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Figure 1. Giuseppe Peano, 1858-1932

Figure 2. David Hilbert, 1862-1943

In this post describe and discuss the Cantor Set, C ⊂ I. We use this set to construct a
continuous map f : [0, 1] → [0, 1] × [0, 1] which is onto. The steps in the proof are not
difficult, but the final result is surprising. The first such map was discovered by Giuseppe
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Peano in 1890. There was another example published by David Hilbert in 1891. The
examples were a shock to the mathematical community at the time and demonstrated that
the notion of dimension needed a logical foundation.

Let us state at the outset the main result that we are concerned with.

Theorem: Dimension Raising Mapping. There is a continuous mapping f : [0, 1] →
[0, 1]× [0, 1] which is onto.

The proof of this result will come at the end of the document.

1. The Cantor Set

We first introduce the Cantor Set. It is the set of points that can be expressed in a
ternary expansion using only the digits 0 and 2. It is formally given by the following.

C =

{
x ∈ I = [0, 1]

∣∣∣∣∣x =
∞∑
i=1

ai
3i

with ai ∈ {0, 2} for all i

}
or

C = {x ∈ I = [0, 1] |x = .a1 a2 a3 a4 · · · 3 with ai ∈ {0, 2} for all i}
One can visualize this set in the following way. Let A0 = [0, 1]. Let A1 ⊂ A0 be

[0, 1] \
(
1
3 ,

2
3

)
. Note that A1 is the set of points that can be represented with either 0 or 2

as the first digit. Let A2 be the two intervals in A1 less their middle thirds. Then A2 is
the set of numbers in [0, 1] that can be represented in ternary expansion with 0 or 2 in the
first two positions. Continuing in this fashion we see that C = ∩∞n=1An. This construction
is the reason that it is often known as the Cantor Middle-Third Set.

Figure 3. The Cantor Middle-Third Set

We observe that some elements of [0, 1] = I have two ternary expansions. If one of
them uses only the digits 0 and 2, then that is the expansion that is used. For example
1
3 = .1 0 0 · · · 3 = .0 2 2 2 · · · 3. So, in this case we use the second expansion. For 2

3 we use
the expansion .2 0 0 0 · · · 3 even though .1 2 2 2 · · · 3 is another.
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2. Continuous Maps on the Cantor Set

Theorem: Continuous Map of C onto I. There is a continuous mapping f : C → I
which is onto.

Proof. For x ∈ C let x0 = .a1 a2 a3 · · · 3 with ai ∈ {0, 2} Note that ai
2 ∈ {0, 1} for all i.

So, if we define f(x) = y where y = .a12
a2
2

a3
2 · · · 2 we will get a number y ∈ I with the

given binary expansion. If we only use the agreed upon ternary expansions in C that use
the digits 0 and 2, there will be only one such y for each x ∈ C. It is not difficult to show
that this function is continuous. We now show that it is onto. Let y be any element of I.
Let y have the binary expansion y = .b1 b2 b3 · · · 2 with bi ∈ {0, 1} for all i. Let x ∈ I have
the ternary expansion x = .2b1 2b2 2b3 2b4 · · · 3. Then clearly x ∈ C and f(x) = y. So, f is
onto I. �

Figure 4. The Graph of g is the Devil’s Staircase

We observe that C = ∩∞i=nAn as we described earlier where An is a union of 2n intervals
each of length 3−n. We can extend our map f : C → I to a map g : I → I through the
following observation. Each point in I will either be in all of the An’s or will be in one of
the complementary intervals for some An. So, we will start with the map f : C → I that we
have constructed and extend that map to g : I → I by defining g(x) to be constant on each
of the complementary intervals of An for each n. This is possible since f

(
1
3

)
= f

(
2
3

)
= 1

2 ,

f
(
1
9

)
= f

(
2
9

)
= 1

4 , f
(
7
9

)
= f

(
8
9

)
= 3

4 , etc. The graph in Figure 4 helps visualize the
function g. It is known as the Devil’s Staircase.
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The map f : C → I is really an introduction to a continuous map f : C → I×I which is
onto. We now show that such a map exists. The description is similar to that of f : C → I
just described.

