In this post we give a proof of the Cauchy Mean Value Theorem. It is a very simple proof and only assumes Rolle’s Theorem.

Cauchy Mean Value Theorem Let \(f(x) \) and \(g(x) \) be continuous on \([a, b]\) and differentiable on \((a, b)\). Then there is a \(a < c < b \) such that

\[
(f(b) - f(a)) \cdot g'(c) = (g(b) - g(a)) \cdot g'(c).
\]

Proof. The case that \(g(a) = g(b) \) is easy. So, assume that \(g(a) \neq g(b) \). Define

\[
h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g(x).
\]

Clearly, \(h(a) = h(b) \). Applying Rolle’s Theorem we have that there is a \(c \) with \(a < c < b \) such that

\[
h'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(c).
\]

For this \(c \) we have that

\[
(f(b) - f(a)) \cdot g'(c) = (g(b) - g(a)) \cdot f'(c).
\]

\[\square\]

The classical Mean Value Theorem is a special case of Cauchy’s Mean Value Theorem. It is the case when \(g(x) \equiv x \). The Cauchy Mean Value Theorem can be used to prove **L’Hospital’s Theorem**.