Centroids

Let A be a geometric figure in Euclidean space. The Euclidean space may be R^{2} or R^{3}. It could in fact be R^{n}. The figure may be any dimension. The coordinates of the centroid or center of mass of the figure are given by the following formulas.

$$
\bar{x}=\frac{\int x \cdot d A}{\int d A} \quad \bar{y}=\frac{\int y \cdot d A}{\int d A} \quad \bar{z}=\frac{\int z \cdot d A}{\int d A}
$$

Of course, if the figure is in R^{2}, only the first two coordinates apply. The $d A$ in the formulas are small strips of the figure that are perpendicular to the direction of the respective x-axis or y-axis or z-axis. The simplest way to understand this is to work through a few examples.

1. Determine the centroid of the portion of the area of a disk of radius R centered at the origin that is in the first quadrant.

$$
\bar{x}=\frac{\int_{0}^{R} x \cdot \sqrt{R^{2}-x^{2}} d x}{\int_{0}^{R} \sqrt{R^{2}-x^{2}} d x}=\frac{4 R}{3 \pi} \quad \bar{y}=\frac{\int_{0}^{R} y \cdot \sqrt{R^{2}-y^{2}} d x}{\int_{0}^{R} \sqrt{R^{2}-y^{2}} d x}=\frac{4 R}{3 \pi}
$$

2. Determine the centroid of the area under the curve $f(x)=x^{n}$ over the interval [0,1] .

$$
\bar{x}=\frac{\int_{0}^{1} x \cdot x^{n} d x}{\int_{0}^{1} x^{n} d x}=\frac{n+1}{n+2} \quad \bar{y}=\frac{\int_{0}^{1} y \cdot(1-\sqrt[n]{y}) d y}{\int_{0}^{1}(1-\sqrt[n]{y}) d y}=\frac{n+1}{4 n+2}
$$

3. What is the centroid of that portion of the graph of a circle centered at the origin having radius R that is in the first quadrant.

One can easily derive Pappus' Rule from the formula for the centroid. Suppose that the figure is to be rotated about the y-axis and the resultant area or volume is to be determined. Then, in the case of volume, the formula is given below.

$$
V=2 \cdot \pi \cdot \bar{x} \cdot A
$$

The area of the figure is A and the x-coordinate of the centroid is \bar{x}.
Here is the proof using the definition of \bar{x}.

$$
V=\int 2 \cdot \pi \cdot x \cdot d A=2 \cdot \pi \int x \cdot d A=\frac{2 \cdot \pi \int x \cdot d A \int d A}{\int d A}=2 \cdot \pi \cdot \bar{x} \cdot A
$$

Let us apply Pappus' Rule to Example 1 above. If we rotate the area in the quarter disk around the x-axis, we get a half sphere. The volume is $\frac{2}{3} \pi \cdot R^{3}$. The area of the quarter disk is $\frac{\pi \cdot R^{2}}{4}$. From these two facts, we can determine \bar{y}.

$$
V=\frac{2}{3} \pi \cdot R^{3}=2 \cdot \pi \cdot A=2 \cdot \pi \cdot \bar{y} \cdot \frac{\pi \cdot R^{2}}{4}
$$

It is a simple calculation to see that $\bar{y}=\frac{4 R}{3 \pi}$, the same answer that was obtained by integrating.

We can apply Pappus' Rule to determine the volume obtained by rotating the area in Example 2 around the y-axis.

$$
V=2 \cdot \pi \cdot \bar{x} \cdot A=2 \cdot \pi \cdot \frac{n+1}{n+2} \cdot \frac{1}{n+1}=\frac{2 \cdot \pi}{n+2}
$$

If we would rotate around the x-axis, the volume we would the following.

$$
V=2 \cdot \pi \cdot \bar{y} \cdot A=2 \cdot \pi \cdot \frac{n+1}{4 n+2} \cdot \frac{1}{n+1}=\frac{\pi}{2 n+1}
$$

