HOMOGENEOUS DIFFERENTIAL EQUATIONS

JAMES KEESLING

In this post we give the basic theory of homogeneous differential equations. These equations can be put in the following form.

\begin{equation}
\frac{dy}{dx} = G \left(\frac{y}{x} \right)
\end{equation}

The function \(G(z) \) is such that substituting \(\frac{y}{x} \) for \(z \) gives the right hand side of (1).

There is a test to verify that a differential equation is homogeneous. Substitute \(t \cdot x \) for \(x \) and \(t \cdot y \) for \(y \) in the differential equation. If \(t \) can be eliminated from the equation, then the equation is homogeneous.

1. Solving a Homogeneous Equation

Consider an equation that has the form of (1). Substitute \(v = \frac{y}{x} \) so that the right hand side of (1) becomes \(G(v) \). By letting \(v = \frac{y}{x} \) we get that \(\frac{dy}{dx} = v + x \frac{dv}{dx} \). This gives us the following differential equation in \(v \) and \(x \).

\begin{equation}
v + x \frac{dv}{dx} = G(v)
\end{equation}

Now (2) is separable and has the form

\begin{equation}
\frac{dv}{G(v) - v} = \frac{dx}{x}
\end{equation}

So, the solution is obtained by solving (3) to get \(v = h(x, C) \). Then substitute \(\frac{y}{x} \) for \(v \) to get

\begin{equation}
\frac{y}{x} = h(x, C).
\end{equation}

2. An Example

Consider the following differential equation.

\begin{equation}
(y^2 + x^2) \, dx - x^2 \, dy = 0
\end{equation}

This can be put in the following form.
(6) \[\frac{dy}{dx} = \left(\frac{y}{x} \right)^2 + 1 \]

From (2) we can write this as

(7) \[v + x \frac{dv}{dx} = v^2 + 1. \]

Finally, we get

(8) \[\frac{dv}{v^2 - v + 1} = \frac{dx}{x}. \]

Our solution is thus

(9) \[\ln(x) = \frac{2 \tan^{-1} \left(\frac{2v-1}{\sqrt{3}} \right)}{\sqrt{3}} + C. \]

We now substitute \(\frac{y}{x} \) back for \(v \) to get

(10) \[\ln(x) = \frac{2 \tan^{-1} \left(\frac{2 \left(\frac{y}{x} \right) - 1}{\sqrt{3}} \right)}{\sqrt{3}} + C. \]

There are several other methods that are similar to this where a substitution of a variable for some expression of \(x \) and \(y \) is made that makes the differential equation separable.