Cubic Splines

James Keesling

1 Definition of Cubic Spline

Given a function $f(x)$ defined on an interval $[a, b]$ we want to fit a curve through the points $\left\{\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)\right\}$ as an approximation of the function $f(x)$. We assume that the points are given in order $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$ and let $h_{i}=$ $x_{i+1}-x_{i}$. The method of approximation we describe is called cubic spline interpolation. The cubic spline is a function $S(x)$ on $[a, b]$ with the following properties.

$$
\begin{aligned}
& \left.S(x)\right|_{\left[x_{i}, x_{i+1}\right]}=S_{i}(x) \text { is a cubic polynomial for } i=0,1,2, \ldots, n-1 \\
& S_{i}\left(x_{i}\right)=f\left(x_{i}\right) \text { for } i=0,1,2, \ldots, n-1 \\
& S_{i}\left(x_{i+1}\right)=f\left(x_{i+1}\right) \text { for } i=0,1,2, \ldots, n-1 \\
& S_{i}^{\prime}\left(x_{i+1}\right)=S_{i+1}^{\prime}\left(x_{i+1}\right) \text { for } i=0,1,2, \ldots, n-2 \\
& S_{i}^{\prime \prime}\left(x_{i+1}\right)=S_{i+1}^{\prime \prime}\left(x_{i+1}\right) \text { for } i=0,1,2, \ldots, n-2 \\
& S_{0}^{\prime \prime}\left(x_{0}\right)=S_{n-1}^{\prime \prime}\left(x_{n}\right)[\text { free boundary condition] or } \\
& S_{0}^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \text { and } S_{n-1}^{\prime}\left(x_{n}\right)=f^{\prime}\left(x_{n}\right) \text { [clamped boundary condition] }
\end{aligned}
$$

2 Determining the Coefficients of the Cubic Polynomials

Since each $S_{i}(x)=a_{i}+b_{i} \cdot\left(x-x_{i}\right)+c_{i} \cdot\left(x-x_{i}\right)^{2}+d_{i} \cdot\left(x-x_{i}\right)^{3}$ has four constants to be determined, we have $4 n$ unknowns and the above conditions give us $4 n$ equations. For the free boundary case we can simplify the solutions of the equations to the following.
$a_{i}=f\left(x_{i}\right)$ for $i=0,1,2, \ldots, n-1$ and define $a_{n}=f\left(x_{n}\right)$
$A x=b$ where

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
h_{0} & 2\left(h_{0}+h_{1}\right) & h_{1} & 0 & \cdots & 0 \\
0 & h_{1} & 2\left(h_{1}+h_{2}\right) & h_{2} & \cdots & 0 \\
0 & 0 & h_{2} & 2\left(h_{2}+h_{3}\right) & \cdots & 0 \\
0 & 0 & 0 & h_{3} & \ddots & \\
\vdots & \vdots & & & & \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right]
$$

$$
b=\left[\begin{array}{c}
0 \\
\frac{3}{h_{1}}\left(a_{2}-a_{1}\right)-\frac{3}{h_{0}}\left(a_{1}-a_{0}\right) \\
\vdots \\
\frac{3}{h_{n-1}}\left(a_{n}-a_{n-1}\right)-\frac{3}{h_{n-2}}\left(a_{n-1}-a_{n-2}\right) \\
0
\end{array}\right]
$$

and

$$
x=\left[\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

We also have that $d_{i}=\frac{c_{i+1}-c_{i}}{3 h_{i}}$ for $i=0,1,2, \ldots, n-1$ and $b_{i}=\frac{1}{h_{i}}\left(a_{i+1}-a_{i}\right)-\frac{h_{i}}{3}\left(2 c_{i}+\right.$ $\left.c_{i+1}\right)$ for $i=0,1,2, \ldots, n-1$.

