MAS 5311: Practice problems for Exam #1

1. Let \(\phi : G \to H \) be a homomorphism and let \(E \) be a subgroup of \(H \). Prove that the set \(\phi^{-1}(E) = \{ g \in G : \phi(g) \in E \} \) is a subgroup of \(G \).

2. Let \(G \) be a group and let \(A \) be a set.
 (a) Give the definition of an action of \(G \) on \(A \).
 (b) Let \(G \) act on \(A \) via \((g, a) \mapsto g \cdot a \). For \(g \in G \) define \(\sigma_g : A \to A \) by \(\sigma_g(a) = g \cdot a \).
 Prove that \(\sigma_g \) is a permutation of \(A \).

3. Let \(G = D_{16} = \langle s, r : s^2 = r^8 = 1, rs = sr^{-1} \rangle \) be the dihedral group of order 16.
 (a) Compute the centralizers \(C_G(\{s\}) \) and \(C_G(\{r, r^{-1}\}) \).
 (b) Compute the normalizers \(N_G(\{s\}) \) and \(N_G(\{r, r^{-1}\}) \).

4. Let \(G = \langle x \rangle \) be a cyclic group of order 20. Draw the complete lattice of subgroups for \(G \). (No justification needed for this problem.)

5. (a) Prove that if \(G \) is an abelian group and \(H \) is a subgroup of \(G \) then \(H \trianglelefteq G \).
 (b) Let \(G \) be a group and let \(N \) be a normal subgroup of \(G \) such that \(G/N \) is abelian. Let \(H \) be a subgroup of \(G \) such that \(H \supseteq N \). Prove that \(H \trianglelefteq G \).
 (You may want to use a part of the Fourth Isomorphism Theorem.)

6. (a) State the First Isomorphism Theorem.
 (b) Prove the Second Isomorphism Theorem: If \(H \trianglelefteq G \), \(K \subseteq G \), and \(H \trianglelefteq N_G(K) \) then \(HK/K \cong H/(H \cap K) \). You may assume \(HK \subseteq G \) and \(K \trianglelefteq HK \).

7. Let \(G = GL_2(\mathbb{R}) \) act on \(\mathbb{R}^2 \) by matrix multiplication: \(A \cdot \vec{v} = A\vec{v} \) for \(A \in G \), \(\vec{v} \in \mathbb{R}^2 \).
 (a) Determine the stabilizer \(G_{\vec{e}_1} \) of \(\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{R}^2 \).
 (b) Determine the stabilizer \(G_{\vec{e}_2} \) of \(\vec{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in \mathbb{R}^2 \).
 (c) Determine the kernel of the action of \(G \) on \(\mathbb{R}^2 \).

8. Let \(G \) and \(H \) be cyclic groups with the same finite order \(n \). Prove that \(G \cong H \).

9. Give the complete lattice of subgroups of the cyclic group \(Z_{30} \). (No proof needed.)

10. Let \(G \) be a group, let \(\{N_\lambda : \lambda \in \Lambda\} \) be a collection of normal subgroups of \(G \), and set \(S = \bigcup_{\lambda \in \Lambda} N_\lambda \). Prove that \(\langle S \rangle \) is a normal subgroup of \(G \). (You may assume that \(\langle S \rangle \) is a subgroup of \(G \).)
11. We say that the group G is finitely generated if there is a finite set S such that $G = \langle S \rangle$.
 (a) Prove that if H is a finitely generated subgroup of $(\mathbb{Q}, +)$ then H is cyclic.
 (b) Prove that $(\mathbb{Q}, +)$ is not finitely generated.

12. Let $\phi : G \to H$ be a group homomorphism. Prove $G / \ker \phi \cong \phi(G)$. (You may assume $\ker \phi \triangleleft G$ and $\phi(G) \leq H$.)

13. Let $\phi : G \to H$ be a group homomorphism. Prove that ϕ is one-to-one if and only if $\ker(\phi)$ is trivial.

14. Let G be an abelian group. Prove that the set $T = \{ g \in G : |g| < \infty \}$ is a subgroup of G.

15. Let $n \geq 3$ and recall that $D_{2n} = \langle r, s \rangle$ is a group of order $2n$, with $r^n = s^2 = 1$ and $srs^{-1} = r^{-1}$. Prove that $Z(D_{2n})$ is trivial if and only if n is odd.

16. Prove Lagrange’s theorem: Let G be a finite group and let $H \leq G$. Then $|G| = |G : H| \cdot |H|$.

17. Prove that if G is an abelian simple group then $G \cong Z_p$ for some prime p. (Do not assume that G is finite.)

18. (a) Define what it means for a group G to be solvable.
 (b) Let G be a solvable group and let H be a subgroup of G. Prove that H is solvable.

19. Let G be a group and let N be a normal subgroup of G such that both G/N and N are solvable. Prove that G is solvable.