Contraction Mapping Theorem

Below is a statement and proof of the Contraction Mapping Theorem.

Theorem. Suppose that \(X \) is a complete metric space and that \(f : X \to X \) is a contraction mapping on \(X \). Then there is a unique \(z \in X \) such that \(f(z) = z \).

Furthermore, if \(x_0 \) is any point in \(X \), then \(f^n(x_0) \to z \) as \(n \to \infty \).

Proof. Let \(x_0 \in X \). We will show that the sequence \(\{x_n = f^n(x_0)\}_{n=1}^\infty \) is a Cauchy sequence in \(X \). Let \(D = d(x_0, f(x_0)) \) and let \(0 < c < 1 \) be the contraction constant for \(f \).

By the definition of contraction mapping \(d(f(x_0), f^2(x_0)) \leq c \cdot d(x_0, f(x_0)) = c \cdot D \). By induction one can establish that \(d(f^n(x_0), f^{n+1}(x_0)) \leq c^n \cdot D \). Thus,

\[
d(x_0, f^{n+1}(x_0)) \leq \sum_{k=0}^{n} c^k \cdot D < \frac{D}{1-c}
\]

Similarly, \(d(f^n(x_0), f^m(x_0)) \leq D \cdot c^n \cdot \sum_{k=0}^{m-n-1} c^k < \frac{c^n \cdot D}{1-c} \) for all \(n < m \). So, to see that the sequence is Cauchy, let \(\varepsilon > 0 \) and choose \(N \) such that \(\frac{c^N \cdot D}{1-c} < \varepsilon \). Then for \(N \leq n \leq m \),

\[
d(f^n(x_0), f^m(x_0)) < \varepsilon \quad \text{. So, the sequence is Cauchy.}
\]

Since \(\{x_n = f^n(x_0)\}_{n=1}^\infty \) is Cauchy, it converges to a point \(z \in X \). But for this \(z \)

\[
\lim_{n \to \infty} f^n(x_0) = z = \lim_{n \to \infty} f^{n+1}(x_0) = f(z) \quad \text{. So, } z \text{ is a fixed point for } f \text{.}
\]

On the other hand, if there were another fixed point \(z' \neq z \), then \(d(f(z), f(z')) = d(z, z') > c \cdot d(z, z') \). This last inequality contradicts the assumption that \(f \) is a contraction mapping. So, there is only one fixed point.