3 A Program to Find the Coefficients

The following TI-89 program will determine the coefficients of $S_{0}(x), S_{1}(x), \ldots, S_{n-1}(x)$. The input is the vector of x_{i}-values, xvec, and the vector of $f\left(x_{i}\right)$-values (or y_{i}-values), yvec. The variable n is the length of these vectors less one. The output is the $n \times 4$ matrix coef. The $i^{\text {th }}$ row gives the coefficients $\left\{a_{i-1}, b_{i-1}, c_{i-1}, d_{i-1}\right\}$ of $S_{i-1}(x)=a_{i-1}+b_{i-1}(x-$ $\left.x_{i-1}\right)+c_{i-1}\left(x-x_{i-1}\right)^{2}+d_{i-1}\left(x-x_{i-1}\right)^{3}$.
:cubsplin(xvec, yvec, n)
: Prgm
:newMat(n,4) \rightarrow coef
:newMat(1,n) \rightarrow h
:newMat($\mathrm{n}+1, \mathrm{n}+1) \rightarrow$ temp1
:newMat($\mathrm{n}+1,1$) \rightarrow temp2
:For i,1,n
$: x v e c[1, i+1]-x v e c[1, i] \rightarrow h[1, i]$
:EndFor
:For i,1,n
$: y v e c[1, i] \rightarrow \operatorname{coef}[i, 1]$
:EndFor
:For i,1,n-1
$: \mathrm{h}[1, \mathrm{i}] \rightarrow \operatorname{temp} 1[\mathrm{i}+1, \mathrm{i}]$
$: 2^{*}(\mathrm{~h}[1, \mathrm{i}]+\mathrm{h}[1, \mathrm{i}+1]) \rightarrow \operatorname{temp} 1[\mathrm{i}+1, \mathrm{i}+1]$
$: \mathrm{h}[1, \mathrm{i}+1] \rightarrow$ temp1[i+1,i+2]
:EndFor
$: 1 \rightarrow$ temp1[1,1]
$: 1 \rightarrow$ temp1[n+1,n+1]
:For i,1,n-1
$: 3 /(\mathrm{h}[1, \mathrm{i}+1]) *(\mathrm{yvec}[1, \mathrm{i}+2]-\mathrm{yvec}[1, \mathrm{i}+1])-3 /(\mathrm{h}[1, \mathrm{i}]) *(\mathrm{yvec}[1, \mathrm{i}+1]-\mathrm{yvec}[1, \mathrm{i}]) \rightarrow$ temp2$[\mathrm{i}+1,1]$
:EndFor
$:$ temp1 $\wedge(-1) *$ temp2 \rightarrow temp2
:For i,1,n
$:$ temp2[i,1] \rightarrow coef[i,3]
:EndFor
:For i,1,n
$:(\operatorname{temp} 2[\mathrm{i}+1,1]-\operatorname{temp} 2[\mathrm{i}, 1]) /\left(3^{*} \mathrm{~h}[1, \mathrm{i}]\right) \rightarrow \operatorname{coef}[\mathrm{i}, 4]$
$: 1 /(\mathrm{h}[1, \mathrm{i}])^{*}(\mathrm{yvec}[1, \mathrm{i}+1]-\mathrm{yvec}[1, \mathrm{i}])-\mathrm{h}[1, \mathrm{i}] / 3^{*}\left(2^{*} \operatorname{temp} 2[\mathrm{i}, 1]+\operatorname{temp} 2[\mathrm{i}+1,1]\right) \rightarrow \operatorname{coef}[\mathrm{i}, 2]$
:EndFor
:EndPrgm
To be sure that you program is working try the following example.
Example 3.1. Determine the coefficients of the cubic spline through the following points $\left\{(0,0),(1,1),(2,8),\left(\frac{5}{2}, 9\right)\right\}$.

The coefficient matrix coef should be the following.

$$
\left[\begin{array}{cccc}
0 & -\frac{12}{11} & 0 & \frac{23}{11} \\
1 & \frac{57}{11} & \frac{69}{11} & -\frac{49}{11} \\
8 & \frac{48}{11} & -\frac{78}{11} & \frac{52}{11}
\end{array}\right]
$$

This says that the spline is given by the following formula.

$$
S(x)=\left\{\begin{array}{cl}
-\frac{12}{11} x+\frac{23}{11} x^{3} & 0 \leq x \leq 1 \\
1+\frac{57}{11}(x-1)+\frac{69}{11}(x-1)^{2}-\frac{49}{11}(x-1)^{3} & 1 \leq x \leq 2 \\
8+\frac{48}{11}(x-2)-\frac{78}{11}(x-2)^{2}+\frac{52}{11}(x-2)^{3} & 2 \leq x \leq \frac{5}{2}
\end{array}\right.
$$

