Cavalieri's Determination of the Area of an Ellipse

The principle is the following. Suppose that two planar figures have the same height and at the same level the cross-sectional lengths are in the same ratio r. Then the areas are in the same ratio r.

Cavalieri applied this to determine the area of an ellipse. In standard form, the equation of an ellipse is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Compare this area with that of a circle with radius a whose area is πa^{2}.

$$
x^{2}+y^{2}=a^{2}
$$

At x the cross-sectional lengths are $2 y=\frac{b}{a} \sqrt{a^{2}-a^{2}}$ and $2 y=\sqrt{a^{2}-x^{2}}$,
respectively. Thus the ratios of these lengths is $\frac{b}{a}$. From this we get that the area of the ellipse is

$$
A_{\text {ellipse }}=\frac{b}{a} \cdot \pi a^{2}=\pi a b .
$$

