MAS 4301—Practice Problem Set #2

1. Let \(A = \mathbb{Z}_{10} = \{0, 1, 2, \ldots, 9\} \) and define \(\sigma : A \to A \) by \(\sigma(a) = a + 4 \) (mod 10). (So \(\sigma(a) \) is \(a + 4 \) modulo 10.)

 (a) Prove that \(\sigma \) is a permutation of \(A \).
 (b) Find a cycle decomposition for \(\sigma \).
 (c) Express \(\sigma \) as a product of 2-cycles.
 (d) Determine whether the permutation \(\sigma \) is even or odd.

2. (a) Determine the number of elements of order 4 in \(S_5 \).
 (b) Determine the number of elements of order 4 in \(A_5 \).
 (c) Let \(G = \langle x \rangle \) be a cyclic group of order 20. Determine all automorphisms of \(G \). In particular, for each \(\sigma \in \text{Aut}(G) \) give the value of \(\sigma(x) \).
 (d) Let \(A \) be a set, let \(x \in A \), and let \(G \) be a subgroup of the symmetric group \(S_A \). Define the stabilizer \(\text{Stab}_G(x) \) of \(x \) in \(G \).

3. (a) Let \(S_4 \) be the symmetric group and let \(D_{12} \) be the dihedral group. Prove or disprove that \(S_4 \) is isomorphic to \(D_{12} \). (Note that both groups have order 24.)
 (b) Let \(\phi : G \to \overline{G} \) be an isomorphism. Prove that for all \(x \in G \) we have \(\phi(x^{-1}) = \phi(x)^{-1} \). You may use the formula \(\phi(e) = \overline{e} \), where \(e \) is the identity of \(G \) and \(\overline{e} \) is the identity of \(\overline{G} \).
 (c) Let \(\phi \) be an automorphism of \(G \). Prove that the set \(H = \{ x \in G : \phi(x) = x \} \) is a subgroup of \(G \).

4. Let \(G \) be a finite group.

 (a) Let \(H \leq G \). State Lagrange's theorem for \(G \) and \(H \).
 (b) Prove that if \(x \in G \) then \(|x| \) divides \(|G| \).
 (c) Let \(H, K \) be subgroups of \(G \), with \(H \subset K \). Use Lagrange's theorem to prove that \(|G : H| = |G : K| \cdot |K : H| \).

5. Let \(A = U(11) = \{1, 2, \ldots, 10\} \) and define \(\sigma : A \to A \) by \(\sigma(a) = 3 \cdot_a 11 \). (In other words, \(\sigma(a) \) is equal to \(3a \) modulo 11.)

 (a) Prove that \(\sigma \) is a permutation of \(A \).
 (b) Find a cycle decomposition for \(\sigma \).
 (c) Express \(\sigma \) as a product of 2-cycles.
 (d) Determine whether the permutation \(\sigma \) is even or odd.
6. (a) Let \(H \) be a subgroup of the symmetric group \(S_n \). Prove that either all the elements of \(H \) are even permutations or exactly half of the elements of \(H \) are even permutations.

(b) Give an example of each of these, or explain why no example exists.

i. An element \(\sigma \) of \(S_5 \) which has order 6.

ii. An element \(\tau \) of \(S_6 \) which has order 7.

iii. An element \(\rho \) of \(A_9 \) which has order 10.

7. (a) Let \(A_4 \) be the alternating group and let \(D_6 \) be the dihedral group. Prove or disprove that \(A_4 \) is isomorphic to \(D_6 \).

(b) Let \(\phi : G \to \overline{G} \) be an isomorphism, let \(e \) be the identity of \(G \), and let \(\overline{e} \) be the identity of \(\overline{G} \). Prove from first principles that \(\phi(e) = \overline{e} \).

(c) Let \(\phi : G \to \overline{G} \) be an isomorphism and let \(x \in G \). Prove that if \(|x| = n\) then \(|\phi(x)| = n\). (You may assume that \(\phi(x^k) = \phi(x)^k \) for all \(k \in \mathbb{Z} \).)

8. Let \(G \) be a group and let \(a, b \in G \).

(a) Give the definition of the inner automorphism \(\phi_a : G \to G \) associated to \(a \).

(b) Prove that \(\phi_{ab} = \phi_a \circ \phi_b \).

(c) Prove that the set \(\text{Inn}(G) = \{ \phi_a : a \in G \} \) is a subgroup of \(\text{Aut}(G) \). (You may assume that the set \(\text{Aut}(G) \) of automorphisms of \(G \) is a group with the operation of composition.)

9. (a) Determine which of the groups \(\mathbb{Z}_2 \oplus \mathbb{Z}_3 \), \(S_3 \), \(A_4 \), \(\mathbb{Z}_6 \) are isomorphic to which, with some explanation.

(b) Let \(\phi : G \to \overline{G} \) be an isomorphism and let \(x \in G \). Prove that \(\phi(x^{-1}) = \phi(x)^{-1} \). You may assume that \(\phi(e_G) = \overline{e_G} \).

(c) Let \(\phi : G \to \overline{G} \) be an isomorphism and let \(H \) be a subgroup of \(G \). Prove that \(\phi(H) = \{ \phi(x) : x \in H \} \) is a subgroup of \(\overline{G} \).

10. (a) Let \(\mathbb{R} \) denote the group of real numbers with the operation of addition. Prove that the function \(\phi : \mathbb{R} \to \mathbb{R} \) defined by \(\phi(x) = 3x \) is an automorphism of \(\mathbb{R} \).

(b) Let \(G \) be a group of order \(n \), with \(1 < n < \infty \). Prove that if the only subgroups of \(G \) are \(\{e_G\} \) and \(G \) then \(n \) is prime.

11. (a) Let \(G \) be a group and let \(H \) be a subgroup of \(G \). Give the definition of a left coset of \(H \) in \(G \).

(b) List the distinct left cosets of \(H = \langle (1 \, 2) \rangle \) in \(S_3 \).

(c) Give an example of a left coset \(L \) of \(\langle (1 \, 2) \rangle \) in \(S_3 \) and a right coset \(R \) of \(\langle (1 \, 2) \rangle \) in \(S_3 \) such that \(L \cap R \neq \{ \} \) and \(L \neq R \).

12. Let \(G \) be a finite group, let \(H \leq G \), and let \(x, y \in G \).
(a) Prove that if $xH \cap yH$ is nonempty then $xH = yH$.
(b) Prove that xH has the same cardinality as H.
(c) Prove Lagrange’s Theorem: $|G| = |G : H| \cdot |H|$.