Cavalieri’s Determination of the Volume of a Torus

Bonaventura Cavalieri (1598-1647) was a contemporary of Galileo who considered him the greatest geometer since Archimedes. One of his powerful tools has been called *Cavalieri’s Principle*. It states that if two solids have the same height and at each level have the same cross sectional area, then they both have the same volume. This is represented with a mnemonic diagram below.

The volume of a torus can be determined in this way by comparing its cross-sectional areas with that of a cylinder. The comparison is below.

At a height h from the center of the figures we get the following cross sections.
So, the area for the torus is

\[A_1(h) = \pi \left(b + \sqrt{a^2 - h^2} \right)^2 - \pi \left(b - \sqrt{a^2 - h^2} \right)^2 = 4\pi b \sqrt{a^2 - h^2}. \]

The area for the cylinder is clearly \(A_2(h) = 4\pi b \sqrt{a^2 - h^2} \). So, \(A_1(h) = A_2(h) \) for every \(h \). This implies that the volumes are the same. So, the volume of a torus is given by the following.

\[V = 4\pi^2 b a^2 \]