Theorem: Continuous Map of C onto I × I. There is a continuous mapping f : C →
I × I which is onto.

Proof. For x ∈ C let x0 = .a1 a2 a3 · · · 3 with a2i−1 ∈ {0, 2} Note that a2i−1

2 ∈ {0, 1} for all
i. So, if we define f(x) = (y1, y2) where we let y1 = .a12

a3
2

a5
2 · · · 2 and y2 = .a22

a4
2

a6
2 · · · 2.

In this way we will get a point (y1, y2) ∈ I × I.
If we only use the agreed upon ternary expansions in C that use the digits 0 and 2, there

will be only one such (y1, y2) for each x ∈ C. So, the function will be well defined. It is
not difficult to show that this function is continuous. We now show that it is onto. Let
(y1, y2) be any element of I × I. Let y1 have the binary expansion y1 = .b1 b2 b3 · · · 2 with
bi ∈ {0, 1} for all i. Let y2 have the binary expansion y2 = c1 c2 c3 · · · 2. Let x ∈ I have the
ternary expansion x = .2b1 2c1 2b2 2c2 · · · 3. Then clearly x ∈ C and f(x) = (y1, y2) ∈ I×I
the way we have defined it. So, f is onto I × I. �

Can you come up with a way to describe a continuous function f : C → I3 or onto a
higher dimensional cube? What about an infinite-dimensional cube?

This does not give us the continuous map from I onto I2 that was promised. We now
provide a proof of that claim. We observe that C = ∩∞i=nAn as we described earlier where
An is a union of 2n intervals each of length 3−n. Our strategy will be to extend the
map f : C → I2 from the previous theorem to the intervals that are complementary to
An for each n. Each point in I will either be in all of the An’s or will be in one of the
complementary intervals for An for some n. So, we will start with the map f : C → I2

that we have constructed and extend that map to f : I → I2 by defining f on each of these
complementary intervals.

3. Proof of the Main Theorem

Proof. Let f : C → I2 as described in the previous theorem. Let (a, b) be a complementary
interval for An. Then a = i

3n for some positive integer i and b = i+1
3n for the same i. Note

that the distance between f(a) and f(b) is no farther apart than 1
22·(n−1) . Now define f

on the interval [a, b]. Let x ∈ [a, b]. Then x is given by x = a + tx · (b − a) for a unique
tx ∈ [0, 1]. Now define f(x) by the formula f(a+ tx · (b− a) = f(a) + tx · (f(b)− f(a). We
have defined f on [a, b] linearly onto the line joining f(a) and f(b) in I2. The map f will
be onto since f was onto. With some work this map can also be seen to be continuous. �

It helps to visualize the lines that the complementary intervals map to. Note that
f
(
1
3

)
= f(.0 2 2 2 · · · 3) =

(
1
2 , 1
)

and f
(
2
3

)
= f(.2 0 0 0 · · · 3) =

(
1
2 , 0
)
. So, f

([
1
3 ,

2
3

])
is the vertical line joining

(
1
2 , 1
)

to
(
1
2 , 0
)

directed downward. The images of the other
complementary intervals can be determined in a similar fashion. Figure 5 helps to visualize
the image of the first few complementary intervals in the square. The arrowhead indicates
the direction of the image of the respective interval.
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Figure 5. The Image under f of
[
1
3 ,

2
3

]
(Red),

[
1
9 ,

2
9

]
(Green),

[
7
9 ,

8
9

]
(Blue),[

1
27 ,

2
27

]
(Yellow),

[
7
27 ,

8
27

]
(Orange),

[
19
27 ,

20
27

]
(Pink),

[
25
27 ,

26
27

]
(Purple) in

I × I


