(a) R is a ring.
(b) $yx = xy + xy'$ and $y = x(x + x')$.
(c) R is simple. (Hin: Let f be a nonzero element in an ideal I of R; then either f has no term involving y or $g = x'f$ is a nonzero element of I that has lower degree than does f. In the latter case, consider $xg = gx$. Eventually, find a nonzero a of f, which is free of y. If f is nonconstant, consider $by = yf$. In a finite number of steps, obtain a nonzero constant element of I, hence $I = R$.)
(d) R has no zero divisors.
(e) R is not a division ring.
2. (a) If A is an R-module, then A is also a well-defined $R/(a)$-module with $(r + a)(a) = ra + a(r + a)$.
(b) If A is a simple left R-module, then $A/\langle a \rangle$ is a primitive ring.
3. Let V be an infinite dimensional vector space over a division ring D. (a) If P is the set of all $Hom(D,P)$ such that I is finite dimensional, then P is a proper ideal of the ring V. Therefore $Hom(D,P)$ is not simple.
(b) P is itself a simple ring.
(c) P is contained in every nonzero ideal of $Hom(D,P)$.
(d) $Hom(D,P)$ is not (id) Amitsur.