2) Use the graph to estimate the rate at which revenue is changing when

a) \(x = 100 \) by approximating the change on the interval \([100, 200]\)

b) \(x = 500 \)

c) \(x = 900 \) by approximating the change on the interval \([800, 900]\)

Can we find a more precise way of measuring rate of change at a specific \(x \)-value?
Consider again the revenue function
\(R(x) = 20x - 0.02x^2 \) and the following table of values:

<table>
<thead>
<tr>
<th>(x)</th>
<th>100</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>900</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R(x))</td>
<td>1800</td>
<td>4800</td>
<td>5000</td>
<td>4800</td>
<td>1800</td>
</tr>
</tbody>
</table>

1) What is the change in revenue as production increases from 100 to 400 units?

2) What is the corresponding **average** change in revenue?
3) What is the **average** change in revenue as production increases from 600 to 900 units?

In general, for \(y = f(x) \),

The average rate of change of \(y \) with respect to \(x \) as \(x \) changes from \(a \) to \(b \) (on \([a, b]\)) is given by

\[\frac{f(b) - f(a)}{b - a} \]
To find the rate at which y is changing with respect to x at a specific value $x = a$:

Consider the average rate of change of $y = f(x)$ with respect to x as x changes from a to $a + h$:

What is the **instantaneous** rate of change of y with respect to x when $x = a$?
NOTE: If $a + h = b$ in the formula, then $h = b - a$ and as $h \to 0$, $b \to \underline{}$.

We can rewrite our formula for the **instantaneous rate of change of** $f(x)$ **with respect to** x **when** $x = a$:

$$
\lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = \lim_{b \to a} \frac{f(b) - f(a)}{b - a}
$$

ex. 1) Find a formula for the rate of change of revenue $R(x) = 20x - 0.02x^2$ at the production level $x = 100$.
2) For \(R(x) = 20x - 0.02x^2 \), what is the additional revenue if sales increase from \(x = 100 \) to \(x = 101 \)?

\[(R(101) = 1815.98) \]

Def. Marginal Revenue

3) Can we find a general formula for the rate of change of revenue \(R(x) = 20x - 0.02x^2 \) at \(x = a \)?
4) For \(R(x) = 20x - 0.02x^2 \), find the marginal revenue when

a) \(x = 100 \)

b) \(x = 900 \)

What happens when \(x = 500 \)?

Average, Instantaneous Velocity

ex. A car travels 360 miles in 6 hours. What is its average velocity (speed)?
Let $s(t)$ be the function which gives the position of an object from some starting point at t units of time. This is a **position function**.

NOTE: We use $h(t)$ to represent vertical motion.

Then **average velocity over** $[a, b]$ is

How do we find **instantaneous** velocity?

NOTE: velocity and speed
ex. Suppose that the distance (in feet) covered by a car moving along a straight road \(t \) seconds after starting from rest is given by the position function \(s(t) = 2t^2 + 30t \).

1) Find the average velocity of the car over the time interval \([40, 44]\).

2) Find the instantaneous velocity when \(t = 40 \).
Additional Example

ex. Suppose that the demand for a barrel of oil in a certain country is given by the formula

\[D(p) = \frac{4000}{p}, \]

where \(D \) is the yearly demand per individual when the price per barrel is \(p \) dollars.

1) Find the average rate of change in demand when the price increases from \$80 to \$100.
2) Now find the rate at which the demand

\[D(p) = \frac{4000}{p} \]

is changing when \(p = 80 \).

4) Find the rate at which demand is changing when the price is \(a \) dollars.
Now you try it! Problems are on pages 14 and 15.

1. The concentration in mg/ml of a certain drug in the bloodstream is given in the table below. \(C(t) \) gives the concentration of the drug at time \(t \) measured in minutes.

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
 t & 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 \\
 C(t) & 0 & 6 & 9 & 14 & 21 & 30 & 41 & 54 & 69 & 90 \\
\end{array}
\]

At what rate is the concentration changing over

(a) the first 5 minutes (b) the last 10 minutes

(c) the 45 minute period

2. Suppose that for a certain piece of machinery the cost function is determined to be \(C(x) = 0.04x^2 + 2x + 40 \) where \(C \) is the cost in thousands of producing \(x \) items.

(a) Find the change in cost as production increases from 10 to 11 items (average rate of change of cost from \(x = 10 \) to \(x = 11 \)).

(b) Find the marginal cost when \(x = 10 \). Do this by finding a formula for the rate at which cost is changing when \(x = 10 \) (instantaneous rate of change of \(C(x) \) at \(x = 10 \)). Interpret your answer.

3. The displacement (distance in inches from the starting point) of an object moving in a straight line is given by the position function \(s(t) = t^2 - 3t - 4 \) where \(t \) is measured in seconds.

(a) Find the average velocity of the object in the first three seconds of travel \((t = 0 \) to \(t = 3 \)).

(b) Find the velocity at which the object is traveling at time \(t = 2 \).

(c) Find a formula for the instantaneous velocity of the object at time \(t = a \). When does the object first come to a stop?
4. The quarterly profit for a small business based on the amount spent on advertising is given by the formula \(P(x) = -\frac{1}{3}x^2 + 8x + 20 \) where \(P(x) \) is the quarterly profit in thousands of dollars when \(x \) thousand dollars is spent on advertising.

(a) Find the average rate of change in profit as the advertising budget increases from $6,000 per quarter (\(x = 6 \)) to $9,000 per quarter (\(x = 9 \)).

(b) Find a formula for the rate of change of profit at a given \(x = a \).

(c) Use your formula to find the rate at which quarterly profit is changing when the company spends $15,000 on advertising.

(d) Can you find the amount of money the business should spend on advertising to maximize its profit? Hint: that will occur when the rate of change of profit (see your formula from (c)) is equal to 0.

5. The population of a settlement \(t \) years after its founding is given by \(N(t) = \frac{300t}{1 + t}, t \geq 0 \).

(a) Find the population after 9 years.
(b) Find the average change in population from year 5 to year 9.
(c) Find the instantaneous growth rate at time \(t = 9 \).