MAS 4301—Practice Problems for Exam #1

1. (a) Give an example of a finite abelian group which isn’t cyclic.
 (b) Set \(\mathbb{Z}_{\geq 0} = \{ n \in \mathbb{Z} : n \geq 0 \} \). Explain why \(\mathbb{Z}_{\geq 0} \) with the operation of addition is not a group.
 (c) Give an example of an infinite group \(G \) and an element \(x \in G \) such that \(x \) has finite order but \(x \neq e \).
 (d) Let \(S \) be a set. Give the definition of a binary operation on \(S \).

2. Let \(G \) be a group.
 (a) Suppose \(x, y, z \in G \) satisfy \(xz = yz \). Prove from first principles that \(x = y \).
 (b) Define what it means for \(G \) to be abelian.
 (c) Suppose that \(x^2 = e \) for every \(x \in G \). Prove that \(G \) is abelian. (Hint: First prove that \(x^{-1} = x \) for all \(x \in G \).)

3. Let \(G \) be a group and let \(a \in G \).
 (a) Define the centralizer \(C_G(a) \) of \(a \).
 (b) Prove that \(C_G(a) \subset C_G(a^2) \).
 (c) Prove that if \(G \) is abelian then the set \(H = \{ x^8 : x \in G \} \) is a subgroup of \(G \).

4. Let \(G = \langle x \rangle \) be a cyclic group of order 18.
 (a) For each \(n \) such that \(1 \leq n \leq 7 \), list all elements of \(G \) with order \(n \).
 (b) Find \(m \) such that \(\langle x^{12} \rangle = \langle x^m \rangle \) and \(m \mid 18 \).
 (c) List the subgroups of \(G \). Your list should not have any repeats.

5. (a) Give an example of a group \(G \) and a subset \(S \subset G \) such that
 i. \(e \in S \),
 ii. \(S \) is closed under multiplication,
 iii. \(S \) is not a subgroup of \(G \).
 (Hint: \(G \) and \(S \) must be infinite.)
 (b) Give an example of a group \(G \) and \(x, y \in G \) such that \((xy)^2 \neq x^2y^2 \).
 (c) Let \(G \) be a group and let \(H \subset G \). State the one-step subgroup test which gives sufficient conditions for \(H \) to be a subgroup of \(G \).

6. (a) Give an example of an abelian group \(G \) which is not cyclic.
 (b) Let \(G \) be a group and let \(x, y \in G \). Prove that \((xy)^{-1} = y^{-1}x^{-1} \).
 (c) Let \(G \) be a group. Prove that \(G \) is abelian if and only if \((xy)^{-1} = x^{-1}y^{-1} \) for all \(x, y \in G \).
7. Let G be a group and let $x \in G$.

 (a) Define the order $|x|$ of x.
 (b) Prove from first principles that if $a \in \mathbb{Z}$ then $|x^a| \leq |x|$.
 (c) Suppose x has finite order n. Prove that for every $y \in \langle x \rangle$ there is a unique integer r such that $0 \leq r \leq n - 1$ and $y = x^r$.

8. Let $G = \langle x \rangle$ be cyclic group of order 30.

 (a) List the subgroups of G. Your list should not have any repeats.
 (b) Compute the order of $x^{14} \in G$.
 (c) Find all the elements of G which have order 10.

9. (a) Explain why the set $\mathbb{R}_{\geq 0}$ of all nonnegative real numbers with the operation of addition is not a group.
 (b) Let G be a group and let $x \in G$. Prove the uniqueness of the inverse of x: If y, y' are elements of G such that $xy = yx = e$ and $xy' = y'x = e$ then $y = y'$.
 (c) Let G be a group with the property that for every $x, y, z \in G$, if $xy = zx$ then $y = z$. Prove that G is abelian.

10. Let G be a group.

 (a) Give the definition of a subgroup of G.
 (b) Give an example of a group G and two subgroups H, K of G such that $H \cup K$ is not a subgroup of G.
 (c) Let H and K be subgroups of G. Prove that $H \cap K$ is a subgroup of G.

11. Let G be a group and let $a \in G$.

 (a) Give the definition of $\langle a \rangle$.
 (b) Prove that $\langle a \rangle$ is a subgroup of G.
 (c) Prove that $C_G(a) = \{x \in G : ax = xa\}$ is a subgroup of G.

12. (a) Give the definition of a cyclic group.
 (b) Find every $a \in \mathbb{Z}_{24}$ such that $\langle a \rangle = \mathbb{Z}_{24}$.
 (c) Let $G = \langle x \rangle$ be a cyclic group of order 28. Find all the subgroups of G. Your list should not have any repeats.